JP4140233B2 - Needle coke manufacturing method - Google Patents

Needle coke manufacturing method Download PDF

Info

Publication number
JP4140233B2
JP4140233B2 JP2001380378A JP2001380378A JP4140233B2 JP 4140233 B2 JP4140233 B2 JP 4140233B2 JP 2001380378 A JP2001380378 A JP 2001380378A JP 2001380378 A JP2001380378 A JP 2001380378A JP 4140233 B2 JP4140233 B2 JP 4140233B2
Authority
JP
Japan
Prior art keywords
heavy oil
fcc
coal tar
needle coke
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001380378A
Other languages
Japanese (ja)
Other versions
JP2003183669A (en
Inventor
雄次 山村
好弘 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001380378A priority Critical patent/JP4140233B2/en
Publication of JP2003183669A publication Critical patent/JP2003183669A/en
Application granted granted Critical
Publication of JP4140233B2 publication Critical patent/JP4140233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、ニードルコークスの製造方法に関する。さらに詳しくは、熱膨張係数の低いニードルコークスの製造方法に関する。
【0002】
【従来の技術】
従来、ニードルコークスは、石油系重質油又はコールタールもしくはコールタールピッチを原料として製造され、黒鉛電極の骨材として使用される。黒鉛電極は苛酷な条件(高温雰囲気)で使用されるため耐熱衝撃性の良いものすなわち低熱膨張係数(低CTE)のものが望まれている。コールタール中には、1〜10重量%のキノリン不溶分(QI)が含有されており、そのQIを0.1重量%以下程度まで除去することにより、低CTEのニードルコークスを製造できることが知られている(特開昭52−28501号公報、特公昭60−41111号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、直流電炉の普及等もあり、更に低CTEのニードルコークスが望まれているのが現状である。本発明は、QIを除去したコールタール系重質油と石油系重質油とを混合し、ディレードコーキングを行って、ニードルコークスを製造するに際し、CTEが低く、容易かつ安価なニードルコークスの製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記実状に鑑み、低CTEのニードルコークスを製造すべく鋭意努力を重ねた結果、本発明に到達した。
即ち、本発明の要旨は、石油系重質油とコールタール系重質油とを混合し、ディレードコーキングを行って、ニードルコークスを製造するに際し、予めキノリン不溶分が0.2重量%以上1.0重量%以下、トルエン不溶分が1重量%以上10重量%以下で、コンラドソン残炭率(CCR)が20〜35重量%、芳香族水素指数(Ha)が28〜50%になるように石油系重質油に温度385〜415℃で8〜12時間加熱処理を施した後、コールタール系重質油と混合することを特徴とするニードルコークスの製造方法、に存する。
【0005】
以下、本発明を詳細に説明する。
本発明におけるコールタール系重質油としては、例えば、コークス製造時に副生する通常のコールタール及び軟化点が100℃以下のコールタールピッチが挙げられる。コールタール系重質油は、通常石油系重質油との混合使用に先立ってキノリン不溶分(QI)の除去処理を行い、QIを実質的に除去し、通常0.1%以下のものを使用するのが好ましい。このコールタール系重質油からのQIの除去法としては、実質的にQIが除去される方法であれば特に限定されるものではなく、例えば、特開昭52−28501号公報、特公昭60−41111号公報等に記載されているように、石油系溶剤と混合後の静置分離法、遠心分離法、濾過法等公知の方法を採用することができる。
【0006】
本発明における石油系重質油としては、例えば、接触分解油、熱分解油、常圧残油、減圧残油が挙げられるが、特に接触分解油の重質成分であるデカント油(FCC−DC)が好ましい。通常、FCC−DOに含まれる、コンラドソン残炭率(CCR)は5〜10重量%、硫黄分は1.2重量%以下、窒素分は0.5重量%以下である。
【0007】
本発明においては、コールタール系重質油との混合使用に先立って、石油系重質油を、キノリン不溶分(QI)が0.2〜1.0重量%、好ましくは0.4〜0.8重量%、トルエン不溶分(TI)が2〜8重量%、好ましくは3〜5重量%、コンラドソン残炭率(CCR)が20〜35重量%、好ましくは22〜28重量%、芳香族水素指数(Ha)が28〜50%、好ましくは30〜40%になるよう加熱処理することと特徴とする。ここで、芳香族水素指数とは、石油系重質油中の全炭素原子数に対する芳香族環炭素数の比率であり、次の式で求められた数値である。
Ha=〔C−(Hα/2+Hβ/2+Hγ/3)〕/C
