JPH0581558B2 - - Google Patents

Info

Publication number
JPH0581558B2
JPH0581558B2 JP62017795A JP1779587A JPH0581558B2 JP H0581558 B2 JPH0581558 B2 JP H0581558B2 JP 62017795 A JP62017795 A JP 62017795A JP 1779587 A JP1779587 A JP 1779587A JP H0581558 B2 JPH0581558 B2 JP H0581558B2
Authority
JP
Japan
Prior art keywords
diamond
sintered diamond
sintered
container
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62017795A
Other languages
Japanese (ja)
Other versions
JPS63185859A (en
Inventor
Juji Kimoto
Masanori Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goei Seisakusyo Co Ltd
Original Assignee
Goei Seisakusyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goei Seisakusyo Co Ltd filed Critical Goei Seisakusyo Co Ltd
Priority to JP62017795A priority Critical patent/JPS63185859A/en
Publication of JPS63185859A publication Critical patent/JPS63185859A/en
Publication of JPH0581558B2 publication Critical patent/JPH0581558B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセラミツクスや高強度合金等の硬質材
料を切削・研削する工具素材として用いられる焼
結ダイヤモンドにおけるダイヤモンド被膜形成方
法に関する。 〔従来の技術〕 近年、アルミナ、ジルコニア、窒化ケイ素等の
フアインセラミツクスは、耐熱性、軽量性、化学
安定性に優れており、構造用材料、耐熱材料、電
子部品材料として開発が進められている。これら
のセラミツクスは硬度が高いために、これらのセ
ラミツクスを切削・研削加工する工具素材には、
強度、硬度、耐摩耗性、耐熱性が要求される。ま
た高強度合金、特に高シリコンアルミニウム合金
は、軽量性、耐食性、機械的性質に優れている
が、シリコンの含有量が高いため、これを加工す
る工具素材には、硬度、耐摩耗性等が要求され
る。 従来、セラミツクス等の硬質材料を加工する工
具素材には、強度や硬度からみてダイヤモンド粉
末と結合材を焼結して製造した焼結ダイヤモンド
を用いていた。 〔発明が解決しようとする問題点〕 上記従来技術ではセラミツクス等の硬質材料を
加工する工具素材に焼結ダイヤモンドを用いてお
り、この焼結ダイヤモンドの結合材は金属や非金
属が用いられているため硬質材料を加工する際に
発生する熱によりダイヤモンド粒子と結合材の熱
膨張差で焼結ダイヤモンドに亀裂が発生して焼結
ダイヤモンドが劣化する。また、耐摩耗性が悪い
ので、工具としての寿命が短かいという問題点が
あつた。さらに、焼結ダイヤモンドは、刃先を均
一な鋭利なものにすることができず超精密加工を
する工具素材となることができないという大きな
問題点があつた。 本発明は上記問題点を解決し、工具寿命が長
く、超精密加工をする工具素材を得るために、焼
結ダイヤモンドにおけるダイヤモンド被膜形成方
法を提供することにある。 〔問題点を解決するための手段〕 本発明は上記問題点を解決するために次のよう
に構成した。 結合材に鉄族金属を含まない焼結ダイヤモンド
あるいは鉄族金属の結合材を王水等で表面の金属
を除去した焼結ダイヤモンドを収納し真空にした
容器内に炭化水素ガスと水素ガスを導入しつつ、
前記容器内を排気して該容器内の圧力を維持する
と共に、前記焼結ダイヤモンドを加熱して該焼結
ダイヤモンドの表面にダイヤモンドを析出させ被
膜形成することを特徴とする焼結ダイヤモンドに
おけるダイヤモンド被膜形成方法。 〔作用〕 本発明は上記構成により次のように作用する。 真空にした容器内に炭化水素ガスと水素ガスを
導入しつつ、その容器内を排気してその容器内の
圧力を維持するので、容器内は真空状態で圧力が
一定となり、炭化水素ガスと水素ガスの濃度が一
定となる。また焼結ダイヤモンドを加熱するの
で、焼結ダイヤモンドの周囲の水素ガスが原子状
水素となり、この原子状水素と炭化水素ガスが反
応すると共に焼結ダイヤモンドは加熱して焼結ダ
イヤモンドの表面にダイヤモンドが析出する。そ
して焼結ダイヤモンドにダイヤモンドを被膜形成
することができる。 さらに、焼結ダイヤモンドにダイヤモンドを被
膜することにより、焼結ダイヤモンドの亀裂の発
生を防止できる。 〔実施例〕 本発明の実施例を説明する。 本実施例は、結合材にSiCを少量含んでいる焼
結ダイヤモンドを用いた。 本実施例を使用した装置は、焼結ダイヤモンド
を収納する容器と、容器内を排気して真空にする
図示しない真空発生機と、マイクロ波を発生させ
るマグネトロンと、マイクロ波を容器に導く導波
管と、マイクロ波の反射波を調整するプランジヤ
ーとから成る。 前記焼結ダイヤモンドは、支持台に載置し容器
と導波管の交わる中央に設置する。 前記容器には、石英管を使用した。 前記焼結ダイヤモンドにダイヤモンドを被膜形
成するには、容器内を真空度10-3Torrまで真空
にした後、メタンガスの濃度が1%になるように
メタンガスと水素ガスを容器内に容器の上開口部
より導入しつつ、容器内を容器の下開口部より排
気して容器内の圧力を真空度30Torrに維持する
と共に、焼結ダイヤモンドに波長2.45GHz、出力
300Wのマイクロ波を照射して焼結ダイヤモンド
2の温度を860℃にする。そして数時間この状態
を維持する。 前記メタンガスと水素ガスの流量は100c.c./
minとした。 前記容器内の圧力およびマイクロ波により、焼
結ダイヤモンドの周囲に放電プラズマが発生して
水素ガスが原子状水素となり、この原子状水素と
メタンガスが反応すると共にマイクロ波の吸収と
プラズマの衝撃により焼結ダイヤモンドは加熱し
て焼結ダイヤモンド表面のダイヤモン粒子にダイ
ヤモンドが析出する。そして、このダイヤモンド
粒子が成長して膜状のダイヤモンドとなり焼結ダ
イヤモンドの表面を被膜形成する。 本実施例により焼結ダイヤモンドのダイヤモン
ド粒子が成長したデータを表1に示す。
[Industrial Application Field] The present invention relates to a method for forming a diamond coating on sintered diamond used as a tool material for cutting and grinding hard materials such as ceramics and high-strength alloys. [Conventional technology] In recent years, fine ceramics such as alumina, zirconia, and silicon nitride have excellent heat resistance, light weight, and chemical stability, and are being developed as structural materials, heat-resistant materials, and electronic component materials. There is. Since these ceramics have high hardness, the tool materials used for cutting and grinding these ceramics are
