JPH0582874B2 - - Google Patents

Info

Publication number
JPH0582874B2
JPH0582874B2 JP17763185A JP17763185A JPH0582874B2 JP H0582874 B2 JPH0582874 B2 JP H0582874B2 JP 17763185 A JP17763185 A JP 17763185A JP 17763185 A JP17763185 A JP 17763185A JP H0582874 B2 JPH0582874 B2 JP H0582874B2
Authority
JP
Japan
Prior art keywords
pitch
adp
free
precipitate
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17763185A
Other languages
Japanese (ja)
Other versions
JPS6239689A (en
Inventor
Kenichi Fujimoto
Maki Sato
Yoshiaki Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP17763185A priority Critical patent/JPS6239689A/en
Publication of JPS6239689A publication Critical patent/JPS6239689A/en
Publication of JPH0582874B2 publication Critical patent/JPH0582874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、人造黒鉛電極を製造する際に用いら
れるバインダーピツチ、含浸ピツチ等に適したピ
ツチを得るためのピツチの改質法に関するもので
ある。 (従来の技術) 炭素材料の多くは石油コークス、ピツチコーク
ス等のフイラーにピツチ、タール等のバインダー
を加えて成形し、次いで炭化黒鉛化することによ
り製造されている。更に、必要に応じピツチ、タ
ール等を含浸して再焼成し、密度、強度を向上さ
せている。人造黒鉛電極の製造の際は、この再焼
成品を電気炉を用いて、窒素、アルゴン等の不活
性気体中、もしくは詰め粉を行つて、空気を遮断
した状態で約3000℃に加熱し、コークスを黒鉛に
変化させている。 人造黒鉛電極の原料であるバインダーピツチと
含浸ピツチは、以下の様な性質を要求されてい
る。バインダーピツチの場合は粘結性が良いこ
と、炭化歩留が高いことが要求されている。一般
的な性状としては、次のものが挙げられる。 軟化点(SP) 約90〜100℃ トルエン不溶分(TI) 約30% キノリン不溶分(QI) 約10% 固定炭素(FC) 55〜60% また、含浸ピツチを含浸性の良いこと、炭化歩
留の高いことが要求されている。一般的な性状と
しては、次のものが挙げられる。 軟化点(SP) 約80〜90℃ トルエン不溶分(TI) 約15% キノリン不溶分(QI) 3%以下 固定炭素(FC) 50〜55% 現在、バインダーピツチ、含浸ピツチは主とし
て石炭系の原料から製造されている。通常のコー
ルタール連続蒸溜から得られるピツチ(軟ピツ
チ)の性状は、上記のバインダーピツチ、含浸ピ
ツチとして要求される特性値と比較すればいずれ
も低く、種々の改質操作を加える必要がある。バ
インダーピツチは軟ピツチを常圧もしくは加圧下
で、400℃以下の温度で熱改質して製造されてい
る。また、含浸ピツチは、1次QIを溶剤分別法
もしくは遠心分離法で除去した後、熱改質して製
造されている。 バインダーピツチは炭化率が低いため、炭化工
程で揮発する部分が多く、製品中に多くの気孔を
残すので、高密度、高強度の製品を得ることが難
しい。そこで焼成後、含浸ピツチ等で含浸し、再
焼成する工程を数回繰返し密度、強度を向上させ
ているのが現状である。この様な現状からバイン
ダーピツチ、含浸ピツチの炭化率の向上が強く望
まれている。 従つて、ピツチに添加剤を少量加えて熱処理
し、炭化率を向上させる研究が数多く行なわれて
きた。用いられる添加剤としては次の二種類に大
きく分けられる。その一つは炭素物質であり、一
例として、カーボンブラツク、コークス等をピツ
チに添加して、熱処理して、炭化率を上げる方法
がある(特公昭53−18049号公報)。他の方法とし
ては無機質の縮合促進剤を使う方法がある。しか
しこの場合にはピツチに溶解しないため、いかに
して分散させるかが問題となるし、場合によつて
は添加した無機質の縮合促進剤を分離することが
必要となる。 (発明が解決しようとする問題点) 本発明は、ピツチに添加して炭化歩留を高める
物質を、原料ピツチ中から分離し改質して得る方
法を提供することにある。本発明によつて改質さ
れたピツチは炭化率が向上し、バインダーピツ
チ、含浸ピツチ等として好適なものである。 (問題点を解決するための手段) 本発明は、ピツチの反応促進作用を有する物質
を原料ピツチから分離する方法に関するものであ
る。 以下、本発明について詳細に説明する。 原料となるピツチはQIフリーピツチである。
QIフリーピツチは、コールタールを連続蒸溜す
ることによつて得られる所の軟ピツチより得られ
る。この軟ピツチを、石油系溶剤と芳香族成分が
豊富に含まれている油分との混合溶剤に溶解し、
キノリン不溶分を分離、除去して得られる。通常
のQIフリーピツチは、上に述べた混合溶剤に溶
けている物を溶剤を蒸溜によつて除去し、軟化点
を調整して得ている。以下このQIフリーピツチ
が溶剤に溶解している溶液をOFを呼ぶ。 本発明では、OFに非酸化性酸を作用させ、OF
中に含まれる塩基性成分を重質ピツチを主とする
沈澱物として分離する。OFに非酸化性酸を作用
させると、粘度が比較的高い重質ピツチが生成し
て、沈澱物相を形成し、上から油相、水相、沈澱
物の3相に分離する。この油相、水相、沈澱物
は、デカンテーシヨン等の公知の分離手段により
容易に分離することができる。 分離した重質ピツチを主とする沈澱物は、塩基
性水溶液、例えば水酸化ナトリウム、水酸化カリ
ウム、アンモニア、炭酸ナトリウム、炭酸カリウ
ム等の水溶液を用いて洗浄した後、水洗し、必要
に応じて水分を除去して、ピツチ質の物質(以下
ADPと呼ぶ)を得る。 このようにして得られたADPを、コールター
ル、軟ピツチ等に添加して熱処理し、所定の軟化
点に調整してバインダーピツチとする。また、
ADPをQIフリーピツチに添加後熱処理し、所定
の軟化点に調整して含浸ピツチとする。ADPに
はQIがほとんど含まれていないので、ADPを単
味で熱処理して、軟化点を調整することにより、
含浸ピツチとすることもできる。 本発明で使用する非酸化性酸としては、塩酸、
希硫酸、酢酸等が挙げられる。硝酸、濃硫酸のよ
うな酸化能力を有する酸を用いると、ピツチの構
成成分の変質がおこり、好ましくない。 このとき加える非酸化性酸の濃度は、低濃度の
非酸化性酸を用いると、用いる非酸化性酸水溶液
の量が多くなり、一方濃すぎるとコロイド状の沈
澱物が生成しやすくなるので、0.001N〜5Nの範
囲がよく、好ましくは0.01N〜1Nである。 OFに対する非酸化性酸水溶液の量は、濃度に
もよるがOFに対して5wt%以上が好ましく、上
限は必らずしも規定する必要はないが、処理する
水の量が多くなると、経済的でないため、300wt