(上記式中、Cは原料中の全炭素原子数、Hαは原料中の芳香族環からのα位水素の原子数、Hβは原料中の芳香族環からのβ位水素の原子数、Hγは原料中の芳香族環からのγ位水素の原子数を表す。)
本発明においては、QI、TIが上記範囲以下の場合、熱処理の効果がなく、上記範囲以上の場合は、CTEが高くなってしまうため好ましくない。
【0008】
石油系重質油の加熱処理は、通常、温度370〜430℃で5〜15時間、好ましくは温度385〜415℃で8〜12時間加熱処理される。加熱処理時の圧力は、通常1〜3kg/cm2である。このように比較的マイルドな温度条件下で長時間熱処理した方がQIの上昇率が低く、TIの上昇率が高くなり、結果として低CTEのコークスが得られやすい。このような熱処理条件を選択することで、脱QI処理をすることなく石油系重質油を使用することができ、またこの石油系重質油を本願の製法を適用することでコールタール系重質油のみと同程度の低いCTEを示すニードルコークスを製造することができる。
【0009】
一方、本発明におけるコールタール系重質油としては、例えば、コークス製造時に副生する通常のコールタール及び軟化点が100℃以下のコールタールピッチが挙げられる。コールタール系重質油は、通常石油系重質油との混合使用に先立ってキノリン不溶分(QI)の除去処理を行い、QIを実質的に除去し、通常0.1%以下のものを使用するのが好ましい。このコールタール系重質油からのQIの除去法としては、実質的にQIが除去される方法であれば特に限定されるものではなく、例えば、特開昭52−28501号公報、特公昭60−41111号公報等に記載されているように、石油系溶剤と混合後の静置分離法、遠心分離法、濾過法等公知の方法を採用することができる。
【0010】
加熱処理によりQI及びTIを制御した石油系重質油とコールタール系重質油とを混合し、ディレードコーキングを行って、ニードルコークスを製造する方法としては、公知の方法を採用することができる。例えば、ディレードコーカーで加圧下、450〜550℃で生コークスを製造し、次いで生コークスをロータリーキルン等で1200〜1500℃でカルサインしてニードルコークスとすることができる。
【0011】
キノリン不溶分を除去したコールタール系重質油と加熱処理によりQI及びTIを制御した石油系重質油との混合割合(重量)は、通常20:80〜80:20、好ましくは40:60〜60:40である。
異常のようにして得られたニードルコークスは、粉砕、粒度調整後、バインダーピッチと混合して成形し、さらにこれを焼成した後、黒鉛化することにより、優れた性能の黒鉛電極を効率的に得ることができる。
【0012】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例によって限定されるものではない。
実施例1
FCC−DOをオートクレーブ中で常圧下、400℃で10時間、300rpmで攪拌しながら熱処理した。熱処理後のFCC−DCの性状を表1に示す。熱処理されたFCC−DOとQIを除去したコールタールピッチを1:1(重量比)で混合し、小型反応器で480℃、10時間、圧力3kg/cm2でコーキングした後、1400℃で仮焼した。得られた仮焼コークスは、粒度を調整した後配合し、ニーダーで加熱混合後、成形して、1インチ径のラボ電極を製造した。その電極を1000℃で焼成、2600℃で黒鉛化後、CTE(室温〜130℃)を測定した。結果を表1に示す。なお、未熱処理のFCC−DO及びQIを除去したコールタールピッチの性状を表2に示す。
【0013】
実施例2
FCC−DOをオートクレーブ中で常圧下、390℃で12時間、300rpmで攪拌しながら熱処理した。熱処理されたFCC−DOを熱処理後のFCC−DCの性状を表1に示す。この熱処理されたFCC−DOを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
【0014】
実施例3
FCC−DOをオートクレーブ中で常圧下、410℃で8時間、300rpmで攪拌しながら熱処理した。熱処理されたFCC−DOを熱処理後のFCC−DCの性状を表1に示す。この熱処理されたFCC−DOを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
【0015】
比較例1
未熱処理のFCC−DOを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
比較例2
FCC−DOを常圧下、380℃で10時間、300rpmで攪拌しながら熱処理した。熱処理されたFCC−DOを熱処理後のFCC−DCの性状を表1に示す。この熱処理されたFCC−DOを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
【0016】
比較例3
FCC−DOを常圧下、420℃で10時間、300rpmで攪拌しながら熱処理した。熱処理されたFCC−DOを熱処理後のFCC−DCの性状を表1に示す。この熱処理されたFCC−DOを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
【0017】
比較例4
FCC−DOを常圧下、450℃で1時間、300rpmで攪拌しながら熱処理した。熱処理されたFCC−DOを熱処理後のFCC−DCの性状を表1に示す。この熱処理されたFCC−DOを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
【0018】
参考例1
未熱処理のFCC−DOのみを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
参考例2
QIを除去したタールピッチのみを用いて実施例1と同様な方法でコーキング、仮焼、成形、焼成、黒鉛化処理を施し、CTEを測定した。結果を表1に示す。
【0019】
【表1】