Strength, hardness, wear resistance, and heat resistance are required. In addition, high-strength alloys, especially high-silicon aluminum alloys, have excellent lightness, corrosion resistance, and mechanical properties, but because of their high silicon content, the tool materials used to process them have poor hardness, wear resistance, etc. required. Conventionally, sintered diamond, which is manufactured by sintering diamond powder and a binder, has been used as a tool material for processing hard materials such as ceramics, in terms of strength and hardness. [Problems to be solved by the invention] In the above-mentioned conventional technology, sintered diamond is used as a tool material for processing hard materials such as ceramics, and metals or nonmetals are used as the binding material for this sintered diamond. Therefore, due to the heat generated when processing the hard material, cracks occur in the sintered diamond due to the difference in thermal expansion between the diamond particles and the binder, and the sintered diamond deteriorates. Moreover, since the wear resistance is poor, there is a problem that the life as a tool is short. Furthermore, sintered diamond has a major problem in that it cannot be used as a tool material for ultra-precision machining because the cutting edge cannot be made uniformly sharp. The present invention solves the above problems and provides a method for forming a diamond coating on sintered diamond in order to obtain a tool material that has a long tool life and can be processed with ultra-precision machining. [Means for Solving the Problems] In order to solve the above problems, the present invention is configured as follows. Hydrocarbon gas and hydrogen gas are introduced into a vacuumed container containing sintered diamond that does not contain iron group metals or sintered diamonds whose surface metals have been removed using aqua regia, etc. as a binding material of iron group metals. While doing so,
A diamond coating in sintered diamond, characterized in that the pressure inside the container is maintained by evacuating the inside of the container, and the sintered diamond is heated to deposit diamond on the surface of the sintered diamond to form a coating. Formation method. [Operation] The present invention operates as follows with the above configuration. Hydrocarbon gas and hydrogen gas are introduced into the evacuated container, and the pressure inside the container is maintained by evacuating the container, so the pressure inside the container is kept constant and the hydrocarbon gas and hydrogen The gas concentration remains constant. In addition, since the sintered diamond is heated, the hydrogen gas around the sintered diamond becomes atomic hydrogen, and this atomic hydrogen and hydrocarbon gas react, and the sintered diamond is heated, causing diamonds to form on the surface of the sintered diamond. Precipitate. Then, a diamond film can be formed on the sintered diamond. Furthermore, by coating the sintered diamond with diamond, it is possible to prevent the occurrence of cracks in the sintered diamond. [Example] An example of the present invention will be described. In this example, sintered diamond containing a small amount of SiC was used as a binder. The device using this example includes a container that stores sintered diamonds, a vacuum generator (not shown) that evacuates the inside of the container to create a vacuum, a magnetron that generates microwaves, and a wave guide that guides the microwaves into the container. It consists of a tube and a plunger that adjusts the reflected microwave waves. The sintered diamond is placed on a support stand and placed at the center where the container and the waveguide intersect. A quartz tube was used as the container. To form a diamond film on the sintered diamond, the inside of the container is evacuated to a degree of vacuum of 10 -3 Torr, and then methane gas and hydrogen gas are poured into the container so that the concentration of methane gas is 1%. At the same time, the inside of the container was evacuated from the lower opening of the container to maintain the pressure inside the container at a vacuum level of 30 Torr.
