JPH058270B2 - - Google Patents

Info

Publication number
JPH058270B2
JPH058270B2 JP59246854A JP24685484A JPH058270B2 JP H058270 B2 JPH058270 B2 JP H058270B2 JP 59246854 A JP59246854 A JP 59246854A JP 24685484 A JP24685484 A JP 24685484A JP H058270 B2 JPH058270 B2 JP H058270B2
Authority
JP
Japan
Prior art keywords
support
base material
vapor deposition
deposited
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59246854A
Other languages
Japanese (ja)
Other versions
JPS61124572A (en
Inventor
Yasuhiro Aiba
Keizo Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP24685484A priority Critical patent/JPS61124572A/en
Publication of JPS61124572A publication Critical patent/JPS61124572A/en
Publication of JPH058270B2 publication Critical patent/JPH058270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は基材表面に効率的に化学蒸着を行なう
方法に関する。 (従来技術) 従来基材表面に化学蒸着を行なう方法として、
支持台は、高温では主に人造黒鉛を用い、円錐形
状の頂点で点接触状態で支持する方法が使用され
ている。しかしこの方法では基材と支持台とが接
する部分には蒸着膜(被膜)が形成されず跡が残
る為、裏返すか又は支持位置をずらすかして、2
回の蒸着を要する欠点があつた。 (発明の目的) 本発明は、上記欠点を解消し、支持跡の付かな
い化学蒸着の方法を提供することを目的とする。 本発明者等は検討の結果、熱分解炭素又は炭化
珪素を被覆した支持台を使用することにより、蒸
着される基材の支持台と接する部分に跡が付か
ず、基材全面に化学蒸着を施こすことができるこ
とを見出した。 (発明の構成) 本発明は、熱分解炭素又は炭化珪素を被覆し、
幅10mm以下及び高さ5mm以上の複数の支持部を有
する支持台の上に被蒸着基材を載置して化学蒸着
を行なうことを特徴とする化学蒸着方法に関す
る。 本発明において用いる支持台の材料は、化学蒸
着の温度に耐えられるものであればよく、制限は
ないが人造黒鉛が純度、耐熱性、化学的安定性の
点で好ましい。支持台材料への熱分解炭素又は炭
化珪素の被覆は公知の蒸着法による。熱分解炭素
又は炭化珪素を被覆する原料に制限はないが、熱
分解炭素の場合はメタン、プロパン等の脂肪族炭
化水素、ベンゼン、トルエン等の芳香族炭化水
素、ジクロロエチレン、トリクロロエタン等の有
機塩素化合物など、炭化珪素の場合は例えばメチ
ルクロロシラン、珪素源として四塩化珪素、トリ
クロロシラン等、炭素源として四塩化炭素、トル
エン等が好ましい。蒸着温度は原料の種類による
が通常600〜2200℃である。 基材に化学蒸着を行なうには、支持台の上に基
材を載置し公知の方法により行なう。蒸着する際
の圧力はできるだけ低い方がよいが、同時に蒸着
速度も低下するので数mmHg付近にすれば支持台
と接する部分も十分に蒸着できて好ましい。 支持部の幅を10mm以下とした理由は、10mmを越
えると基材の支持部と接する部分の中央が蒸着さ
れなくなるためである。 (作 用) 上記熱分解炭素又は炭化珪素被覆支持台に被蒸
着基材(以下基材と呼ぶ)を載置して化学蒸着を
行なつた場合、支持台の基材と接する部分は被覆
された熱分解炭素又は炭化珪素によつてミクロな
凹凸が形成されており、基材と支持台との間に反
応ガスが浸入して該基材の支持台と接する部分に
も蒸着被膜が形成され、基材と支持台は固着せず
容易にはがれる。 (実施例) 以下に実施例を説明する。 実施例 1 高周波誘導加熱炉の水冷式石英管(内径100mm)
の中に、第1図aの平面図及びbの側面図に示す
ように人造黒鉛材を加工して50mmφ×5mmhの円
板部3の片側に等間隔に10mmφ×10mmhの円筒2
の3個を設けた支持台1を入れ、1mmHgの減圧
状態で1800℃に加熱し、プロパン20容量%を含む
窒素ガスを大気圧の流量で毎分3ずつ1時間流
し、支持台に熱分解炭素を蒸着被覆した。熱分解
炭素の膜厚は40μmであつた。 上記支持台の上に外径50mm及び厚さ5mmの人造
黒鉛円板の基材を載置して、上記被覆と同じ条件
で基材に熱分解炭素を蒸着した。結果を第1表に
示す。 実施例 2 第2図aの平面図及びbの側面図に示すよう
に、人造黒鉛材を加工して50μm×5mmhの円板
部6の片側に等間隔に5mmφ×10mmφの円筒5の
3個を設けた支持台4を作り、これを実施例1と
全く同様にして熱分解炭素を蒸着被覆した。蒸着
膜の厚さは40μmであつた。 上記支持台の上に実施例1の場合と同じ基材を
載置して、実施例1と同じ条件で基材に熱分解炭
素を蒸着した。結果を第1表に示す。 実施例 3 第1図に示す支持台1を実施例1と同様にして
1mmHgの減圧状態で1400℃に加熱し、四塩化珪
素9×10-4モル/分、トルエン3×10-4モル/分
及び水素ガスを大気圧の流量で3/分の割合で
1時間流し、支持台に炭化珪素を蒸着被覆した。
炭化珪素の膜厚は60μmであつた。 上記支持台の上に実施例1の場合と同じ基材を
載置して、上記被覆と同じ条件で基材に炭化珪素
を蒸着した。結果を第1表に示す。 実施例 4 第2図に示す支持体を実施例3と全く同一の条
件で蒸着処理した。蒸着炭化珪素の膜厚は60μm
であつた。 上記支持台の上に実施例1の場合と同じ基材を
載置して、実施例3と同じ条件で基材に炭化珪素
を蒸着した。結果を第1表に示す。 比較例 人造黒鉛材を加工して第3図aの平面図、bの
側面図に示すような高さ10mmの円錐8を50mmφ×
10hの円板部9の片側に等間隔の位置に設けた支
持台7を作成した。この支持台7の上に実施例1
の場合と同じ基材を載置して、実施例1と同じ条
件で基材に熱分解炭素を蒸着した。以上を比較例
1として、この結果を第1表に示す。 第4図aの平面図、bの側面図に示すように比
較例1における円錐8の代りに円筒11を設けた
支持台10を作成した。この支持台10の上に実
施例1の場合と同じ基材を載置して、実施例3と
同じ条件で基材に炭化珪素を蒸着した。以上を比
較例2として、この結果を第1表に示す。
(Industrial Application Field) The present invention relates to a method for efficiently performing chemical vapor deposition on the surface of a substrate. (Prior art) As a conventional method of chemical vapor deposition on the surface of a base material,
