JPH0579749B2 - - Google Patents

Info

Publication number
JPH0579749B2
JPH0579749B2 JP33183487A JP33183487A JPH0579749B2 JP H0579749 B2 JPH0579749 B2 JP H0579749B2 JP 33183487 A JP33183487 A JP 33183487A JP 33183487 A JP33183487 A JP 33183487A JP H0579749 B2 JPH0579749 B2 JP H0579749B2
Authority
JP
Japan
Prior art keywords
steel
corrosion resistance
lead oxide
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33183487A
Other languages
Japanese (ja)
Other versions
JPH01172551A (en
Inventor
Sumio Yamashita
Masanobu Nishijima
Hikari Aoyanagi
Shigetoshi Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP33183487A priority Critical patent/JPH01172551A/en
Publication of JPH01172551A publication Critical patent/JPH01172551A/en
Publication of JPH0579749B2 publication Critical patent/JPH0579749B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はエンジンバルブ用鋼、特に酸化鉛耐食
性、高温強度の優れたエンジンバルブ用鋼に関す
るものである。 (従来技術) 従来この種のエンジンバルブ用鋼、特にガソリ
ン機関の排気弁用材料として最も多用されている
ものに、JIS−SUH35(いわゆる21−4N鋼、Fe−
21Cr−9Mn−4Ni−0.5C−0.4N)及びSUH37(い
わゆる21−12N鋼、Fe−21Cr−1.2Mn−12Ni−
0.2C−0.25N)がある。ところが、最近のガソリ
ン機関の排気弁は、800℃以上の高温度で高速に
作動するうえ、特に輸出車においては鉛含有ガソ
リンが使用されることが多く、酸化鉛を含有した
高温腐食性の排気にさらされるなど極めて苛酷な
状態で使用される。しかして、このような条件の
もとでは、前記の21−4N鋼又は21−12N鋼では
酸化鉛に対する耐食性が不十分であり、このため
弁体の弁座に衝突する部分にステライト合金を盛
金する方法が一般的に採用されている。 (発明が解決しようとする問題点) しかし、ステライト合金は酸化鉛耐食性におい
ては優れているが、その主成分であるCoが高価
である。また、硬さがHv500程度と高いので、そ
れ自体は磨耗に対して強いが、逆に相手部材であ
る弁座の損耗が激しく、同弁座の寿命を短くする
という欠点がある。このため、高価なステライト
盛金を必要とせず、安価でしかも酸化鉛耐食性に
優れ、かつ適度な硬さを有する弁用材料の開発が
望まれていた。 本発明者らは、この種の弁用材料について種々
研究を重ねた結果、弁体の弁座に衝突する部分の
摩耗には大きく分類すると機械的磨耗と腐食性磨
耗の2つの形態があるが、特に腐食性磨耗が大き
く関与することが明らかになつた。このことか
ら、21−4N鋼程度の硬さと高温強度があれば、
機械的磨耗に対しては十分であり、腐食食性特に
酸化鉛耐食性を改善することによつて弁体の磨耗
が減少し、結果としてステライト盛金加工を施す
ことなく、有鉛ガソリン使用の内燃機関の弁用材
料として長期間使用できることを見出した。 さらに研究を進めた結果、21−4N鋼のNi含有
量を8%以上に高めること、S及びAlの含有量
を極力低下させること、さらにMo,Nb,V及び
Wの含有量の総和を低く保つことが、酸化鉛耐食
性を高めるために極めて有効であることを見出し
て、本発明を完成するに至つた。 (問題点を解決するための手段) 本発明の第1は、化学組成として重量比にし
て、C:0.3〜0.6%、Si:0.5%以下、Mn:5〜
15%,S:0.005%以下,Ni:8〜15%,Cr:15
〜25%,N:0.20〜0.45%,Al:0.01%以下、残
部がFe及び不純物元素からなる酸化鉛耐食性、
高温強度の優れたエンジンバルブ用鋼であり、発
明の第2は第1発明の化学組成の鋼において不純
物中のMo,Nb,V,Wの含有量の総和を0.1%
以下とすることにより、酸化鉛耐食性をさらに改
善したものである。 つぎに、本発明鋼の化学成分限定理由について
説明する。 Cはその一部が地質に固溶して素地を強化する
ほか、炭化物を形成し、高温強度を高めるために
有効な元素であるが、この効果を得るためには少
なくとも0.3%以上の含有が必要である。しかし、
0.6%を越えて含有させると熱間加工性を著しく
害するほか、靭性をも劣化させるので上限を0.6
%とした。 Siは脱酸を目的として添加されるほか、地質に
固溶して素地を強化させる元素であるが、多量に
含有すると酸化鉛耐食性を低下させるので0.5%
以下とした。 MnはNiとともにオーステナイトを安定化させ
るほか、C,Nの固溶量を増して高温強度を高
め、かつ内燃機関排気中の酸化鉛だけでなく硫化
物その他の不純物に対する耐食性も改善する元素
であり、そのためには少なくとも5%以上の含有
が必要である。しかし、15%を越えて含有させる
と熱間加工性を低下させるので上限を15%とし
た。 Sは本発明者らの研究の結果、酸化鉛耐食性を
著しく害する元素であることが明らかになつたの
で、可能な限り低くおさえるべきであるが、0%
にすることは製造上不可能であるため、害の少な
い限界として0.005%以下とした。 NiはMnと同様にオーステナイトを安定化させ
るとともに酸化鉛耐食性を改善するために最も有
効な元素であり、そのためには少なくとも8%以
上の含有が必要である。しかし、15%を越えて含
有させても効果の向上が小さくまた高価となるの
で、上限を15%とした。 Crは酸化鉛耐食性および耐酸化性の改善に不
可欠な元素であり、そのためには少なくとも15%
の含有が必要である。しかし、25%を越えて含有
させてもその効果の向上が小さく、かつシグマ相