Irradiate 300W microwave to bring the temperature of sintered diamond 2 to 860℃. And maintain this state for several hours. The flow rate of the methane gas and hydrogen gas is 100c.c./
It was set as min. Due to the pressure in the container and microwaves, discharge plasma is generated around the sintered diamond, and the hydrogen gas becomes atomic hydrogen. This atomic hydrogen and methane gas react, and the microwave absorption and plasma impact cause sintering. When the sintered diamond is heated, diamond is precipitated on the diamond particles on the surface of the sintered diamond. Then, these diamond particles grow to become a film-like diamond and form a coating on the surface of the sintered diamond. Table 1 shows data on the growth of diamond particles of sintered diamond according to this example.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成により次のような効果があ
る。 焼結ダイヤモンドにダイヤモンドを被膜形成す
ることができ、焼結ダイヤモンドにダイヤモンド
を被膜することにより、亀裂の発生を防止でき、
また耐摩耗性が良いので工具寿命が長し工具素材
となることができる。 さらに、刃先をダイヤモンドだけの均一な鋭利
なものにすることができるので超精密加工する工
具素材となることができる。 また、本発明は焼結ダイヤモンドとして、結合
材に金属を含まない焼結ダイヤモンドあるいは金
属の結合材を王水等で表面の金属を除去した焼結
ダイヤモンドを使用するので、被覆中基材表面温
度が高温になつても冷却中に全くクラツク等のヒ
ビが入ることなくダイヤモンドを被覆することが
できる。 さらに、本願発明のように表面に金属が存在し
ていない場合は、ダイヤモンド同士及びダイヤモ
ンドとSiCの結合になるため、被覆したダイヤモ
ンドと基材との密着性が強固になる。
The present invention has the following effects due to the above configuration. A diamond coating can be formed on sintered diamond, and by coating sintered diamond with diamond, cracks can be prevented.
In addition, since it has good wear resistance, it has a long tool life and can be used as a tool material. Furthermore, since the cutting edge can be made uniformly sharp using only diamond, it can be used as a tool material for ultra-precision machining. In addition, since the present invention uses sintered diamond that does not contain metal as a binding material or sintered diamond that has had metal binding material removed from the surface with aqua regia, etc., the surface temperature of the base material during coating increases. Diamonds can be coated with no cracks or other cracks during cooling even when the temperature reaches high temperatures. Furthermore, when there is no metal on the surface as in the present invention, the bond between diamonds and between diamond and SiC results in strong adhesion between the coated diamond and the base material.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例に係わり、第1図は焼結
ダイヤモンドを示す断面図、第2図は焼結ダイヤ
モンドにダイヤモンドが形成していく状態を示す
断面図、第3図はダイヤモンド被膜焼結ダイヤモ
ンドを示す断面図、第4図はダイヤモンド被膜焼
結ダイヤモンドの表面を研磨した状態を示す断面
図。第5図は結合材として金属を含む焼結ダイヤ
モンド基材にダイヤモンドを被覆した表面の構造
を示す図面代用写真、第6図は結合材として金属
を含まない焼結ダイヤモンド基材にダイヤモンド
を被覆した表面の構造を示す図面代用写真、第7
図は接合材に金属を含まない焼結ダイヤモンドに
対する被覆したダイヤモンドの成長の様子を示す
図面代用写真である。 1……焼結ダイヤモンド、2……ダイヤモンド
粒子、3……結合材、4……ダイヤモンド、5…
…ダイヤモンド被膜焼結ダイヤモンド、1a,2
a,5a,6……表面、2b……溝部。
The drawings relate to embodiments of the present invention; FIG. 1 is a sectional view showing sintered diamond, FIG. 2 is a sectional view showing the state in which diamond is formed on sintered diamond, and FIG. 3 is a sintered diamond coating. FIG. 4 is a cross-sectional view showing a diamond-coated sintered diamond with its surface polished. Figure 5 is a photograph substituted for a drawing showing the structure of the surface of a sintered diamond base material containing metal as a binder coated with diamond, and Figure 6 is a photograph showing the surface structure of a sintered diamond base material containing no metal as a binder coated with diamond. Photograph substituted for drawing showing surface structure, No. 7
The figure is a photograph substituted for a drawing showing the growth of coated diamond on sintered diamond, which does not contain metal in the bonding material. 1...Sintered diamond, 2...Diamond particles, 3...Binding material, 4...Diamond, 5...
...Diamond coated sintered diamond, 1a, 2
a, 5a, 6...surface, 2b...groove.

Claims (1)

【特許請求の範囲】[Claims] 1 結合材に金属を含まない焼結ダイヤモンドの
場合は直接、結合材に金属を含む焼結ダイヤモン
ドの場合は王水等で表面の金属を除去した後に、
当該焼結ダイヤモンドを容器内に収納し、容器内
を真空にして、炭化水素ガスと水素ガスを導入し
つつ排気し、容器内の圧力を維持すると共に、前
記焼結ダイヤモンドを加熱して、この焼結ダイヤ
モンドの表面にダイヤモンドを析出させ被膜形成
することを特徴とする焼結ダイヤモンドにおける
ダイヤモンド被膜形成方法。
1. Directly in the case of sintered diamond that does not contain metal in the binding material, or after removing the surface metal with aqua regia, etc. in the case of sintered diamond that contains metal in the binding material.
The sintered diamond is stored in a container, the inside of the container is evacuated, and hydrocarbon gas and hydrogen gas are introduced and evacuated, the pressure inside the container is maintained, and the sintered diamond is heated. A method for forming a diamond film on sintered diamond, characterized by depositing diamond on the surface of sintered diamond to form a film.
JP62017795A 1987-01-28 1987-01-28 Diamond coating formation for sintered diamond and diamond coated sintered diamond Granted JPS63185859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62017795A JPS63185859A (en) 1987-01-28 1987-01-28 Diamond coating formation for sintered diamond and diamond coated sintered diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62017795A JPS63185859A (en) 1987-01-28 1987-01-28 Diamond coating formation for sintered diamond and diamond coated sintered diamond

Publications (2)

Publication Number Publication Date
JPS63185859A JPS63185859A (en) 1988-08-01
JPH0581558B2 true JPH0581558B2 (en) 1993-11-15

Family

ID=11953646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62017795A Granted JPS63185859A (en) 1987-01-28 1987-01-28 Diamond coating formation for sintered diamond and diamond coated sintered diamond

Country Status (1)

Country Link
JP (1) JPS63185859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239476A (en) * 1997-09-05 2008-10-09 Element Six Ltd Diamond-silicon carbide-silicon composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8810113D0 (en) * 1988-04-28 1988-06-02 Jones B L Bonded composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090884A (en) * 1983-10-21 1985-05-22 三菱マテリアル株式会社 Cutting tool and surface-coated diamond-base sintering material for antifriction tool
JPS60122785A (en) * 1983-12-08 1985-07-01 三菱マテリアル株式会社 Diamond coated tool member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090884A (en) * 1983-10-21 1985-05-22 三菱マテリアル株式会社 Cutting tool and surface-coated diamond-base sintering material for antifriction tool
JPS60122785A (en) * 1983-12-08 1985-07-01 三菱マテリアル株式会社 Diamond coated tool member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239476A (en) * 1997-09-05 2008-10-09 Element Six Ltd Diamond-silicon carbide-silicon composite

Also Published As

Publication number Publication date
JPS63185859A (en) 1988-08-01

Similar Documents

Publication Publication Date Title
US5271971A (en) Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US5284709A (en) Diamond materials with enhanced heat conductivity
US6110594A (en) Diamond film and solid fiber composite compositions
US5273790A (en) Method for consolidating diamond particles to form high thermal conductivity article
Shibuki et al. Adhesion strength of diamond films on cemented carbide substrates
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
US5863606A (en) Method for producing diamond coated member
US5270114A (en) High thermal conductivity diamond/non-diamond composite materials
JP4570195B2 (en) BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
JPH0581558B2 (en)
JPS6267174A (en) Production of hard carbon film coated sintered hard alloy
US5273825A (en) Article comprising regions of high thermal conductivity diamond on substrates
CN108505018A (en) A method of growth excellent diamonds particle and diamond thin
US5001001A (en) Process for the fabrication of ceramic monoliths by laser-assisted chemical vapor infiltration
JP2794111B2 (en) Diamond coated cutting tool
JPH0797603A (en) Ceramic matrix base material for diamond coating and production of base material for coating
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPS63237870A (en) Diamond coated grinding wheel
JPH1053871A (en) Diamond-coated carbon member
JP4032178B2 (en) Method for manufacturing silicon nitride sprayed film
JPH01234165A (en) Soot mixed diamond polishing grindstone
JPH0497974A (en) Method for coating polycrystalline diamond film and polycrystalline diamond coated ceramic base material
JP2001322067A (en) Extra-abrasive grain coated with metal carbide, its manufacturing method and extra-abrasive grain tool
JP2008144273A (en) Method for producing hard carbon-coated member