JPH058083A - Silver-or silver copper alloy-metal oxide composite material and production thereof - Google Patents

Silver-or silver copper alloy-metal oxide composite material and production thereof

Info

Publication number
JPH058083A
JPH058083A JP3183563A JP18356391A JPH058083A JP H058083 A JPH058083 A JP H058083A JP 3183563 A JP3183563 A JP 3183563A JP 18356391 A JP18356391 A JP 18356391A JP H058083 A JPH058083 A JP H058083A
Authority
JP
Japan
Prior art keywords
oxide
silver
metal
optionally
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183563A
Other languages
Japanese (ja)
Inventor
Akira Shibata
昭 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3183563A priority Critical patent/JPH058083A/en
Publication of JPH058083A publication Critical patent/JPH058083A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the silver-metal oxide composite material which decreases arc erosion as an electrode material, less deposit to materials to be welded, is longer in life than the conventional materials for electrodes, is stable in the quality of weld zones, can make an important contribution to the improvement in the productivity of welding, does not require the polishing of electrode surfaces and allows the long-time operation of a welding line since the roughening of the electrode surfaces in particular and the change in contact resistance are extremely little. CONSTITUTION:This composite material consists of a silver copper alloy base material contg. <=50wt.% copper base material or copper and (a) 0.5 to 25wt.%, in terms of metal, oxide of at least one kind of the elements selected from a group consisting of Mg, Al, Zr, Ca, Ce, Be, Th, Sr, Ti, Cr, Hf, and Si, and (b) 0.01 to 0.5wt.%, in terms of metal, oxide of at least one kind of the elements selected from a group consisting of Bi, Pb, Cd, Zn, Sn, Sb, Mn, and iron family metals existing in some cases, and is constituted by uniformly dispersing the oxide of the elements of (a) and the oxide of the elements of (b) existing in some cases into the silver base material from the surface down to the deep part of the silver base material in a fine particle state of <=0.1mum grain size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に大容量の負荷電流
で耐久性の高い電気溶接用電極材料として好適の新規な
銀、銀銅合金−金属酸化物複合材料とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel silver-silver-copper alloy-metal oxide composite material suitable as an electrode material for electric welding, which is particularly durable under a large capacity load current and a method for producing the same.

【0002】[0002]

【従来の技術】自動車、電気機器等における種々の金属
板の組立てに電気溶接が多用されている。この電気溶接
には耐熱性の高い電極が必要で、一般にCr−Cuなどの硬
銅合金が用いられ、特に大容量の負荷電流を使用する場
合には、金属の酸化物、炭化物等のセラミックス粉末を
銅で焼結した材料が用いられている。
2. Description of the Related Art Electric welding is frequently used for assembling various metal plates in automobiles, electric equipment and the like. Electrodes with high heat resistance are required for this electric welding, and hard copper alloys such as Cr-Cu are generally used.In particular, when a large capacity load current is used, ceramic powder such as metal oxides and carbides is used. A material obtained by sintering copper with copper is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記焼結
による分散強化型材料は、溶接電流が1万アンペアを超
えるような用途で継続的に使用するには耐溶着性、耐消
耗性が充分でなく、電極寿命が極めて短いのが実状であ
る。このような短い電極寿命は直接生産コストを上昇さ
せ、頻繁に電極を交換する必要から溶接作業能率を低下
させ、間接的に生産コストを上昇させる原因になってい
る。このためより寿命の長い電極用材料の開発が待たれ
ている。
However, the dispersion-strengthened material obtained by sintering is insufficient in welding resistance and wear resistance for continuous use in applications where the welding current exceeds 10,000 amperes. The reality is that the electrode life is extremely short. Such a short electrode life directly increases the production cost, reduces the welding work efficiency because of frequent electrode replacement, and indirectly increases the production cost. Therefore, the development of a material for electrodes having a longer life is awaited.

【0004】本発明は上記事情に鑑みて為されたもので
あり、耐溶着性、耐消耗性に優れ、長寿命の電極を得る
ことができる材料とその製造方法を提供せんとするもの
である。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a material which is excellent in welding resistance and wear resistance and which can provide a long-life electrode, and a method for producing the same. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明の第一の材料は、銀母基質と、(a) 金属換算で0.
5〜25重量%のMg、Al、Zr、Ca、Ce、Be、Th、Sr、Ti、C
r、Hf及びSiからなる群から選ばれる少なくとも1組の
元素の酸化物と、場合によっては存在する(b)金属換算
で0.01〜5重量%のBi、Pb、Cd、Zn、Sn、Sb、Mn及び鉄
族金属からなる群から選ばれる少なくとも1種の元素の
酸化物とからなり、(a) の元素の酸化物、及び場合によ
っては存在する(b) の元素の酸化物が粒径 0.1μm 以下
の微粒子状態で銀母基質の表面から深部に至るまで該銀
母基質中に均一に分散されている銀−金属酸化物複合材
料である点に特徴がある。
In order to achieve the above object, the first material of the present invention comprises a silver mother substrate and (a) a metal conversion of 0.
5-25 wt% Mg, Al, Zr, Ca, Ce, Be, Th, Sr, Ti, C
Oxides of at least one element selected from the group consisting of r, Hf and Si, and optionally (b) 0.01 to 5 wt% of Bi, Pb, Cd, Zn, Sn, Sb in terms of metal, The oxide of at least one element selected from the group consisting of Mn and iron group metals, the oxide of the element of (a) and the oxide of the element of (b) which is present in some cases have a particle size of 0.1. It is characterized in that it is a silver-metal oxide composite material which is uniformly dispersed in the silver matrix from the surface to the depth of the silver matrix in the state of fine particles of μm or less.

【0006】又、本発明の第二は、上記複合材料におい
て銀母基質の代わりに銅を50重量%以下に含有する銀銅
合金母基質を用いた複合材料を提供するものである。
A second aspect of the present invention is to provide a composite material using a silver-copper alloy matrix containing copper in an amount of 50% by weight or less in place of the silver matrix in the above composite material.

【0007】上記第一の複合材料を製造する本発明の方
法は、(A) 銀と、(a) 金属換算で 0.5〜25重量%の金属
状及び/又は酸化物状のMg、Al、Zr、Ca、Ce、Be、Th、
Sr、Ti、Cr、Hf及びSiからなる群から選ばれる少なくと
も1種の元素と、及び場合によってはさらに(b) 金属換
算で0.01〜5重量%の金属状及び/又は酸化物状のBi、
Pb、Cd、Zn、Sn、Sb、Mn及び鉄族金属からなる群から選
ばれる少なくとも1種の元素とを含有する混合物を、加
熱し、かつ高酸素分圧下で液相と固相が共存する状態に
置き、これにより前記(a) の元素及び場合によって存在
する前記(b) の元素が金属状で存在する場合はその金属
状のものの全量を酸化物として析出させる工程、及び
(B) 次にこのように処理された混合物を冷却しかつ酸素
分圧を低下させる工程を有する点に特徴がある。
The method of the present invention for producing the above-mentioned first composite material comprises (A) silver and (a) 0.5 to 25% by weight of metal- and / or oxide-like Mg, Al, Zr in terms of metal. , Ca, Ce, Be, Th,
At least one element selected from the group consisting of Sr, Ti, Cr, Hf and Si, and optionally (b) 0.01 to 5% by weight of metal-based and / or oxide-shaped Bi in terms of metal,
A mixture containing Pb, Cd, Zn, Sn, Sb, Mn and at least one element selected from the group consisting of iron group metals is heated, and a liquid phase and a solid phase coexist under high oxygen partial pressure. In the state, whereby the element of (a) and optionally the element of (b) are present in the metallic form, if all of the metallic form is precipitated as an oxide, and
(B) Next, it is characterized in that it has a step of cooling the mixture thus treated and lowering the oxygen partial pressure.

【0008】又、前記第二の銀銅合金−金属酸化物複合
材料を製造する方法は、前記(A) 工程における銀の代り
に、銀及び銀と等しい重量以下の銅を用い、(B) 工程の
後に必要により(C) 該混合物を真空中、還元雰囲気中又
は中性雰囲気中で加熱し、脱酸する工程を行う点に特徴
がある。
In the second method for producing the silver-copper alloy-metal oxide composite material, silver and copper in a weight equal to or less than silver are used in place of silver in the step (A), and (B) After the step, if necessary, the step (C) of heating the mixture in a vacuum, a reducing atmosphere or a neutral atmosphere to perform a deoxidizing step is characterized.

【0009】[0009]

【作用】母基質を銀又は銀銅合金とするのは、電極用材
料は高い電気伝導度が要求されるからである。特に耐熱
性を向上するためセラミックスを介在させれば電気伝導
度の低下が避けられず、必要な伝導度を維持するには
銀、銀銅合金が好適である。銀銅合金の場合、銅が50重
量%を超えると前記(C) 工程での脱酸処理が困難となる
ので、50重量%以下にする必要がある。
The mother substrate is made of silver or a silver-copper alloy because the electrode material is required to have high electric conductivity. In particular, if ceramics are interposed to improve heat resistance, a decrease in electric conductivity cannot be avoided, and silver and a silver-copper alloy are suitable for maintaining the necessary conductivity. In the case of a silver-copper alloy, if the amount of copper exceeds 50% by weight, the deoxidation treatment in the step (C) becomes difficult, so it is necessary to set it to 50% by weight or less.

【0010】(a) の元素の酸化物は耐熱性が高く、耐溶
着性、耐消耗性の改善に効果があるが、(a) 元素の金属
換算の含有率は 0.5〜25重量%とする必要がある。 0.5
重量%未満では複合材料の耐熱性が不足であり、25重量
%を超えると相対的に母基質が不足し過ぎて複合材料の
靭性が失われるからである。
The oxide of the element (a) has a high heat resistance and is effective in improving the welding resistance and the wear resistance, but the content of the element (a) in terms of metal is 0.5 to 25% by weight. There is a need. 0.5
This is because the heat resistance of the composite material is insufficient when the content is less than 25% by weight, and the matrix matrix is relatively insufficient when the content exceeds 25% by weight, and the toughness of the composite material is lost.

【0011】一方(b) の元素の酸化物はそれ自体の耐熱
性はそれ程良くないが、(a) の元素の酸化を助ける効果
があり、特に金属状で含まれる(a) の元素が高濃度であ
る場合に用いると良く、この(b) の元素の酸化物含有量
は0.01〜5重量%である。0.01重量%未満では(a) の元
素の酸化を助ける効果が充分でなく、5重量%を超える
と複合材料の耐熱性を低下させる。
On the other hand, although the oxide of the element (b) is not so good in heat resistance itself, it has an effect of assisting the oxidation of the element (a), and especially the element (a) contained in a metallic state is high. It is suitable to be used when the concentration is high, and the oxide content of the element (b) is 0.01 to 5% by weight. If it is less than 0.01% by weight, the effect of assisting the oxidation of the element (a) is not sufficient, and if it exceeds 5% by weight, the heat resistance of the composite material is lowered.

【0012】(a) の元素の酸化物、及び場合によって存
在する(b)の元素の酸化物は粒径 0.1μm 以下の微粒子
状態で母基質の表面から深部に至るまで該母基質と良好
な濡れ性を有する結合状態で均一に分散している。さら
に、該酸化物の粒子は、該母基質との間に空隙がない密
着した状態で存在している。この状態の複合材料にして
初めて耐溶着性、耐消耗性の電極を得ることができる。
このような状態を実現し得る手段が次に述べるように
(A) 工程での高圧酸化処理である。
The oxide of the element of (a) and the oxide of the element of (b) which is present in some cases are in a fine particle state with a particle size of 0.1 μm or less, and are well mixed with the mother substrate from the surface to the deep part. It is uniformly dispersed in a bonded state having wettability. Furthermore, the particles of the oxide exist in a state of being in close contact with the mother substrate without any voids. Only with the composite material in this state, an electrode having welding resistance and wear resistance can be obtained.
The means for realizing such a state are as follows.
It is a high-pressure oxidation treatment in step (A).

【0013】図1に銀−酸素系の温度対圧力状態図を示
す。図1において 507℃以上、 414気圧以上にα+Lと
示される領域がある。図中破線は事実を確認できないた
めに想定として示されている。本発明の方法はこのα+
Lの状態を利用するものである。即ち所定の組成の混合
物を加熱し、かつ高酸素分圧下で液相と固相が共存する
α+Lの状態に置く。この状態ではAg2 O 相が液相にな
っており、前記混合物に空隙が存在すれば該液相が空隙
に入り込んで空隙の存在しない緻密な組織となり、(a)
の元素、及び場合によって存在する(b) の元素が金属状
で存在すると、これらが酸化されて析出し、失われた酸
素は直ちに外部から補給される。この組織の緻密化、
(a) の元素及び(b) の元素の酸化及び酸素の補給のプロ
セスが被処理体である混合物の表面から深部へ向って順
次進行し、終には全体が銀母基質中に金属酸化物が均一
に分散した状態になる。このとき、(a),(b) の元素の酸
化物は酸素のやり取りの結果、共役酸化物を形成する。
FIG. 1 is a temperature-pressure diagram of the silver-oxygen system. In FIG. 1, there is a region indicated by α + L above 507 ° C. and above 414 atmospheric pressure. The broken line in the figure is shown as an assumption because the fact cannot be confirmed. The method of the present invention uses this α +
The L state is used. That is, a mixture having a predetermined composition is heated and placed in an α + L state in which a liquid phase and a solid phase coexist under a high oxygen partial pressure. In this state, the Ag 2 O phase is a liquid phase, and if voids exist in the mixture, the liquid phase enters the voids to form a dense structure without voids, (a)
When the element (1) and the element (b), which is present in some cases, are present in a metallic state, they are oxidized and precipitated, and the lost oxygen is immediately supplied from the outside. Densification of this organization,
The process of oxidation of the elements (a) and (b) and the supply of oxygen proceed from the surface of the mixture to be processed to the depth, and finally the whole is a metal oxide in the silver matrix. Are uniformly dispersed. At this time, the oxides of the elements (a) and (b) form a conjugated oxide as a result of exchange of oxygen.

【0014】この高圧酸化処理で金属状から析出する酸
化物は粒径 0.1μm 以下の微粒子状態であり、この粒子
径が得られる複合材料の硬度の均質性をもたらす。この
ため(a) の元素、及び場合によって添加する(b) の元素
を酸化物状で原料として使用する場合には粒径 0.1μm
以下の酸化物を用いる必要がある。
The oxide precipitated from the metallic state by this high-pressure oxidation treatment is in the form of fine particles having a particle size of 0.1 μm or less, and the hardness of the composite material having this particle size is uniform. Therefore, when the element of (a) and the element of (b) added as the case may be used as a raw material in an oxide form, the grain size is 0.1 μm.
The following oxides need to be used.

【0015】前記状態図は純銀と酸素の系のものであ
り、これに(a) の元素、(b) の元素が加われば当然状態
図も変ってくる。一般に液相化の条件は低温側、低酸素
分圧側に移行し、又、α+Lの状態とα+Ag2 O の状態
の間にα+Ag2 O +Lの状態もあるようで、実際上部分
的に液相が発生する条件であればどのような条件を(A)
工程を行うのに選んでも良い。個々の具体的な目的とす
る組成についても、温度と酸素分圧を徐々に高めていく
ことによって固相状態から固相と液相とが共存する状態
に移行するので、かかる状態は当業者は容易に見出すこ
とができる。実用的には(A) 工程は 300〜600 ℃の温度
範囲で酸素分圧 300気圧以上が適当である。
The above phase diagram is based on pure silver and oxygen, and if the elements (a) and (b) are added to this, the phase diagram will naturally change. Generally, the condition of liquid phase shifts to low temperature side and low oxygen partial pressure side, and there seems to be a state of α + Ag 2 O + L between α + L state and α + Ag 2 O state. What is the condition (A)
You may choose to perform the process. With respect to each specific target composition, since the solid state and the solid phase and the liquid phase coexist by gradually increasing the temperature and the oxygen partial pressure, those skilled in the art can obtain such a state. Can be easily found. Practically, in step (A), an oxygen partial pressure of 300 atm or higher is suitable in the temperature range of 300 to 600 ° C.

【0016】母基質が銀銅合金の場合もこの高圧酸化処
理は全く同様に行われる。この高圧酸化処理に供する銀
又は銀銅原料と(a) 元素、及び場合によって添加される
(b) 元素との混合物は、合金、焼結体、圧粉体の何れで
あっても差支えない。この焼結体及び圧粉体はどのよう
な組合せの焼結体、圧粉体でも良く、これら焼結体又は
圧粉体を銀又は銀銅合金で包み、又は溶融含浸させた複
合体、又は更にこれを熱間で鞘鍛造及び/又は伸線加工
したものであっても良い。更に一旦本発明の方法に従っ
て製造した複合材料を粉砕したものを出発原料の一部又
は全部とすることもできる。
Even when the mother substrate is a silver-copper alloy, this high-pressure oxidation treatment is performed in exactly the same manner. The raw material for silver or silver-copper used for this high-pressure oxidation treatment and (a) element, and optionally added
The mixture with the element (b) may be an alloy, a sintered body, or a green compact. The sintered body and the green compact may be any combination of the sintered body and the green compact, and the sintered body or the green compact is wrapped with silver or a silver-copper alloy, or is a melt-impregnated composite body, or Further, this may be hot forged and / or wire drawn. Further, the pulverized composite material once produced according to the method of the present invention can be used as a part or the whole of the starting material.

【0017】尚、高圧酸化処理後の複合材料は極めて硬
質の材料であり、以後の塑性加工が困難となるので、前
記混合物は所望の電極形状に成形しておくと良い。又
(a) の元素を高濃度に含有する合金は可塑性に乏しく、
成形が容易でないので、(a) の元素を最終的な目的比率
の2倍程度含有せしめた合金、焼結合金を粉砕し、これ
と銀粉または銀銅合金粉と(a) 元素が目的比率になるよ
うに混合して所望の形状に圧粉成形し、中性又は還元性
雰囲気中で仮焼結して供すると良い。
Since the composite material after the high-pressure oxidation treatment is an extremely hard material and the subsequent plastic working becomes difficult, it is preferable that the mixture is formed into a desired electrode shape. or
Alloys containing a high concentration of element (a) have poor plasticity,
Since forming is not easy, crush the alloy or sintered alloy containing the element (a) at about twice the final target ratio, and crush this with the silver powder or silver-copper alloy powder and the element (a) as the target ratio. It is advisable to mix them so as to form a powder into a desired shape, and to pre-sinter them in a neutral or reducing atmosphere.

【0018】(B) 工程では、上記高圧酸化処理後、混合
物を冷却しかつ酸素分圧を低下させれば、母基質中の
(A) 工程で生じたAg2 O が 250℃以下で分解して自然に
純銀に戻る。
In the step (B), if the mixture is cooled and the oxygen partial pressure is lowered after the above-mentioned high-pressure oxidation treatment, the oxygen content in the mother substrate is reduced.
Ag 2 O generated in step (A) decomposes below 250 ° C and spontaneously returns to pure silver.

【0019】しかし母基質が銀銅合金の場合は銅が高濃
度程酸化されたまま残り易く、脱酸素を要することがあ
る。この脱酸素は前記混合物を更に真空中、還元雰囲気
中、中性雰囲気中で加熱して脱酸素することができる。
還元雰囲気に用いる気体は(a) 元素及び(b) 元素の酸化
物粒子を還元しない程度の還元力の弱いものが望まし
い。ただし、銅の母基質中の濃度が少ない場合には脱酸
処理は必ずしも行わなくてもよいが、行うのが好まし
い。
However, when the mother substrate is a silver-copper alloy, the higher the concentration of copper is, the more likely it is to remain oxidized and deoxidation may be required. The deoxidation can be performed by further heating the mixture in a vacuum, a reducing atmosphere, or a neutral atmosphere.
It is desirable that the gas used for the reducing atmosphere has a weak reducing power that does not reduce oxide particles of the elements (a) and (b). However, when the concentration of copper in the mother substrate is low, the deoxidation treatment is not always necessary, but it is preferable.

【0020】[0020]

【実施例】以下、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0021】試料調製 試料No.1, No.2:表1に示す組成の合金を高周波溶解炉
で約1000〜1200℃に加熱溶解し、これを黒鉛鋳型に流し
こんで約5kgの板状インゴットを得た。次に該インゴッ
トの上記両面を約2mm皮剥ぎし、このインゴットの上面
にインゴット板厚の10分の1に相当する厚さの純銀を重
ね合わせて熱間圧延機で元板の30%厚さまで圧延してク
ラッドした。該クラッド材は更に冷間圧延し、厚さ3mm
の板材を得、この板から直径6mmのディスクを打抜い
た。
Sample Preparation Samples No. 1 and No. 2: Alloys having the compositions shown in Table 1 were heated and melted at about 1000 to 1200 ° C. in a high-frequency melting furnace and poured into a graphite mold to cast a plate-shaped ingot of about 5 kg. Got Next, peel about 2 mm of both sides of the ingot, and lay pure silver with a thickness corresponding to 1/10 of the thickness of the ingot on the upper surface of this ingot, and use a hot rolling mill to obtain a thickness of 30% of the original plate. It was rolled and clad. The clad material is further cold rolled to a thickness of 3 mm
A plate having a diameter of 6 mm was punched out from this plate.

【0022】試料No.3:表1に示す組成の合金を上記と
同様に加熱溶解し、これを直径6mm、深さ3mmの穴を形
成してある黒鉛鋳型に注湯冷却してディスクを得、その
表面に5μm の厚さの銀メッキを施した。
Sample No. 3: An alloy having the composition shown in Table 1 was melted by heating in the same manner as above, and this was poured and cooled in a graphite mold having a hole having a diameter of 6 mm and a depth of 3 mm to obtain a disk. The surface was plated with 5 μm thick silver.

【0023】試料No.4, No.5:表1に示す組成の合金を
上記と同様に溶解し、該溶湯を窒素中で遠心噴霧して合
金粉末とした。該粉末をボールミルで粉砕し、圧力1t/
cm2 で粉押して、得られた圧粉体を窒素中 750℃に1時
間保持して仮焼結後直径6mm、厚さ3mmのディスク状に
成形した。
Samples No. 4 and No. 5: Alloys having the compositions shown in Table 1 were melted in the same manner as above, and the melt was centrifugally sprayed in nitrogen to obtain alloy powder. The powder is crushed with a ball mill and the pressure is 1 t /
Press powder in cm 2, the resulting green compact was held for 1 hour to 750 ° C. in a nitrogen presintered after diameter 6 mm, it was molded to a thickness of 3mm disc-shaped.

【0024】酸化処理 前記試料No.1〜5 について、耐熱ステンレス製耐圧容器
からなる高圧酸化処理装置で酸化処理を行った。試料に
該容器に装入し、先ず容器内を窒素ガスで置換し、次い
で純酸素を流入させ、酸素圧を加えつつ加熱し、液相と
固相が共存する条件下に保持し、 360時間後に常圧、常
温まで減圧冷却して試料を取出した。各試料の酸化処理
条件を表1に示す。
Oxidation Treatment Samples Nos. 1 to 5 were subjected to oxidation treatment with a high-pressure oxidation treatment device composed of a heat-resistant stainless steel pressure vessel. The sample is charged into the container, first the inside of the container is replaced with nitrogen gas, and then pure oxygen is introduced, heated while applying oxygen pressure, and kept under the condition that a liquid phase and a solid phase coexist for 360 hours. After that, the sample was taken out after cooling under normal pressure and normal temperature under reduced pressure. Table 1 shows the oxidation treatment conditions of each sample.

【0025】脱酸処理 試料No.4, No.5の試料の母基質は銀−銅合金であり、酸
化処理すると銅が酸化されたままとなるので、脱酸が必
要であり、表1に示す条件で処理した。
The mother substrate of the samples of the deoxidation-treated samples No. 4 and No. 5 is a silver-copper alloy, and when the oxidation treatment is carried out, copper remains oxidized, so deoxidation is necessary. It processed on the conditions shown.

【0026】電極寿命比較試験 上記各方法で処理した直径6mm×厚さ3mmのディスクを
電極寿命試験に供した。直胴部の直径が16mm、長さ25mm
の電極ホルダーの先端部に直径6mm、深さ2mmの凹形穴
を堀り、上記寸法のディスク状電極材料を挿入接合し、
その上端面が直径5mmである円錐台形となるように尖鋭
加工研磨したものを電極として使用した。被溶接材は厚
さ 0.8mmの亜鉛メッキ鋼板を2枚重ね、その周縁部の溶
接をスポット溶接で試みた。溶接電流は8千アンペア又
は1万5千アンペアとした。電極が摩耗又は溶着により
使用不能になるまでに繰り返すことができたスポット溶
接の回数を測定した。比較のために、上記試料と同一形
状、寸法のCr−Cu電極を溶接電流8千アンペアで、Cu−
Al2 O 3 焼結電極を溶接電流1万5千アンペアで、同様
に試験した。これらの従来の電極に対するスポット溶接
の回数比を表1に示す。
Electrode Life Comparison Test A disk having a diameter of 6 mm and a thickness of 3 mm treated by each of the above methods was subjected to an electrode life test. Diameter of the straight body part is 16mm, length is 25mm
A concave hole with a diameter of 6 mm and a depth of 2 mm was dug at the tip of the electrode holder of and the disc-shaped electrode material with the above dimensions was inserted and joined.
The electrode was sharpened and polished so that its upper end surface had a truncated cone shape with a diameter of 5 mm. As the material to be welded, two 0.8 mm thick galvanized steel sheets were stacked, and the welding of the peripheral portion was tried by spot welding. The welding current was 8,000 amps or 15,000 amps. The number of spot welds that could be repeated before the electrode became unusable due to wear or welding was measured. For comparison, a Cr-Cu electrode having the same shape and dimensions as the above sample was welded with a welding current of 8,000 amps and Cu-
The Al 2 O 3 sintered electrode was similarly tested at a welding current of 15,000 amps. Table 1 shows the spot welding frequency ratios for these conventional electrodes.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から本発明の電極材料は従来の
Cr−Cu、Cu−Al2 O 3 焼結材に比較して著しく性能が向
上していることが分る。また、上記電極試料と同様に製
造した試料について切断面を顕微鏡観察した所、いずれ
も 0.1μm 以下の極めて微細な酸化物粒子が母基質中に
母基質との間空隙のない密着した状態で均一に分散した
組織であることが確認された。
From the results shown in Table 1, the electrode material of the present invention was
It can be seen that the performance is remarkably improved as compared with the Cr-Cu and Cu-Al 2 O 3 sintered materials. In addition, when the cut surface of the sample manufactured in the same manner as the above electrode sample was observed under a microscope, it was found that extremely fine oxide particles of 0.1 μm or less were uniformly adhered to each other in the mother matrix with no voids between them. It was confirmed that the tissue was dispersed in the.

【0029】[0029]

【発明の効果】本発明の複合材料は電気溶接用の電極と
して使用してもアークエロージョンが少なく、又被溶接
物との溶着も少なく、従来の電極用材料よりも長寿命
で、溶接部品質も安定し、溶接の生産性向上に大きく寄
与できる。特に本発明の複合材料によれば、電極表面の
荒れや接触抵抗の変化が極めて少ないので、電極表面の
研削を必要とせず、溶接ラインの長時間稼動を実現でき
る。
EFFECTS OF THE INVENTION The composite material of the present invention has less arc erosion even when used as an electrode for electric welding, and has less welding with the object to be welded, has a longer life than conventional electrode materials, and has a welded portion quality. Is also stable and can greatly contribute to the improvement of welding productivity. Particularly, according to the composite material of the present invention, since the roughness of the electrode surface and the change in contact resistance are extremely small, it is possible to realize long-time operation of the welding line without the need to grind the electrode surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】銀−酸素系の温度対圧力状態図を示す。FIG. 1 shows a temperature vs. pressure phase diagram for the silver-oxygen system.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 9/00 6919−4K Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 9/00 6919-4K

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 銀母基質と、(a) 金属換算で 0.5〜25重
量%のMg、Al、Zr、Ca、Ce、Be、Th、Sr、Ti、Cr、Hf及
びSiからなる群から選ばれる少なくとも1種の元素の酸
化物と、場合によっては存在する(b) 金属換算で0.01〜
5重量%のBi、Pb、Cd、Zn、Sn、Sb、Mn及び鉄族金属か
らなる群から選ばれる少なくとも1種の元素の酸化物と
からなり、(a) の元素の酸化物、及び場合によっては存
在する(b) の元素の酸化物が粒径 0.1μm 以下の微粒子
状態で銀母基質の表面から深部に至るまで該銀母基質中
に均一に分散されてなる銀−金属酸化物複合材料。
1. A silver mother substrate and (a) selected from the group consisting of 0.5 to 25% by weight of metal, Mg, Al, Zr, Ca, Ce, Be, Th, Sr, Ti, Cr, Hf and Si. Oxides of at least one element, and in some cases (b) 0.01 to 100 in terms of metal
5% by weight of Bi, Pb, Cd, Zn, Sn, Sb, Mn and an oxide of at least one element selected from the group consisting of iron group metals, the oxide of the element (a), and In some cases, the oxide of the element (b) present in some cases is uniformly dispersed in the silver mother matrix in the form of fine particles with a particle size of 0.1 μm or less from the surface to the deep part of the silver mother matrix. material.
【請求項2】 銅を50重量%以下に含有する銀銅合金母
基質と、(a)金属換算で 0.5〜25重量%のMg、Al、Zr、C
a、Ce、Be、Th、Sr、Ti、Cr、Hf及びSiからなる群から
選ばれる少なくとも1種の元素の酸化物と、場合によっ
ては存在する(b) 金属換算で0.01〜5重量%のBi、Pb、
Cd、Zn、Sn、Sb、Mn及び鉄族金属からなる群から選ばれ
る少なくとも1種の元素の酸化物とからなり、(a) の元
素の酸化物、及び場合によっては存在する(b) の元素の
酸化物が粒径 0.1μm 以下の微粒子状態で銀銅合金母基
質の表面から深部に至るまで該銀銅合金母基質中に均一
に分散されてなる銀銅合金−金属酸化物複合材料。
2. A silver-copper alloy matrix containing copper in an amount of 50% by weight or less, and (a) 0.5 to 25% by weight of metal, Mg, Al, Zr, C.
an oxide of at least one element selected from the group consisting of a, Ce, Be, Th, Sr, Ti, Cr, Hf and Si, and optionally present (b) 0.01 to 5% by weight in terms of metal Bi, Pb,
Cd, Zn, Sn, Sb, Mn, and an oxide of at least one element selected from the group consisting of iron group metals, the oxide of the element of (a), and optionally (b) A silver-copper alloy-metal oxide composite material in which an oxide of an element is uniformly dispersed in the silver-copper alloy mother matrix in the form of fine particles having a particle size of 0.1 μm or less from the surface to the deep part.
【請求項3】 請求項1又は2記載の複合材料であっ
て、前記の(a) の元素の酸化物、及び場合によっては存
在する(b) の元素の酸化物が該母基質と良好な濡れ性を
有する結合状態で存在している複合材料。
3. The composite material according to claim 1 or 2, wherein the oxide of the element of (a) and optionally the oxide of the element of (b) present are good with the mother matrix. A composite material that exists in a bonded state with wettability.
【請求項4】 請求項1〜3のいずれか1項に記載の複
合材料であって、前記(a) の元素の酸化物と、(b) の元
素の酸化物が共役酸化物を形成して分散している複合材
料。
4. The composite material according to claim 1, wherein the oxide of the element (a) and the oxide of the element (b) form a conjugated oxide. Composite material dispersed.
【請求項5】 (A) 銀と、(a) 金属換算で 0.5〜25重量
%の金属状及び/又は酸化物状のMg、Al、Zr、Ca、Ce、
Be、Th、Sr、Ti、Cr、Hf及びSiからなる群から選ばれる
少なくとも1種の元素と、及び場合によってはさらに
(b) 金属換算で0.01〜5重量%の金属状及び/又は酸化
物状のBi、Pb、Cd、Zn、Sn、Sb、Mn及び鉄族金属からな
る群から選ばれる少なくとも1種の元素とを含有する混
合物を、加熱し、かつ高酸素分圧下で液相と固相が共存
する状態に置き、これにより前記(a) の元素及び場合に
よって存在する前記(b) の元素が金属状で存在する場合
はその金属状のものの全量を酸化物として析出させる工
程、及び(B) 次にこのように処理された混合物を冷却し
かつ酸素分圧を低下させる工程を有する、請求項1に記
載された銀−金属酸化物複合材料を製造する方法。
5. (A) silver and (a) 0.5 to 25% by weight of metal-based and / or oxide-based Mg, Al, Zr, Ca, Ce in terms of metal,
At least one element selected from the group consisting of Be, Th, Sr, Ti, Cr, Hf and Si, and optionally further
(b) 0.01 to 5% by weight of metal and / or oxide of at least one element selected from the group consisting of Bi, Pb, Cd, Zn, Sn, Sb, Mn and iron group metals. The mixture containing is heated and placed in a state in which a liquid phase and a solid phase coexist under high oxygen partial pressure, whereby the element of (a) and the element of (b) optionally present are in a metallic state. The method according to claim 1, which has a step of precipitating the entire amount of the metallic substance, if present, as an oxide, and (B) subsequently cooling the mixture thus treated and lowering the oxygen partial pressure. Of producing a modified silver-metal oxide composite material.
【請求項6】 (A) 銀と、銀と等しい重量以下の銅と、
(a) 金属換算で 0.5〜25重量%の金属状及び/又は酸化
物状のMg、Al、Zr、Ca、Ce、Be、Th、Sr、Ti、Cr、Hf及
びSiからなる群から選ばれる少なくとも1種の元素と、
及び、場合によってはさらに(b) 金属換算で0.01〜5重
量%の金属状及び/又は酸化物状のBi、Pb、Cd、Zn、S
n、Sb、Mn及び鉄族金属からなる群から選ばれる少なく
とも1種の元素とを含有する混合物を、加熱し、かつ高
酸素分圧下で液相と固相が共存する状態に置き、これに
より前記(a) の元素及び場合によって存在する前記(b)
の元素が金属状で存在する場合はその金属状のものの全
量を酸化物しとて析出させる工程、(B) 次にこのように
処理された混合物を冷却しかつ酸素分圧を低下させる工
程、及び必要により(C) その後に該混合物を真空中、還
元雰囲気中又は中性雰囲気中で加熱し、脱酸する工程と
を有する、請求項2記載の銀銅合金−金属酸化物複合材
料を製造する方法。
6. (A) Silver, and copper having a weight equal to or less than that of silver,
(a) selected from the group consisting of 0.5 to 25 wt% of metal and / or oxide Mg, Al, Zr, Ca, Ce, Be, Th, Sr, Ti, Cr, Hf and Si in terms of metal. At least one element,
And (b) 0.01 to 5% by weight of metal- and / or oxide-like Bi, Pb, Cd, Zn, S in terms of metal.
A mixture containing n, Sb, Mn and at least one element selected from the group consisting of iron group metals is heated and placed in a state where a liquid phase and a solid phase coexist under a high oxygen partial pressure. The element of (a) and optionally (b)
When the element is present in the metallic state, the step of oxidizing and precipitating the entire amount of the metallic one, (B) then cooling the mixture treated in this way and lowering the oxygen partial pressure, And optionally (C) thereafter, heating the mixture in a vacuum, a reducing atmosphere or a neutral atmosphere to deoxidize the mixture to produce a silver-copper alloy-metal oxide composite material according to claim 2. how to.
【請求項7】 請求項5に記載の方法であって、(A) 工
程で使用の前記混合物が、銀、(a) の元素、及び場合に
よっては存在する(b) の元素からなる合金である方法。
7. The method of claim 5, wherein the mixture used in step (A) is an alloy of silver, the element of (a), and optionally the element of (b) present. There is a way.
【請求項8】 請求項6に記載の方法であって、(A) 工
程で使用の前記混合物が、銀、銅、(a) の元素、及び場
合によっては存在する(b)の元素からなる合金である方
法。
8. The method of claim 6, wherein the mixture used in step (A) consists of silver, copper, the element of (a), and optionally the element of (b) present. The method of being an alloy.
【請求項9】 請求項5に記載の方法であって、(A) 工
程で使用の前記混合物が、銀、(a) の元素、及び場合に
よっては存在する(b) の元素からなる焼結体又は圧粉体
である方法。
9. The method of claim 5, wherein the mixture used in step (A) comprises silver, an element of (a), and optionally an element of (b). The method of being a body or a green compact.
【請求項10】 請求項6に記載の方法であって、(A)
工程で使用の前記混合物が、銀並びに、銅及び/又は銀
銅合金、(a) の元素及び場合によっては存在する(b) の
元素からなる焼結体又は圧粉体である方法。
10. The method according to claim 6, wherein (A)
A process wherein the mixture used in the step is a sintered body or a green compact comprising silver and copper and / or a silver-copper alloy, the element of (a) and optionally the element of (b) present.
【請求項11】 請求項5〜10のいずれか1項に記載の
方法であって、(A)工程で使用される前記混合物に含有
される(a) の元素、及び場合によっては含有される(b)
の元素が酸化物状態で存在する場合、該酸化物は粒径が
0.1μm 以下である方法。
11. The method according to any one of claims 5 to 10, wherein the element (a) contained in the mixture used in the step (A), and optionally contained. (b)
When the element is present in an oxide state, the oxide has a particle size of
A method that is 0.1 μm or less.
JP3183563A 1990-06-28 1991-06-28 Silver-or silver copper alloy-metal oxide composite material and production thereof Pending JPH058083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183563A JPH058083A (en) 1990-06-28 1991-06-28 Silver-or silver copper alloy-metal oxide composite material and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-168371 1990-06-28
JP16837190 1990-06-28
JP3183563A JPH058083A (en) 1990-06-28 1991-06-28 Silver-or silver copper alloy-metal oxide composite material and production thereof

Publications (1)

Publication Number Publication Date
JPH058083A true JPH058083A (en) 1993-01-19

Family

ID=26492092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183563A Pending JPH058083A (en) 1990-06-28 1991-06-28 Silver-or silver copper alloy-metal oxide composite material and production thereof

Country Status (1)

Country Link
JP (1) JPH058083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182831A (en) * 2018-09-28 2019-01-11 浙江力博实业股份有限公司 It is a kind of to draw the preparation method for using copper strips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182831A (en) * 2018-09-28 2019-01-11 浙江力博实业股份有限公司 It is a kind of to draw the preparation method for using copper strips

Similar Documents

Publication Publication Date Title
US5160366A (en) Silver-metal oxide composite material and process for producing the same
EP0465128B1 (en) Silver- or silver-copper alloy-metal oxide composite material and process of producing the same
CN111468719B (en) Silver tin oxide sheet-shaped electrical contact and preparation method thereof
US5286441A (en) Silver-metal oxide composite material and process for producing the same
EP0508746A1 (en) Internally oxidised Ag-Sn-In alloy electrical contact materials and manufacturing method thereof
JPS59163726A (en) Vacuum breaker
JPH058083A (en) Silver-or silver copper alloy-metal oxide composite material and production thereof
EP0043576A1 (en) Molybdenum-based alloy
CN114438366A (en) Preparation method of silver tin oxide indium oxide electric contact material
JPH055141A (en) Copper or copper-silver alloy metal oxide composite material and production thereof
EP0675514B1 (en) Electrical contact compositions and novel manufacturing method
JP2557143B2 (en) Method for producing silver-tin oxide composite material
JPH055139A (en) Production of silver or silver-copper alloy-metal oxide composite material
JPH0941056A (en) Motor commutator material
JPS5855861B2 (en) Method for manufacturing sintered composites
JPH059622A (en) Production of silver-metal oxide composite material
JP3329975B2 (en) Ceramic deposited copper alloy and method for producing the same
JPH08239725A (en) Silver-tin oxide compound material
JPH09239559A (en) Electrode material for electric resistance welding
JPH06210463A (en) Electrode for resistance welding and its production
KR810001763B1 (en) Interated ag-sno alloy electrical materials
JPS61121218A (en) Vacuum breaker
JPH0142321B2 (en)
JPS63250032A (en) Manufacture of electrode material
JPH03207831A (en) Silver-oxide contact material and its manufacture