%程度までが良い。実際の処理に際しては、20〜
200wt%の範囲とすることが効率的である。ま
た、5wt%未満ではエマルジヨンを形成しやすく
なるために、溶液の各相の分離状態が悪くなり、
沈澱物の収率が低下する。 OFと非酸化性酸を混合するときの混合温度と
しては、50〜90℃の範囲が良い。非酸化性酸は水
溶液で用いるので、90℃を超えると水の蒸発量が
多いので好ましくなく、50℃未満では、QIフリ
ーピツチの溶剤に対する溶解量が少ないので、
OFに対する沈澱物の収率が低くなり、また溶液
の粘度が高く、エマルジヨンの形成量が多くなる
ので好ましくない。 一方、混合は通常の撹拌機を用いて行ない、油
相と水相の接触面積が大きくなるように強く撹拌
する。重質ピツチ生成反応は酸・塩基反応である
ので、反応速度は速く、混合時間は5分以上であ
れば十分である。 QIフリーピツチを溶解する溶剤としては、メ
チルナフタリン油、洗浄油、クレオソート油、ア
ントラセン油、コーカー油などコールタール蒸留
の副産物が挙げられる。これらの溶剤は、ピツチ
に対する溶解力が強いので好ましいものである。 また、脱QIプロセスに使用されている混合溶
剤も、溶剤に適している。この混合溶剤は、石油
系溶剤と芳香族成分が豊富に含まれている油分と
を混合したものである。 ADPは単味で熱改質しても、他のコールター
ル軟ピツチやQIフリーピツチ等と混合して熱改
質してもよい。ADPを他のピツチと混合して使
用する場合は、ADP量として数%以上添加する
ことが望ましい。 本発明で使用するADPは、元来ピツチに含ま
れていたものであり、改質しようとするピツチに
良く馴染み、無機質の縮合促進剤を使用した場合
に、問題となる分散の問題もなく、更に熱改質後
除去する必要もない。 (作用) 本発明のピツチの改質法によつて得られたピツ
チがバインダーピツチ、含浸ピツチ等として好ま
しい特性を示すことについて、以下のように推測
している。 ピツチ中の窒素分は、多くは塩基性を示すと考
えられており、非酸化性酸を作用させることによ
り、ピツチ中の塩基性物質が非酸化性酸と反応
し、OFに不溶性成分になり沈澱物となる。又、
この沈澱物が核となり、ピツチ中の重度に重縮合
した成分をADPとして分離する。このADPがピ
ツチの反応性を高める理由、ADPが上に述べた
様に、重度に重縮合した様な反応活性な部分を、
主成分として持つているためと考えられる。 (実施例) 実施例 1 QIフリーピツチを混合溶剤に溶解したOFを約
500gとり、これに0.1N塩酸を約1Kg加え、80℃
で1.5時間撹拌した。静置分離後、液液分離で重
質ピツチを主とする沈澱物を分離した。 分離した沈澱物を1N水酸化ナトリウム水溶液
で2回洗浄し、充分に水洗して、残存する水分を
除き、ADPとした。 QIフリーピツチを50gとり、これに前記の
ADPを10wt%加えて、窒素雰囲気下、ガラス製
反応管中で410℃で4時間熱改質を行なつた。 比較例 1 実施例1で使用したQIフリーピツチを55gと
り、ガラス製反応管中で窒素雰囲気下、410℃で
4時間熱改質を行なつた。 実施例 2−1 コールタール軟ピツチ50gをガラス製反応管に
とり、これに実施例1で得たADPを10wt%加え、
窒素雰囲気下、360℃で5時間熱改質を行なつた。 実施例 2−2 コールタール軟ピツチ50gをガラス製反応管に
とり、これに実施例1で得たADPを20wt%加え、
窒素雰囲気下360℃で5時間熱改質を行なつた。 比較例 2 コールタール軟ピツチ50gをガラス製反応管に
とり、窒素雰囲気下、360℃で5時間熱改質を行
なつた。 実施例 3 実施例1で得たADP50gをガラス製反応管に
とり、窒素雰囲気下、360℃で5時間熱改質を行
なつた。 比較例 3 実施例1で使用したQIフリーピツチを50gを
ガラス製反応管にとり、窒素雰囲気下、360℃で
5時間熱改質を行なつた。
(Industrial Application Field) The present invention relates to a pitch modification method for obtaining pitch suitable for binder pitch, impregnation pitch, etc. used in manufacturing artificial graphite electrodes. (Prior Art) Most carbon materials are manufactured by adding a binder such as pitch or tar to a filler such as petroleum coke or pitch coke, forming the mixture, and then carbonizing the material into graphitization. Furthermore, if necessary, it is impregnated with pitch, tar, etc. and re-fired to improve density and strength. When producing artificial graphite electrodes, this re-fired product is heated to approximately 3000°C in an electric furnace in an inert gas such as nitrogen or argon, or packed with powder, with air excluded. It converts coke into graphite. The binder pitch and impregnated pitch, which are the raw materials for artificial graphite electrodes, are required to have the following properties. Binder pitches are required to have good caking properties and a high carbonization yield. General properties include the following: Softening point (SP) Approximately 90 to 100℃ Toluene insoluble content (TI) Approximately 30% Quinoline insoluble content (QI) Approximately 10% Fixed carbon (FC) 55 to 60% In addition, the impregnated pitch should have good impregnating properties and carbonization step. A high degree of retention is required. General properties include the following: Softening point (SP) Approx. 80-90℃ Toluene insoluble content (TI) Approx. 