Figure 0004140233
【0020】
【表2】
Figure 0004140233
【0021】
【発明の効果】
本発明によれば、CTEが低く黒鉛電極として好適に使用されるCTEが低いニードルコークスの容易かつ安価な製造方法を提供することができるため、工業上非常に有用である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for producing needle coke. More specifically, the present invention relates to a method for producing needle coke having a low coefficient of thermal expansion.
[0002]
[Prior art]
Conventionally, needle coke is manufactured using petroleum heavy oil or coal tar or coal tar pitch as a raw material, and used as an aggregate of a graphite electrode. Since the graphite electrode is used under severe conditions (high temperature atmosphere), a graphite electrode having good thermal shock resistance, that is, a low thermal expansion coefficient (low CTE) is desired. Coal tar contains 1 to 10% by weight of quinoline insoluble matter (QI), and it is known that low CTE needle coke can be produced by removing the QI to about 0.1% by weight or less. (Japanese Patent Laid-Open No. 52-28501, Japanese Patent Publication No. 60-41111).
[0003]
[Problems to be solved by the invention]
However, there is a widespread use of DC electric furnaces, and the current situation is that needle coke with a lower CTE is desired. In the present invention, when coal tar heavy oil from which QI has been removed and petroleum heavy oil are mixed, and delayed coking is performed to produce needle coke, it is easy to produce needle coke with a low CTE. It is intended to provide a method.
[0004]
[Means for Solving the Problems]
In view of the above circumstances, the present inventors have made intensive efforts to produce a low CTE needle coke, and as a result have reached the present invention.
That is, the gist of the present invention is that a petroleum heavy oil and a coal tar heavy oil are mixed and subjected to delayed coking to produce needle coke. 0.0 wt% or less, toluene insoluble content is 1 wt% or more and 10 wt% or less , the Conradson residual carbon ratio (CCR) is 20 to 35 wt%, and the aromatic hydrogen index (Ha) is 28 to 50%. A method for producing needle coke, characterized in that petroleum heavy oil is subjected to heat treatment at a temperature of 385 to 415 ° C. for 8 to 12 hours and then mixed with coal tar heavy oil.
[0005]
Hereinafter, the present invention will be described in detail.
Examples of the coal tar heavy oil in the present invention include normal coal tar by-produced during coke production and coal tar pitch having a softening point of 100 ° C. or less. Coal tar heavy oil usually removes quinoline insolubles (QI) prior to mixing with petroleum heavy oil, and substantially removes QI. It is preferred to use. The method for removing QI from this coal tar heavy oil is not particularly limited as long as QI is substantially removed. For example, JP-A-52-28501 and JP-B-60 As described in Japanese Patent No. -41111 and the like, known methods such as a stationary separation method after mixing with a petroleum solvent, a centrifugal separation method, and a filtration method can be employed.
[0006]
Examples of the petroleum heavy oil in the present invention include catalytic cracked oil, pyrolyzed oil, atmospheric residual oil, and vacuum residual oil. Particularly, decant oil (FCC-DC) which is a heavy component of catalytic cracked oil. ) Is preferred. Usually, the Conradson residual carbon ratio (CCR) contained in FCC-DO is 5 to 10% by weight, the sulfur content is 1.2% by weight or less, and the nitrogen content is 0.5% by weight or less.
[0007]
In the present invention, prior to mixing with the coal tar heavy oil, the petroleum heavy oil has a quinoline insoluble content (QI) of 0.2 to 1.0% by weight, preferably 0.4 to 0%. 0.8 wt%, toluene insoluble content (TI) 2-8 wt%, preferably 3-5 wt%, Conradson residual carbon ratio (CCR) 20-35 wt%, preferably 22-28 wt%, aromatic Heat treatment is performed so that the hydrogen index (Ha) is 28 to 50%, preferably 30 to 40%. Here, the aromatic hydrogen index is a ratio of the number of carbon atoms in the aromatic ring to the total number of carbon atoms in the petroleum heavy oil, and is a numerical value obtained by the following formula.
Ha = [C− (Hα / 2 + Hβ / 2 + Hγ / 3)] / C
(In the above formula, C is the total number of carbon atoms in the raw material, Hα is the number of α-position hydrogen atoms from the aromatic ring in the raw material, Hβ is the number of β-position hydrogen atoms from the aromatic ring in the raw material, Hγ Represents the number of atoms of γ-position hydrogen from the aromatic ring in the raw material.)
In the present invention, when QI and TI are below the above ranges, there is no effect of heat treatment, and when QI and TI are above the above ranges, the CTE becomes high.
[0008]
The heat treatment of petroleum heavy oil is usually heat-treated at a temperature of 370 to 430 ° C. for 5 to 15 hours, preferably at a temperature of 385 to 415 ° C. for 8 to 12 hours. The pressure during the heat treatment is usually 1 to 3 kg / cm2. Thus, when the heat treatment is performed for a long time under a relatively mild temperature condition, the rate of increase in QI is low and the rate of increase in TI is high, and as a result, low CTE coke is likely to be obtained. By selecting such heat treatment conditions, petroleum heavy oil can be used without de-QI treatment, and by applying the manufacturing method of the present application to this petroleum heavy oil, coal tar heavy oil can be used. Needle coke can be produced that exhibits a CTE as low as quality oil alone.