の析出により熱間加工性を劣化させるので上限を
25%とした。 Nはオーステナイトの安定化に有効であるとと
もに高温強度を高める元素であるが、この効果を
得るためには少なくとも0.2%の含有が必要であ
る。しかし、Ni添加量が増加するとともにNの
固溶量が減少するので上限を固溶限界の0.45%と
した。 Alは脱酸を目的として添加される元素である
が、本発明者らの研究によるとSと同様に酸化鉛
耐食性を著しく低下させることが明らかになつ
た。このためAlの含有量を0.005%以下とするこ
とが望ましいが、酸化鉛耐食性改善の効果が顕著
に向上する限界として0.01%以下とした。 Mo,Nb,V,Wは本発明鋼には意図的には添
加しないが、原料から混入する場合がある。しか
し、いずれも酸化鉛耐食性を害する元素であるこ
とが明らかとなつたので、これらの元素の含有量
の総和を0.1%以下とした。 (発明の効果) 本発明鋼は、従来自動車等の内燃機関の弁用材
料として多量に使用されているSUH35及び
SUH37に比べると、酸化鉛耐食性が格段と優れ
ているので、ステライト合金の盛を必要としな
い。高温引張強さも従来鋼に比べて若干高い値を
示す。また、硬さはステライト合金よりも低いの
で、相手部材である弁座の損耗を減少させること
ができる。以上のとおり、本発明鋼は特に有鉛ガ
ソリン使用の内燃機関の弁用材料として極めて優
れた性能をもち、かつステライト盛金を必要とし
ないので製造費も安価である。 (実施例) つぎに、本発明鋼の特徴を従来鋼、比較鋼と比
べ、実施例によつて明らかにする。 第1表は本発明鋼、従来鋼及び比較鋼の化学成
分を示し、第2表は第1表に示す各鋼について、
鍜造後、1070℃で30分間固溶化処理を施したのち
水冷し、ついで750℃で4時間効処理を施したも
のの試験結果を示す。
(Industrial Application Field) The present invention relates to a steel for engine valves, particularly to a steel for engine valves that has excellent lead oxide corrosion resistance and high-temperature strength. (Prior art) JIS-SUH35 (so-called 21-4N steel, Fe-
21Cr−9Mn−4Ni−0.5C−0.4N) and SUH37 (so-called 21−12N steel, Fe−21Cr−1.2Mn−12Ni−
0.2C−0.25N). However, the exhaust valves of modern gasoline engines operate at high speeds at high temperatures of over 800 degrees Celsius, and lead-containing gasoline is often used, especially in export cars, resulting in high-temperature corrosive exhaust containing lead oxide. It is used under extremely harsh conditions such as being exposed to However, under these conditions, the corrosion resistance of the 21-4N steel or 21-12N steel described above against lead oxide is insufficient, so stellite alloy is applied to the part of the valve body that collides with the valve seat. The method of making money is generally adopted. (Problems to be Solved by the Invention) However, although the stellite alloy has excellent lead oxide corrosion resistance, its main component, Co, is expensive. Furthermore, since the hardness is as high as Hv500, it is resistant to abrasion, but conversely, the valve seat, which is a mating member, is subject to severe wear and tear, which shortens the life of the valve seat. Therefore, there has been a desire to develop a valve material that does not require expensive stellite overlays, is inexpensive, has excellent lead oxide corrosion resistance, and has appropriate hardness. As a result of various studies on this type of valve material, the present inventors found that there are two main types of wear on the part of the valve body that collides with the valve seat: mechanical wear and corrosive wear. It has become clear that corrosive wear, in particular, plays a major role. From this, if it has the hardness and high temperature strength of 21-4N steel,