15% Quinoline insoluble content (QI) 3% or less Fixed carbon (FC) 50-55% Currently, binder pitch and impregnated pitch are mainly made from coal-based raw materials. is manufactured from. The properties of pitch (soft pitch) obtained from ordinary continuous distillation of coal tar are low compared to the characteristic values required for the above-mentioned binder pitch and impregnated pitch, and it is necessary to add various modification operations. Binder pitch is manufactured by thermally modifying soft pitch at a temperature of 400°C or less under normal pressure or increased pressure. In addition, impregnated pits are manufactured by removing the primary QI by solvent fractionation or centrifugation and then thermally modifying it. Since binder pitch has a low carbonization rate, a large amount of binder pitch is volatilized during the carbonization process, leaving many pores in the product, making it difficult to obtain products with high density and high strength. Therefore, at present, after firing, the process of impregnating with an impregnation pitch or the like and re-firing is repeated several times to improve density and strength. Under these circumstances, it is strongly desired to improve the carbonization rate of binder pitches and impregnated pitches. Therefore, many studies have been conducted to improve the carbonization rate by adding small amounts of additives to pitch and heat treating it. The additives used can be roughly divided into the following two types. One of them is carbon materials, and one example is a method of adding carbon black, coke, etc. to pitch and heat-treating it to increase the carbonization rate (Japanese Patent Publication No. 18049/1983). Another method is to use an inorganic condensation accelerator. However, in this case, since it does not dissolve in pitch, the problem is how to disperse it, and in some cases it may be necessary to separate the added inorganic condensation accelerator. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for separating and modifying a substance from a raw material pitch to improve the carbonization yield by adding it to the pitch. The pitch modified by the present invention has an improved carbonization rate and is suitable for use as binder pitch, impregnated pitch, etc. (Means for Solving the Problems) The present invention relates to a method for separating a substance having a reaction promoting action from raw pitch. The present invention will be explained in detail below. The raw material is QI-free pitch.
QI-free pitch is obtained from soft pitch obtained by continuous distillation of coal tar. This soft pitch is dissolved in a mixed solvent of petroleum solvent and oil rich in aromatic components.
Obtained by separating and removing insoluble components of quinoline. Ordinary QI-free pitches are obtained by removing the substances dissolved in the above-mentioned mixed solvent by distillation and adjusting the softening point. Hereinafter, the solution in which QI free pitch is dissolved in a solvent will be referred to as OF. In the present invention, a non-oxidizing acid is applied to OF, and OF