[0009]
On the other hand, examples of the coal tar heavy oil in the present invention include normal coal tar produced as a by-product during coke production and coal tar pitch having a softening point of 100 ° C. or lower. Coal tar heavy oil usually removes quinoline insolubles (QI) prior to mixing with petroleum heavy oil, and substantially removes QI. It is preferred to use. The method for removing QI from this coal tar heavy oil is not particularly limited as long as QI is substantially removed. For example, JP-A-52-28501 and JP-B-60 As described in Japanese Patent No. -41111 and the like, known methods such as a stationary separation method after mixing with a petroleum solvent, a centrifugal separation method, and a filtration method can be employed.
[0010]
As a method for producing needle coke by mixing petroleum heavy oil and coal tar heavy oil whose QI and TI are controlled by heat treatment and performing delayed coking, a known method can be adopted. . For example, raw coke can be produced at 450 to 550 ° C. under pressure with a delayed coker, and then the raw coke can be calcined at 1200 to 1500 ° C. with a rotary kiln or the like to form needle coke.
[0011]
The mixing ratio (weight) of coal tar heavy oil from which quinoline-insoluble matter has been removed and petroleum heavy oil whose QI and TI are controlled by heat treatment is usually 20:80 to 80:20, preferably 40:60. ~ 60: 40.
The needle coke obtained as an anomaly is pulverized, adjusted in particle size, mixed with a binder pitch, molded, further fired, and graphitized to efficiently produce a graphite electrode with excellent performance. Obtainable.
[0012]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a following example, unless the summary is exceeded.
Example 1
FCC-DO was heat-treated in an autoclave under normal pressure at 400 ° C. for 10 hours with stirring at 300 rpm. Table 1 shows the properties of FCC-DC after the heat treatment. Heat-treated FCC-DO and coal tar pitch from which QI has been removed are mixed at a ratio of 1: 1 (weight ratio), caulked in a small reactor at 480 ° C. for 10 hours at a pressure of 3 kg / cm 2, and calcined at 1400 ° C. did. The obtained calcined coke was mixed after adjusting the particle size, heated and mixed with a kneader, and then molded to produce a 1-inch diameter laboratory electrode. The electrode was fired at 1000 ° C. and graphitized at 2600 ° C., and then CTE (room temperature to 130 ° C.) was measured. The results are shown in Table 1. Table 2 shows the properties of coal tar pitch from which unheat-treated FCC-DO and QI are removed.
[0013]
Example 2
FCC-DO was heat-treated in an autoclave under normal pressure at 390 ° C. for 12 hours with stirring at 300 rpm. Table 1 shows the properties of the FCC-DC after the heat-treated FCC-DO. Using this heat-treated FCC-DO, coking, calcination, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
[0014]
Example 3
FCC-DO was heat-treated in an autoclave under normal pressure at 410 ° C. for 8 hours with stirring at 300 rpm. Table 1 shows the properties of the FCC-DC after the heat-treated FCC-DO. Using this heat-treated FCC-DO, coking, calcination, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
[0015]
Comparative Example 1
Using unheat-treated FCC-DO, coking, calcination, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
Comparative Example 2
FCC-DO was heat-treated under normal pressure at 380 ° C. for 10 hours with stirring at 300 rpm. Table 1 shows the properties of the FCC-DC after the heat-treated FCC-DO. Using this heat-treated FCC-DO, coking, calcination, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
[0016]
Comparative Example 3
FCC-DO was heat-treated with stirring at 300 rpm for 10 hours at 420 ° C. under normal pressure. Table 1 shows the properties of the FCC-DC after the heat-treated FCC-DO. Using this heat-treated FCC-DO, coking, calcination, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
[0017]
Comparative Example 4
FCC-DO was heat-treated with stirring at 300 rpm at 450 ° C. for 1 hour under normal pressure. Table 1 shows the properties of the FCC-DC after the heat-treated FCC-DO. Using this heat-treated FCC-DO, coking, calcination, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
[0018]
Reference example 1
Using only unheat-treated FCC-DO, coking, calcining, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
Reference example 2
Using only the tar pitch from which QI was removed, coking, calcining, molding, firing and graphitization were performed in the same manner as in Example 1, and CTE was measured. The results are shown in Table 1.
[0019]
[Table 1]
Figure 0004140233
[0020]
[Table 2]
Figure 0004140233
[0021]
【The invention's effect】
According to the present invention, an easy and inexpensive method for producing needle coke having a low CTE and a low CTE that is suitably used as a graphite electrode can be provided, which is very useful industrially.