At high temperatures, artificial graphite is mainly used for the support base, and a method is used in which the support base is supported in a point-contact state at the apex of a conical shape. However, with this method, the vapor deposited film (film) is not formed on the part where the base material and the support stand are in contact, leaving marks, so it is necessary to turn it over or shift the support position.
It had the disadvantage of requiring multiple evaporation steps. (Object of the invention) The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a method of chemical vapor deposition that does not leave support marks. As a result of studies, the present inventors found that by using a support base coated with pyrolytic carbon or silicon carbide, chemical vapor deposition can be carried out over the entire surface of the base material without leaving any marks on the part of the base material that is in contact with the support base. I found out that it can be done. (Structure of the invention) The present invention covers pyrolytic carbon or silicon carbide,
The present invention relates to a chemical vapor deposition method characterized in that chemical vapor deposition is performed by placing a substrate to be deposited on a support base having a plurality of support parts each having a width of 10 mm or less and a height of 5 mm or more. The material for the support base used in the present invention is not limited as long as it can withstand the temperature of chemical vapor deposition, and artificial graphite is preferable in terms of purity, heat resistance, and chemical stability. The support material is coated with pyrolytic carbon or silicon carbide by a known vapor deposition method. There are no restrictions on the raw materials for coating pyrolytic carbon or silicon carbide, but in the case of pyrolytic carbon, aliphatic hydrocarbons such as methane and propane, aromatic hydrocarbons such as benzene and toluene, and organic chlorine compounds such as dichloroethylene and trichloroethane are used. In the case of silicon carbide, for example, methylchlorosilane, silicon tetrachloride, trichlorosilane, etc. are preferable as the silicon source, and carbon tetrachloride, toluene, etc. are preferable as the carbon source. The deposition temperature depends on the type of raw material, but is usually 600 to 2200°C. In order to perform chemical vapor deposition on a substrate, the substrate is placed on a support and the chemical vapor deposition is performed by a known method. It is better that the pressure during vapor deposition be as low as possible, but at the same time the vapor deposition rate also decreases, so it is preferable to set it to around several mmHg so that the portion in contact with the support can be sufficiently vapor deposited. The reason why the width of the support part is set to 10 mm or less is that if the width exceeds 10 mm, the center of the part of the base material in contact with the support part will not be deposited. (Function) When a substrate to be deposited (hereinafter referred to as the substrate) is placed on the pyrolytic carbon or silicon carbide coated support and chemical vapor deposition is performed, the portion of the support in contact with the base material is not coated. Microscopic irregularities are formed by the pyrolyzed carbon or silicon carbide, and the reaction gas infiltrates between the base material and the support base, and a vapor deposited film is also formed on the part of the base material that contacts the support base. , the base material and the support stand do not stick together and can be easily peeled off. (Example) An example will be described below. Example 1 Water-cooled quartz tube for high-frequency induction heating furnace (inner diameter 100 mm)
As shown in the plan view of FIG. 1a and the side view of FIG.
A support stand 1 equipped with three of the above was placed, heated to 1800°C under a reduced pressure of 1 mmHg, and nitrogen gas containing 20% by volume of propane was flowed at a rate of 3 per minute at atmospheric pressure for 1 hour to cause thermal decomposition in the support stand. Carbon was vapor coated. The thickness of the pyrolytic carbon film was 40 μm. A base material of an artificial graphite disk having an outer diameter of 50 mm and a thickness of 5 mm was placed on the support base, and pyrolytic carbon was vapor-deposited on the base material under the same conditions as for the coating described above. The results are shown in Table 1. Example 2 As shown in the plan view of FIG. 2a and the side view of FIG. 2b, three cylinders 5 of 5 mmφ×10 mmφ are formed at equal intervals on one side of a 50 μm×5 mmh disk portion 6 by processing artificial graphite material. A support base 4 was prepared, and pyrolytic carbon was coated by vapor deposition in exactly the same manner as in Example 1. The thickness of the deposited film was 40 μm. The same base material as in Example 1 was placed on the support base, and pyrolytic carbon was vapor-deposited on the base material under the same conditions as in Example 1. The results are shown in Table 1. Example 3 The support 1 shown in FIG. 1 was heated to 1400°C under a reduced pressure of 1 mmHg in the same manner as in Example 1, and silicon tetrachloride 9 x 10 -4 mol/min and toluene 3 x 10 -4 mol/min were heated to 1400°C. The support base was coated with silicon carbide by vapor deposition by flowing hydrogen gas at a flow rate of 3/min at atmospheric pressure for 1 hour.
The silicon carbide film thickness was 60 μm. The same base material as in Example 1 was placed on the support base, and silicon carbide was deposited on the base material under the same conditions as for the coating. The results are shown in Table 1. Example 4 The support shown in FIG. 2 was vapor-deposited under exactly the same conditions as in Example 3. The film thickness of vapor-deposited silicon carbide is 60μm
It was hot. The same base material as in Example 1 was placed on the support base, and silicon carbide was vapor-deposited on the base material under the same conditions as in Example 3. The results are shown in Table 1. Comparative example Artificial graphite material is processed to form a cone 8 with a height of 10 mm and a diameter of 50 mm as shown in the plan view of Fig. 3 a and the side view of Fig. 3 b.
Support stands 7 were prepared at equal intervals on one side of a 10h disc portion 9. Example 1 is placed on this support stand 7.
The same base material as in Example 1 was placed, and pyrolytic carbon was deposited on the base material under the same conditions as in Example 1. The above is considered as Comparative Example 1, and the results are shown in Table 1. As shown in the plan view of FIG. 4a and the side view of FIG. 4b, a support base 10 was prepared in which a cylinder 11 was provided in place of the cone 8 in Comparative Example 1. The same base material as in Example 1 was placed on this support stand 10, and silicon carbide was deposited on the base material under the same conditions as in Example 3. The above is considered as Comparative Example 2, and the results are shown in Table 1.

【表】【table】

【表】 第1表から明らかなように、比較例の支持台を
用いた場合は基材の支持部分に蒸着されず基材と
支持台が固着したのに対し、実施例の場合は支持
部分の被膜厚さは他の部分より薄いが十分付いて
おり実用上問題なく使用でき、基材と支持台が固
着することはなかつた。 実施例 5 第5図に示すように人造黒鉛材を加工し、10mm
φの孔15を14個有する50mmφ×5mmtの円板1
4を実施例1と同一条件で熱分解炭素を40μmの
厚さで蒸着被覆した支持台13を作成した。 この支持台に第6図に示す外径50mm、内径40mm
及び高さ50mmの人造黒鉛のるつぼ16を載せ又比
較例3として比較例2で用いた支持台10の上に
もこのるつぼを載せ、実施例3と同一条件で炭化
珪素を蒸着被覆する実験を行なつた。この場合の
るつぼ底の被膜の最底厚さを第2表に示す。
[Table] As is clear from Table 1, when the support base of the comparative example was used, the vapor deposition did not occur on the supporting part of the base material and the base material and the support base were fixed, whereas in the case of the example, the support base was Although the thickness of the coating was thinner than that of other parts, it was sufficient and could be used without any practical problems, and the base material and support did not stick together. Example 5 As shown in Figure 5, artificial graphite material was processed to a diameter of 10 mm.
50mmφ×5mmt disk 1 with 14 φ holes 15
4 was coated with pyrolytic carbon to a thickness of 40 μm by vapor deposition under the same conditions as in Example 1 to prepare a support base 13. This support stand has an outer diameter of 50 mm and an inner diameter of 40 mm as shown in Figure 6.
An artificial graphite crucible 16 with a height of 50 mm was placed thereon, and this crucible was also placed on the support stand 10 used in Comparative Example 2 as Comparative Example 3, and an experiment was carried out in which silicon carbide was deposited and coated under the same conditions as in Example 3. I did it. Table 2 shows the lowest thickness of the coating on the bottom of the crucible in this case.

【表】 第2表から明らかなように、比較例の支持台を
用いた場合は第1表の場合と同様に支持台と基材
との固着がみられ、又るつぼ底には蒸着被膜が形
成されなかつたが、実施例5の支持台を用いた場
合は固着はなく炭化珪素の被膜も十分に形成され
た。 尚上記実験では1回の蒸着で基材1個であつた
が基材が小さく、又は大きい加熱炉及び支持台を
使えば多量の基材の蒸着処理が可能である。 (発明の効果) 本発明によれば基材が支持台に固着することが
なく、1回の作業で基材全面に蒸着被膜を形成す
ることができ、効率的な化学蒸着が可能となる。
[Table] As is clear from Table 2, when the support stand of the comparative example was used, adhesion between the support stand and the base material was observed as in the case of Table 1, and there was a vapor deposited film on the bottom of the crucible. However, when the support base of Example 5 was used, there was no adhesion and a silicon carbide film was sufficiently formed. In the above experiment, one substrate was subjected to one vapor deposition, but if the substrate is small or a large heating furnace and support stand are used, a large number of substrates can be vapor-deposited. (Effects of the Invention) According to the present invention, the base material does not stick to the support base, and a vapor deposition film can be formed on the entire surface of the base material in one operation, making it possible to perform efficient chemical vapor deposition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例で使用する
支持台、第3図及び第4図は比較例で使用する支
持台であり、第1図及至第4図においてaは平面
図、bは側面図、第5図は本発明の他の実施例に
なる支持台の平面図、第6図は実験に使用したる
つぼの断面図である。 符号の説明 1,4,7,10,13…支持
台、2,5,11…円筒、3,6,9…円板部、
8…円錐、14…円板、15…孔、16…るつ
ぼ。
FIGS. 1 and 2 show support stands used in the embodiment of the present invention, and FIGS. 3 and 4 show support stands used in comparative examples. In FIGS. 1 to 4, a is a plan view; b is a side view, FIG. 5 is a plan view of a support base according to another embodiment of the present invention, and FIG. 6 is a sectional view of the crucible used in the experiment. Explanation of symbols 1, 4, 7, 10, 13...Support stand, 2, 5, 11...Cylinder, 3, 6, 9...Disc part,
8... Cone, 14... Disc, 15... Hole, 16... Crucible.

Claims (1)

【特許請求の範囲】[Claims] 1 熱分解炭素又は炭化珪素を被覆し、幅10mm以
下及び高さ5mm以上の複数の支持部を有する支持
台の上に被蒸着基材を載置して化学蒸着を行なう
ことを特徴とする化学蒸着方法。
1 A chemical method characterized by performing chemical vapor deposition by placing a substrate to be deposited on a support base coated with pyrolytic carbon or silicon carbide and having a plurality of support parts each having a width of 10 mm or less and a height of 5 mm or more. Vapor deposition method.
JP24685484A 1984-11-21 1984-11-21 Chemical vapor deposition method Granted JPS61124572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24685484A JPS61124572A (en) 1984-11-21 1984-11-21 Chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24685484A JPS61124572A (en) 1984-11-21 1984-11-21 Chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JPS61124572A JPS61124572A (en) 1986-06-12
JPH058270B2 true JPH058270B2 (en) 1993-02-01

Family

ID=17154700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24685484A Granted JPS61124572A (en) 1984-11-21 1984-11-21 Chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS61124572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081444U (en) * 1996-03-28 1996-10-01 株式会社ゼクセル Bracket structure of heat exchanger
JPH081443U (en) * 1996-03-28 1996-10-01 株式会社ゼクセル Mounting structure of bracket in heat exchanger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669640A1 (en) * 1994-02-25 1995-08-30 Applied Materials, Inc. Susceptor for deposition apparatus
JP4970115B2 (en) * 2007-04-06 2012-07-04 株式会社神戸製鋼所 Conductive diamond-coated mesh electrode, method for producing the same, and ozone water generating apparatus equipped with the electrode
JP5278851B2 (en) * 2008-10-23 2013-09-04 東洋炭素株式会社 Method for forming silicon carbide film on carbon substrate surface
JP5787558B2 (en) * 2011-03-08 2015-09-30 イビデン株式会社 Ceramic substrate support and method for manufacturing ceramic member
JP6383588B2 (en) * 2014-06-30 2018-08-29 イビデン株式会社 Method for producing ceramic member and support
JP6506056B2 (en) * 2015-03-13 2019-04-24 イビデン株式会社 Method of manufacturing ceramic member
JP7321768B2 (en) * 2018-05-23 2023-08-07 信越化学工業株式会社 Chemical vapor deposition apparatus and film forming method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722212U (en) * 1971-04-08 1972-11-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722212U (en) * 1971-04-08 1972-11-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081444U (en) * 1996-03-28 1996-10-01 株式会社ゼクセル Bracket structure of heat exchanger
JPH081443U (en) * 1996-03-28 1996-10-01 株式会社ゼクセル Mounting structure of bracket in heat exchanger

Also Published As

Publication number Publication date
JPS61124572A (en) 1986-06-12

Similar Documents

Publication Publication Date Title
US20240112945A1 (en) Thermal processing susceptor
US6530990B2 (en) Susceptor designs for silicon carbide thin films
US5514439A (en) Wafer support fixtures for rapid thermal processing
GB2229195A (en) Susceptor for vapour growth apparatus
WO1998042897A9 (en) Susceptor designs for silicon carbide thin films
JP2001160479A5 (en) Ceramic heater and substrate processing equipment and substrate processing method using it
JPH0758041A (en) Susceptor
KR910007069A (en) Multi-zone flat heater assembly and its operation method
JPH058270B2 (en)
JP3004846B2 (en) Susceptor for vapor phase growth equipment
JP3155792B2 (en) Hot plate
US20140158042A1 (en) Apparatus for fabricating ingot
JP2004200436A (en) Susceptor and its manufacturing method
JPS6396912A (en) Substrate holder
JPS61124574A (en) Chemical vapor deposition method
JPH07249580A (en) Thin film manufacturing device
JP2007180132A (en) Susceptor and cvd unit using the same
JPH07245264A (en) Vapor growth device
JPS61251021A (en) Filming apparatus
JP3813664B2 (en) Method for producing polycrystalline ceramic film
JPS6324121Y2 (en)
TWI696583B (en) Electrode
JPS5814487A (en) Heater for electric furnace
JP2625880B2 (en) Method of manufacturing susceptor made of SiC
JPH07147277A (en) Member for semiconductor