The basic components contained therein are separated as a precipitate consisting mainly of heavy pitch. When a non-oxidizing acid is applied to OF, a heavy pitch with a relatively high viscosity is generated, forming a precipitate phase, which is separated from the top into three phases: an oil phase, an aqueous phase, and a precipitate. The oil phase, aqueous phase, and precipitate can be easily separated by known separation means such as decantation. The separated precipitate, mainly composed of heavy pitch, is washed with a basic aqueous solution, such as an aqueous solution of sodium hydroxide, potassium hydroxide, ammonia, sodium carbonate, potassium carbonate, etc., and then washed with water and treated as necessary. Water is removed and a sticky substance (hereinafter referred to as
(called ADP). The ADP thus obtained is added to coal tar, soft pitch, etc. and heat-treated to adjust the softening point to a predetermined value to obtain a binder pitch. Also,
After ADP is added to QI-free pitch, it is heat-treated and adjusted to a predetermined softening point to form an impregnated pitch. ADP contains almost no QI, so by heat-treating ADP alone and adjusting the softening point,
It can also be an impregnated pitch. The non-oxidizing acids used in the present invention include hydrochloric acid,
Examples include dilute sulfuric acid and acetic acid. If an acid with oxidizing ability such as nitric acid or concentrated sulfuric acid is used, the constituent components of the pitch will change in quality, which is not preferable. Regarding the concentration of the non-oxidizing acid added at this time, if a low-concentration non-oxidizing acid is used, the amount of non-oxidizing acid aqueous solution used will be large, while if it is too concentrated, colloidal precipitates will be likely to be formed. The range is preferably 0.001N to 5N, preferably 0.01N to 1N. The amount of non-oxidizing acid aqueous solution relative to OF depends on the concentration, but is preferably 5 wt% or more relative to OF. Although there is no need to specify an upper limit, it is economical as the amount of water to be treated increases. 300wt because it is not the target
% is good. During actual processing, 20~
A range of 200wt% is efficient. In addition, if it is less than 5wt%, emulsion tends to form, resulting in poor separation of each phase of the solution.
The yield of precipitate decreases. The mixing temperature when mixing OF and non-oxidizing acid is preferably in the range of 50 to 90°C. Non-oxidizing acids are used in aqueous solution, so if the temperature exceeds 90℃, there will be a large amount of water evaporation, which is undesirable.If the temperature is below 50℃, the amount of QI-free pitch dissolved in the solvent will be small.
This is not preferred because the yield of precipitate based on OF becomes low, the viscosity of the solution becomes high, and the amount of emulsion formed increases. On the other hand, mixing is carried out using an ordinary stirrer, and the mixture is strongly stirred to increase the contact area between the oil phase and the water phase. Since the heavy pitch formation reaction is an acid-base reaction, the reaction rate is fast, and a mixing time of 5 minutes or more is sufficient. Solvents that dissolve QI-free pitch include byproducts of coal tar distillation, such as methylnaphthalene oil, cleaning oil, creosote oil, anthracene oil, and coker oil. These solvents are preferred because they have a strong ability to dissolve pitch. The mixed solvent used in the QI removal process is also suitable as a solvent. This mixed solvent is a mixture of a petroleum solvent and an oil rich in aromatic components. ADP may be heat-modified alone or may be mixed with other coal tar soft pitch, QI-free pitch, etc. and heat-modified. When ADP is used in combination with other pitches, it is desirable to add several percent or more of ADP. The ADP used in the present invention is originally contained in pitch, so it is compatible with the pitch to be modified, and there is no problem of dispersion when an inorganic condensation accelerator is used. Furthermore, there is no need to remove it after thermal modification. (Function) It is speculated as follows that the pitch obtained by the pitch modification method of the present invention exhibits favorable characteristics as a binder pitch, an impregnated pitch, etc. Most of the nitrogen content in pituti is thought to be basic, and when a non-oxidizing acid is applied, the basic substance in the pituti reacts with the non-oxidizing acid and becomes an insoluble component in OF. It becomes a precipitate. or,
This precipitate becomes a core, and the heavily polycondensed components in the pitch are separated as ADP. The reason why this ADP increases the reactivity of pitch is that, as mentioned above, ADP has a reactive moiety that is heavily polycondensed,
This is thought to be because it has it as a main component. (Example) Example 1 OF containing QI-free pitch dissolved in a mixed solvent was
Take 500g, add about 1kg of 0.1N hydrochloric acid to it, and heat at 80℃.
The mixture was stirred for 1.5 hours. After standing and separating, the precipitate mainly consisting of heavy pitch was separated by liquid-liquid separation. The separated precipitate was washed twice with a 1N aqueous sodium hydroxide solution and thoroughly washed with water to remove residual water, giving ADP. Take 50g of QI Free Pitch and add the above
10 wt% of ADP was added, and thermal modification was carried out at 410°C for 4 hours in a glass reaction tube under a nitrogen atmosphere. Comparative Example 1 55 g of the QI-free pitch used in Example 1 was taken and thermally modified in a glass reaction tube at 410° C. for 4 hours under a nitrogen atmosphere. Example 2-1 50g of coal tar soft pitch was placed in a glass reaction tube, and 10wt% of the ADP obtained in Example 1 was added thereto.
Thermal modification was carried out at 360°C for 5 hours under a nitrogen atmosphere. Example 2-2 50g of coal tar soft pitch was placed in a glass reaction tube, and 20wt% of ADP obtained in Example 1 was added thereto.
Thermal modification was carried out at 360°C for 5 hours under a nitrogen atmosphere. Comparative Example 2 50 g of coal tar soft pitch was placed in a glass reaction tube and thermally reformed at 360° C. for 5 hours in a nitrogen atmosphere. Example 3 50 g of ADP obtained in Example 1 was placed in a glass reaction tube, and thermally reformed at 360° C. for 5 hours in a nitrogen atmosphere. Comparative Example 3 50 g of the QI-free pitch used in Example 1 was placed in a glass reaction tube, and thermally modified at 360° C. for 5 hours in a nitrogen atmosphere.