Claims (1)

石油系重質油とコールタール系重質油とを混合し、ディレードコーキングを行って、ニードルコークスを製造するに際し、予めキノリン不溶分が0.2重量%以上1.0重量%以下、トルエン不溶分が1重量%以上10重量%以下で、コンラドソン残炭率(CCR)が20〜35重量%、芳香族水素指数(Ha)が28〜50%になるように石油系重質油に温度385〜415℃で8〜12時間加熱処理を施した後、コールタール系重質油と混合することを特徴とするニードルコークスの製造方法。When producing needle coke by mixing petroleum heavy oil and coal tar heavy oil and performing delayed coking, the quinoline insoluble content is 0.2 wt% to 1.0 wt%, toluene insoluble The temperature of the petroleum heavy oil is 385 so that the content is 1 wt% or more and 10 wt% or less , the Conradson residual carbon ratio (CCR) is 20 to 35 wt%, and the aromatic hydrogen index (Ha) is 28 to 50%. A method for producing needle coke, which is subjected to heat treatment at ˜415 ° C. for 8 to 12 hours and then mixed with coal tar heavy oil.
JP2001380378A 2001-12-13 2001-12-13 Needle coke manufacturing method Expired - Fee Related JP4140233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380378A JP4140233B2 (en) 2001-12-13 2001-12-13 Needle coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001380378A JP4140233B2 (en) 2001-12-13 2001-12-13 Needle coke manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008067575A Division JP2008179829A (en) 2008-03-17 2008-03-17 Method for manufacturing petroleum-derived heavy-duty oil for use in manufacturing needle coke

Publications (2)

Publication Number Publication Date
JP2003183669A JP2003183669A (en) 2003-07-03
JP4140233B2 true JP4140233B2 (en) 2008-08-27

Family

ID=27591455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380378A Expired - Fee Related JP4140233B2 (en) 2001-12-13 2001-12-13 Needle coke manufacturing method

Country Status (1)

Country Link
JP (1) JP4140233B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777221B2 (en) * 2006-06-29 2017-10-03 Graftech International Holdings Inc. Method of producing needle coke for low CTE graphite electrodes

Also Published As

Publication number Publication date
JP2003183669A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US10253264B2 (en) Method of producing needle coke for low CTE graphite electrodes
JPH05163491A (en) Production of needle coke
JP2008156376A (en) Petroleum coke and method for producing the same
JP4140233B2 (en) Needle coke manufacturing method
JPS6229367B2 (en)
JP2008179829A (en) Method for manufacturing petroleum-derived heavy-duty oil for use in manufacturing needle coke
JPH05105881A (en) Manufacture of needle coke
JP2008150399A (en) Petroleum coke and method for producing the same
CN106403579B (en) A kind of method that mesophase pitch prepares high-quality needle coke electrode material
JP4220777B2 (en) Amorphous coke for special carbon material and its manufacturing method
JPH0288414A (en) Production of elastic graphite body
JP2920974B2 (en) Needle coke manufacturing method
JP2923028B2 (en) Needle coke manufacturing method
JP2775785B2 (en) Needle coke manufacturing method
JPS6239689A (en) Method of modifying pitch
JP4107038B2 (en) Process for producing calcined coke
KR910004907B1 (en) Preparation for needle-like cokes
JPH02296894A (en) Production of needle coke
JPH05214344A (en) Production of needle coke
JP2538563B2 (en) High-quality coke manufacturing method
JPH04280808A (en) Production of needle cokes
JPH10316972A (en) Production of needle coke
JPH0528998A (en) Manufacture of artificial graphite electrode
JPH0759708B2 (en) Method for producing coke for molded graphite
JP2775786B2 (en) Manufacturing method of high-grade coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4140233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees