JPH0579968A - Measuring device for particle in vacuum space and vacuum device with it - Google Patents

Measuring device for particle in vacuum space and vacuum device with it

Info

Publication number
JPH0579968A
JPH0579968A JP3265474A JP26547491A JPH0579968A JP H0579968 A JPH0579968 A JP H0579968A JP 3265474 A JP3265474 A JP 3265474A JP 26547491 A JP26547491 A JP 26547491A JP H0579968 A JPH0579968 A JP H0579968A
Authority
JP
Japan
Prior art keywords
vacuum
vacuum space
measuring
separate container
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3265474A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Hidetomo Suzuki
英友 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP3265474A priority Critical patent/JPH0579968A/en
Publication of JPH0579968A publication Critical patent/JPH0579968A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/002Component parts of these vessels not mentioned in B01J3/004, B01J3/006, B01J3/02 - B01J3/08; Measures taken in conjunction with the process to be carried out, e.g. safety measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To provide a device for measuring the concentration, grain size distribution, and grain size of the particle existing in the vacuum space. CONSTITUTION:A device for measuring the particle in the vacuum space 1 has a separate container 4 communicated to the vacuum space 1 to be measured, cutoff means 2, 3 cutting off the vacuum space 1 and the separate container 4, gas feeding means 8, 9 feeding clean gas to the separate container 4, and a measuring means 10 for measuring the particle in the separate container 4 conveyed by the clean gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空環境で加工処理、
成膜処理、熱処理、結晶成長等を行う真空空間中の微粒
子の測定装置及びそれを備えた真空装置に係り、特に各
種膜製造プロセス、例えば半導体製造におけるCVD装
置や液晶等を製造するためのプロセスの真空空間中に存
在している微粒子の濃度、粒度分布、粒径等を測定する
装置及びそれを備えた真空装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to processing in a vacuum environment,
The present invention relates to a device for measuring fine particles in a vacuum space that performs film forming processing, heat treatment, crystal growth, and the like, and a vacuum device including the same, and particularly to various film manufacturing processes, for example, a process for manufacturing a CVD device or liquid crystal in semiconductor manufacturing The present invention relates to a device for measuring the concentration, particle size distribution, particle size, etc. of fine particles existing in the vacuum space, and a vacuum device equipped with the device.

【0002】[0002]

【従来の技術】従来、浮遊状態で存在している微粒子の
濃度等の測定法は、 (1)光散乱法、例えば光散乱カウンタ、フォトメー
タ、光透過法或いは暗視野顕微鏡を利用する方法。 (2)凝縮核法、例えば断熱膨張型、管壁冷却型或いは
その混合型。 (3)重量法。 (4)本発明者がすでに提案した光電子による荷電を用
いる方法(特開昭62−242838号、特開昭63−
197181号各公報)。等がある。 しかし、これらはいずれも大気圧(常圧下)での測定で
あり、真空状態(減圧状態)では測定出来ない。従っ
て、真空装置における真空空間中の微粒子の濃度、粒度
分布、粒径は分からなかった。このため、真空装置の運
転管理ができない問題点があった。
2. Description of the Related Art Conventionally, the method for measuring the concentration of fine particles existing in a floating state is (1) a light scattering method, for example, a light scattering counter, a photometer, a light transmission method or a dark field microscope. (2) Condensation nucleus method, for example, adiabatic expansion type, pipe wall cooling type or mixed type thereof. (3) gravimetric method. (4) Method using charge by photoelectrons already proposed by the present inventor (JP-A-62-242838, JP-A-63-63)
197181). Etc. However, these are all measurements under atmospheric pressure (under normal pressure), and cannot be measured under vacuum (reduced pressure). Therefore, the concentration, particle size distribution, and particle size of the fine particles in the vacuum space of the vacuum device cannot be known. Therefore, there is a problem that the operation management of the vacuum device cannot be performed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点を解決し、真空空間中における微粒子の濃
度、粒度分布、粒径等を効率よく測定できる真空空間中
の微粒子の測定装置及びそれを備えた真空装置を提供す
ることを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and can measure the concentration, particle size distribution, particle size, etc. of particles in a vacuum space efficiently. An object is to provide an apparatus and a vacuum apparatus including the apparatus.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、真空空間中の微粒子を測定するための
装置において、測定すべき真空空間に同通させた別容器
と、該真空空間と別容器とをしゃ断するしゃ断手段と、
別容器へ清浄気体を供給する気体供給手段と、該清浄気
体によって搬送された別容器中の微粒子を測定するため
の測定手段とを有することを特徴とする真空空間中の微
粒子の測定装置としたものである。また、本発明では、
真空空間とそれに連通した真空ポンプからなる真空装置
において、上記の真空空間中の微粒子の測定装置を備え
たことを特徴とする真空装置としたものである。
In order to solve the above problems, according to the present invention, in a device for measuring fine particles in a vacuum space, a separate container that is passed through the vacuum space to be measured and the vacuum container A blocking means for blocking the space and the separate container,
An apparatus for measuring particles in a vacuum space, comprising: a gas supply means for supplying a clean gas to another container; and a measuring means for measuring the particles in the another container conveyed by the clean gas. It is a thing. Further, in the present invention,
A vacuum device comprising a vacuum space and a vacuum pump communicating with the vacuum space, comprising the above-mentioned device for measuring fine particles in the vacuum space.

【0005】[0005]

【作用】本発明は、真空空間中の微粒子を測定する装置
及び該測定装置を備えた真空装置である。真空空間中の
微粒子の測定においては、真空空間に別容器(サンプル
容器)を同通させて設置し、測定時に真空空間と該別容
器をしゃ断し、次いで、別容器に気体を導入し該別容器
中の微粒子を測定することにより真空空間中の微粒子を
測定するものである。また、該測定装置を備える真空装
置にあっては、上記測定装置により適時真空空間中の微
粒子濃度及び/又は粒度分布及び/又は粒径を測定する
ことにより真空装置の運転状態を把握し、運転・管理を
図るものである。
The present invention is an apparatus for measuring fine particles in a vacuum space and a vacuum apparatus equipped with the apparatus. In the measurement of fine particles in a vacuum space, a separate container (sample container) is installed in the vacuum space, the vacuum space and the separate container are cut off during measurement, and then gas is introduced into the separate container to separate the sample. The fine particles in the vacuum space are measured by measuring the fine particles in the container. Further, in a vacuum device equipped with the measuring device, the operating condition of the vacuum device is grasped by operating the measuring device to measure the particle concentration and / or the particle size distribution and / or the particle size in the vacuum space at appropriate times. -It is intended for management.

【0006】[0006]

【実施例】以下、本発明を図面を用いて具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 図1に本発明の装置の概略説明図を示す。図1では、真
空空間1中の0.1μm以上の微粒子の濃度、粒径分布
が測定できる測定装置を備えた真空装置を示す。真空空
間1は、切り換え弁2,3、別容器(サンプル容器)4
を介して、真空ポンプ(真空発生装置)5に連通してお
り、それにより真空状態(減圧状態)が保持されてい
る。ここで、別容器4は、真空空間1と同通しており、
真空空間1中の微粒子と別容器4の空間中の微粒子の濃
度及び粒径分布は、近似できる状態にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings, but the present invention is not limited thereto. Example 1 FIG. 1 shows a schematic explanatory view of an apparatus of the present invention. FIG. 1 shows a vacuum device equipped with a measuring device capable of measuring the concentration and particle size distribution of fine particles of 0.1 μm or more in the vacuum space 1. The vacuum space 1 includes switching valves 2 and 3 and another container (sample container) 4
Through a vacuum pump (vacuum generator) 5, and thereby a vacuum state (depressurized state) is maintained. Here, the separate container 4 is in communication with the vacuum space 1,
The concentration and particle size distribution of the fine particles in the vacuum space 1 and the fine particles in the space of the separate container 4 can be approximated.

【0007】微粒子の測定は、真空空間1(被測定空
間)に同通した別容器4、真空空間1と別容器4とのし
ゃ断用切り換え弁2,3(真空空間1と別容器部とのし
ゃ断手段)、別容器4への切り換え弁6,7と清浄用フ
ィルタ8を介して清浄空気(微粒子が除去された空気)
を送る空気ファン9(別容器への気体供給手段)、別容
器4の空気中の微粒子の測定を行う微粒子測定器10
(別容器の気体中の微粒子の測定手段)により構成され
る装置により実施される。なお、しゃ断手段は真空空間
と別容器とをしゃ断できれば弁以外であってもかまわな
い。また気体としては、空気以外の気体でも利用でき、
清浄用フィルタを流過した気体中に微粒子が残っていて
もブランクテストでその値を把握しておけば測定に支障
はない。
For the measurement of fine particles, a separate container 4 that is in communication with the vacuum space 1 (measured space), and switching valves 2 and 3 for shutting off the vacuum space 1 and the separate container 4 (the vacuum space 1 and the separate container portion) are used. (Cutting off means), clean air (air from which fine particles have been removed) via switching valves 6 and 7 for switching to another container 4 and a cleaning filter 8.
Air fan 9 for sending air (a means for supplying gas to another container), a particle measuring device 10 for measuring particles in the air in the other container 4
It is carried out by an apparatus configured by (measuring means for measuring fine particles in gas in another container). The shut-off means may be other than the valve as long as it can shut off the vacuum space and the separate container. Also, as the gas, a gas other than air can be used,
Even if fine particles remain in the gas that has flowed through the cleaning filter, there is no problem in measurement if the values are known by a blank test.

【0008】別容器4中の微粒子の測定は、次のステッ
プにより別容器4に気体を導入することにより行う。 第1ステップ:別容器4の壁面などへ付着した微粒子
が舞い上がらないよう気体を導入する。第2ステッ
プ:第1ステップよりも多い流量で気体を導入し、微粒
子を別容器4外へ追い出す。通常、真空空間1は、しゃ
断用切り換え弁2,3、別容器4を介して、真空ポンプ
5の吸引により真空状態が保持されている。測定時、真
空空間1は、しゃ断用切り換え弁2,3によりバイパス
回路11を介して、真空ポンプ5の吸引により真空状態
が保持される。
The fine particles in the separate container 4 are measured by introducing gas into the separate container 4 in the following steps. First step: A gas is introduced so that the fine particles attached to the wall surface of the separate container 4 do not rise. Second step: The gas is introduced at a flow rate higher than that in the first step, and the fine particles are expelled to the outside of the separate container 4. Normally, the vacuum space 1 is maintained in a vacuum state by suction of the vacuum pump 5 via the switching valves 2 and 3 for shutting off and the separate container 4. At the time of measurement, the vacuum space 1 is maintained in a vacuum state by suction of the vacuum pump 5 through the bypass circuit 11 by the shut-off switching valves 2 and 3.

【0009】一方、別容器4は、しゃ断用切り換え弁
2,3により、真空空間1及び真空ポンプ5からしゃ断
される。真空状態の別容器4には、直ちに流路切り換え
弁6,7の切り換えにより、空気ファン9からの空気
(清浄用フィルタ8を介した清浄空気)12が導入され
大気圧となる。次いで、切り換え弁13により、別容器
4と微粒子測定器10が同通する。ここで、同時に空気
ファン9から別容器4へ清浄空気12が導入され、別容
器4内の微粒子は追い出され(パージされ)、後方の微
粒子測定器10により積算計測される。通常、別容器4
の容積の3〜10倍の追い出し用清浄空気12の導入
で、別容器中微粒子は追い出される。追い出し空気量
は、別容器中の微粒子濃度、後方の微粒子測定手法によ
り、予備試験を行い適宜決めることができる。通常、別
容器容積の5〜8倍である。これにより、真空空間1の
空間中微粒子濃度及び粒径分布が分かる。
On the other hand, the separate container 4 is shut off from the vacuum space 1 and the vacuum pump 5 by the shut-off switching valves 2 and 3. Immediately after the switching of the flow path switching valves 6 and 7, the air (clean air through the cleaning filter 8) 12 from the air fan 9 is introduced into the separate container 4 in the vacuum state, and the atmospheric pressure is obtained. Next, the switching valve 13 allows the separate container 4 and the particle measuring device 10 to communicate with each other. Here, at the same time, the clean air 12 is introduced from the air fan 9 into the separate container 4, the fine particles in the separate container 4 are expelled (purged), and integrated measurement is performed by the rear particle measuring device 10. Usually, another container 4
By introducing the purging clean air 12 having a volume of 3 to 10 times, the fine particles in the separate container are expelled. The amount of air to be expelled can be appropriately determined by performing a preliminary test depending on the concentration of fine particles in another container and the method of measuring fine particles at the rear. Usually, it is 5 to 8 times the volume of another container. Thereby, the particle concentration and particle size distribution in the vacuum space 1 can be known.

【0010】上述、測定(別容器のしゃ断と、別容器中
微粒子の測定)を適宜の時間くり返すことにより、真空
空間1中の微粒子を長時間連続的にモニターすることが
できる。別容器4は、微粒子の付着や堆積が少なく真空
装置1にしゃ断切り換え弁を介し、同通できるものであ
ればいずれの大きさ、形状、材質のものでも使用でき
る。通常、材質は加工性、耐久性などから金属、例えば
SuS製が好適に用いられる。別容器4への空気の導入
は、真空状態の別容器4中の微粒子を測定し得る常圧状
態(大気圧に近い状態)にするものであり、微粒子を含
まない清浄化気体を用いる。この導入空気は、清浄化気
体であれば何れも使用できる。通常、HEPA及び/又
はULPAフィルタで除塵した空気あるいは窒素が好適
に用いられる。
By repeating the above-described measurement (cutting of another container and measurement of fine particles in another container) for an appropriate time, the fine particles in the vacuum space 1 can be continuously monitored for a long time. As the separate container 4, any size, shape, and material can be used as long as the adhesion and deposition of fine particles are small and the vacuum device 1 can be passed through the cutoff switching valve. Usually, a material such as SuS is preferably used as a material in view of workability and durability. The introduction of air into the separate container 4 is to bring the particles in the separate container 4 in a vacuum state into a normal pressure state (a state close to atmospheric pressure) in which the particles can be measured, and a cleaning gas containing no particles is used. As the introduced air, any cleaning gas can be used. Usually, air or nitrogen dedusted by a HEPA and / or ULPA filter is preferably used.

【0011】本例では、別容器4中の微粒子の測定を、
別容器中の微粒子を導入清浄空気12により追い出して
行っているが適用分野、微粒子の測定方式などによって
は追い出しを行わず、別容器4と微粒子測定器10を一
体化して行うことができる。別容器4中の微粒子測定
は、気体中に浮遊している微粒子測定が出来るものであ
れば何れでも良く、通常光散乱を用いる方式、凝縮核を
用いる方式、本発明者がすでに提案した光電子を用いる
方式(特開昭62−242838号、特開昭63−19
7181号各公報参照)が好適に使用できる。この内、
光散乱を用いる方式、光電子を用いる方式が簡易に使用
し得ることから好ましい。
In this example, the measurement of the fine particles in the separate container 4 is
Although the fine particles in the separate container are expelled by the introduced clean air 12, the expelling is not performed depending on the application field, the measurement method of the fine particles, etc., and the separate container 4 and the fine particle measuring device 10 can be integrated. The particles in the separate container 4 may be measured by any method capable of measuring particles suspended in a gas. Usually, a method using light scattering, a method using condensation nuclei, photoelectrons already proposed by the present inventor are used. Method used (JP-A-62-242838, JP-A-63-19)
7181). Of this,
The method using light scattering and the method using photoelectrons are preferable because they can be easily used.

【0012】本例では、光散乱式であり0.1μm以上
の微粒子の濃度と粒径分布が測定できる。しゃ断用切り
換え弁2,3は、測定時に真空装置1と別容器4がしゃ
断でき、開閉により微粒子発生がないものであればいず
れも使用できる。本例では、真空状態の別容器の大気圧
までの空気導入と、次いで行う別容器内の微粒子の追い
出しを同一系路の空気で行ったが、それぞれ独立させて
行ってもよい。
In this example, a light scattering method can be used to measure the concentration and particle size distribution of fine particles of 0.1 μm or more. Any one of the shut-off switching valves 2 and 3 can be used as long as the vacuum device 1 and the separate container 4 can be shut off at the time of measurement and no particles are generated by opening and closing. In this example, the introduction of air up to the atmospheric pressure in another container in a vacuum state and the subsequent ejection of fine particles in the other container were performed by the air in the same system, but they may be performed independently.

【0013】[0013]

【発明の効果】本発明によれば、以下のような効果を奏
することができる。 (1)真空空間中の微粒子の測定において、真空空間に
別容器を同通させて設置し、適時の測定時に真空空間と
該別容器をしゃ断したことにより、 別容器がしゃ断され、測定用試料として分離できる
(取扱い容易な試料が得られた)。 の別容器を常圧(大気圧)に戻すことにより、通
常の常圧微粒子測定器が適用できる。 の別容器中微粒子測定を行うことにより、元の真
空空間中微粒子濃度及び/又は粒径分布が測定できる。 (2)真空装置に上記微粒子の測定装置を備えたことに
より、 真空装置内の微粒子濃度、粒度分布、粒径が適時把
握できた。 により、真空装置の運転状態が把握できた。これ
により、真空装置の適正な運転・管理ができるようにな
った。
According to the present invention, the following effects can be obtained. (1) In the measurement of fine particles in a vacuum space, a separate container is placed in the vacuum space so as to pass therethrough, and the vacuum space and the separate container are cut off at the timely measurement, so that the separate container is cut off and the measurement sample Can be separated as (a sample that is easy to handle was obtained). By returning the separate container to normal pressure (atmospheric pressure), a normal atmospheric pressure fine particle measuring instrument can be applied. The particle concentration and / or particle size distribution in the original vacuum space can be measured by measuring the particle in the separate container. (2) By equipping the vacuum apparatus with the above-mentioned fine particle measuring apparatus, the fine particle concentration, particle size distribution, and particle diameter in the vacuum apparatus could be grasped at appropriate times. From this, the operating status of the vacuum device could be ascertained. This has made it possible to properly operate and manage the vacuum device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1:真空空間、2,3:切り換え弁、4:別容器、5:
真空ポンプ、6,7:弁、8:清浄用フィルタ、9:空
気ファン、10:微粒子測定器、11:バイパス回路
1: vacuum space, 2, 3: switching valve, 4: separate container, 5:
Vacuum pump, 6, 7: valve, 8: filter for cleaning, 9: air fan, 10: particle measuring instrument, 11: bypass circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空空間中の微粒子を測定するための装
置において、測定すべき真空空間に同通させた別容器
と、該真空空間と別容器とをしゃ断するしゃ断手段と、
別容器へ清浄気体を供給する気体供給手段と、該清浄気
体によって搬送された別容器中の微粒子を測定するため
の測定手段とを有することを特徴とする真空空間中の微
粒子の測定装置。
1. An apparatus for measuring fine particles in a vacuum space, comprising a separate container that is made to pass through the vacuum space to be measured, and a disconnecting means that disconnects the vacuum space and the separate container.
An apparatus for measuring fine particles in a vacuum space, comprising: a gas supply means for supplying a clean gas to another container, and a measuring means for measuring the fine particles in the separate container conveyed by the clean gas.
【請求項2】 真空空間とそれに連通した真空ポンプか
らなる真空装置において、請求項1記載の真空空間中の
微粒子の測定装置を備えたことを特徴とする真空装置。
2. A vacuum device comprising a vacuum space and a vacuum pump communicating with the vacuum space, comprising the measuring device for fine particles in the vacuum space according to claim 1.
JP3265474A 1991-09-18 1991-09-18 Measuring device for particle in vacuum space and vacuum device with it Pending JPH0579968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265474A JPH0579968A (en) 1991-09-18 1991-09-18 Measuring device for particle in vacuum space and vacuum device with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265474A JPH0579968A (en) 1991-09-18 1991-09-18 Measuring device for particle in vacuum space and vacuum device with it

Publications (1)

Publication Number Publication Date
JPH0579968A true JPH0579968A (en) 1993-03-30

Family

ID=17417676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265474A Pending JPH0579968A (en) 1991-09-18 1991-09-18 Measuring device for particle in vacuum space and vacuum device with it

Country Status (1)

Country Link
JP (1) JPH0579968A (en)

Similar Documents

Publication Publication Date Title
US6268013B1 (en) Coating a resist film, with pretesting for particle contamination
JP3755549B2 (en) Contaminant particle measuring apparatus, measuring method, and analyzing method for semiconductor device manufacturing process
TW201816913A (en) Methods and systems for liquid particle prequalification
US4928537A (en) System for airborne particle measurement in a vacuum
JPH1114516A (en) Particle sampling apparatus and its driving method and semiconductor device manufacturing system by application of this
WO2003031946A1 (en) Entire smoke exposure device
JPS63161453A (en) Method and device for recovering and reusing resist composition
JPH0579968A (en) Measuring device for particle in vacuum space and vacuum device with it
JP3259216B2 (en) Method and apparatus for producing contamination evaluation substrate and contamination evaluation method
US5711821A (en) Cleansing process for wafer handling implements
JP2009123723A (en) Vacuum treatment apparatus or method for vacuum treatment
JP3069811B2 (en) Semiconductor manufacturing equipment
JP2542695B2 (en) Plasma etching equipment
JPH10209024A (en) Application device and particle measuring device to be used therefor
CN101304921A (en) Process and equipment for charging material containing ethylene carbonate
US6833028B1 (en) Particle deposition system with enhanced speed and diameter accuracy
JP3257850B2 (en) Low-pressure air particle sampling system, particle measurement system, chemical reaction device, CVD device, and etching device
JPH07198556A (en) Fine particle measuring instrument
JP2000124099A (en) Substrate treatment apparatus
JP2952626B2 (en) Processing equipment
US20240133789A1 (en) Device for the sequential testing of filters and their use
JPH10303090A (en) Control system for vacuum vessel
JP3300213B2 (en) Aerial impurity monitoring device and aerial impurity monitoring method
JPH11335812A (en) Treatment apparatus and detection of contamination
JP7411641B2 (en) Particle measurement method and particle measurement device