【表】【table】

【表】【table】

【表】【table】

【表】 第1表にコールタール軟ピツチ、QIフリーピ
ツチ、ADPの工業分析値を示す。第2表に実施
例1、比較例1の熱改質後のピツチの工業分析値
を示す。実施例1のピツチの方が、比較例1のピ
ツチに比べて、同程度の軟化点でTIの生成量が
多く、炭化収率も高いことがわかる。 第3表に実施例2−1、実施例2−2、比較例
2の熱改質後のピツチの工業分析値を示す。実施
例2−1、実施例2−2のピツチの方が、比較例
2のピツチに比べて、同程度の軟化点で、TIの
生成量が多く、炭化収率も高いことがわかる。 第4表に実施例3、比較例3の熱改質後のピツ
チの工業分析値を示す。実施例3のピツチの方
が、比較例3のピツチに比べて、同程度の軟化点
でTIの生成量が多く、炭化収率も高いことがわ
かる。 (発明の効果) 本発明により、コールタールピツチから炭化率
の高いピツチの製造が可能となる。このようなピ
ツチを炭素電極用のバインダーピツチ、含浸ピツ
チとして利用すると、焼成過程において炭化率を
向上させることが出来る。このことは、電極製造
時の歩留りを改善するものであり、製造コストの
低減にも寄与するものである。
[Table] Table 1 shows industrial analysis values for coal tar soft pitch, QI free pitch, and ADP. Table 2 shows industrial analysis values of pitches after thermal modification in Example 1 and Comparative Example 1. It can be seen that the pitch of Example 1 produces more TI and has a higher carbonization yield than the pitch of Comparative Example 1 at the same softening point. Table 3 shows the industrial analysis values of pitches after thermal modification in Example 2-1, Example 2-2, and Comparative Example 2. It can be seen that the pitches of Examples 2-1 and 2-2 have a similar softening point, a larger amount of TI produced, and a higher carbonization yield than the pitches of Comparative Example 2. Table 4 shows the industrial analysis values of pitches after thermal modification in Example 3 and Comparative Example 3. It can be seen that the pitch of Example 3 produces more TI and has a higher carbonization yield than the pitch of Comparative Example 3 at the same softening point. (Effects of the Invention) According to the present invention, pitch with a high carbonization rate can be produced from coal tar pitch. If such a pitch is used as a binder pitch or an impregnation pitch for a carbon electrode, the carbonization rate can be improved during the firing process. This improves the yield during electrode manufacturing and also contributes to reducing manufacturing costs.

Claims (1)

【特許請求の範囲】[Claims] 1 QIフリーピツチを溶解した溶液に、非酸化
性酸の水溶液を加え、生成する沈澱物を分離回収
し、前記沈澱物を塩基性水溶液にて洗浄しピツチ
質を得て、該ピツチ質を、そのままもしくはQI
フリーピツチまたは軟ピツチに加え熱処理し、所
定の軟化点に調整することを特徴とするピツチの
改質法。
1 Add an aqueous solution of a non-oxidizing acid to a solution in which QI-free pitch is dissolved, separate and collect the resulting precipitate, wash the precipitate with a basic aqueous solution to obtain a pitch substance, and leave the pitch substance as it is. Or QI
A pitch modification method characterized by adding heat treatment to free pitch or soft pitch to adjust it to a predetermined softening point.
JP17763185A 1985-08-14 1985-08-14 Method of modifying pitch Granted JPS6239689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17763185A JPS6239689A (en) 1985-08-14 1985-08-14 Method of modifying pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17763185A JPS6239689A (en) 1985-08-14 1985-08-14 Method of modifying pitch

Publications (2)

Publication Number Publication Date
JPS6239689A JPS6239689A (en) 1987-02-20
JPH0582874B2 true JPH0582874B2 (en) 1993-11-22

Family

ID=16034376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17763185A Granted JPS6239689A (en) 1985-08-14 1985-08-14 Method of modifying pitch

Country Status (1)

Country Link
JP (1) JPS6239689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848384A (en) * 1994-08-06 1996-02-20 Shimonoseki Giyorui Kk Vegetable container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649808A (en) * 1987-07-01 1989-01-13 Koa Oil Co Ltd Production of elastic graphite material
US5057297A (en) * 1987-07-01 1991-10-15 Koa Oil Company, Limited Method for producing elastic graphite structures
CN110423629A (en) * 2019-09-04 2019-11-08 北京旭阳科技有限公司 A kind of preparation method of high-density carbon/carbon cellulosic material dipping agent bitumen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848384A (en) * 1994-08-06 1996-02-20 Shimonoseki Giyorui Kk Vegetable container

Also Published As

Publication number Publication date
JPS6239689A (en) 1987-02-20

Similar Documents

Publication Publication Date Title
CA1298456C (en) Method for producing elastic graphite structures
JPH05163491A (en) Production of needle coke
JPH0150354B2 (en)
JPH0233679B2 (en)
JPH0582874B2 (en)
JP2004285130A (en) Method for manufacturing impregnating pitch
JPH0629435B2 (en) Low melting point intermediate phase pitches
JPS59184288A (en) Post-treatment for spinnable precursor from petroleum pitch
US5017358A (en) Preparation of elastic graphite materials
JP3240338B2 (en) Method for producing mesocarbon microbeads
JPH0582875B2 (en)
JPS591725A (en) Preparation of carbon fiber
WO1985001057A1 (en) Process for treating coal tar or coal tar pitch
JP2920974B2 (en) Needle coke manufacturing method
JP2989295B2 (en) Method for producing coke for isotropic high-density carbon material
JP2000008047A (en) Production of blast furnace coke
JPS63139012A (en) Production of graphitic material for electric cell
KR910004907B1 (en) Preparation for needle-like cokes
JPS6127433B2 (en)
US2900351A (en) Ion exchange material
JP4140233B2 (en) Needle coke manufacturing method
JPH04285189A (en) Production of artificial graphite electrode
JPH02296894A (en) Production of needle coke
JP2000230178A (en) Production of mesophase microbeads
JPH03143989A (en) Preparing needle coke