It is sufficient against mechanical wear, and wear of the valve body is reduced by improving corrosion resistance, especially lead oxide corrosion resistance, and as a result, it can be used in internal combustion engines using leaded gasoline without the need for stellite overlay processing. It was discovered that this material can be used for a long period of time as a material for valves. As a result of further research, it was found that the Ni content of 21-4N steel was increased to 8% or more, the S and Al contents were reduced as much as possible, and the total content of Mo, Nb, V, and W was lowered. The present invention was completed based on the discovery that maintaining lead oxide corrosion resistance is extremely effective for improving lead oxide corrosion resistance. (Means for Solving the Problems) The first aspect of the present invention is that the chemical composition, in terms of weight ratio, is C: 0.3 to 0.6%, Si: 0.5% or less, Mn: 5 to
15%, S: 0.005% or less, Ni: 8-15%, Cr: 15
~25%, N: 0.20~0.45%, Al: 0.01% or less, the balance consisting of Fe and impurity elements, lead oxide corrosion resistance,
It is a steel for engine valves with excellent high-temperature strength, and the second invention is the steel having the chemical composition of the first invention, with a total content of Mo, Nb, V, and W in impurities of 0.1%.
Lead oxide corrosion resistance was further improved by the following. Next, the reason for limiting the chemical composition of the steel of the present invention will be explained. C is an effective element for not only strengthening the base material by forming a solid solution in the geology but also forming carbides and increasing high-temperature strength, but in order to obtain this effect, the content must be at least 0.3%. is necessary. but,
If the content exceeds 0.6%, hot workability will be significantly impaired and toughness will also be deteriorated, so the upper limit should be set at 0.6%.
%. In addition to being added for the purpose of deoxidizing, Si is an element that dissolves in the geology and strengthens the base, but if it is contained in large amounts, lead oxide corrosion resistance will decrease, so 0.5%
The following was made. Mn is an element that not only stabilizes austenite together with Ni, but also increases the amount of solid solution of C and N, increasing high-temperature strength, and improving corrosion resistance against not only lead oxide but also sulfides and other impurities in internal combustion engine exhaust. For this purpose, the content must be at least 5% or more. However, if the content exceeds 15%, hot workability will be reduced, so the upper limit was set at 15%. As a result of the inventors' research, it has become clear that S is an element that significantly impairs lead oxide corrosion resistance, so it should be kept as low as possible, but 0%
Since it is impossible to reduce the amount to 0.005% or less as a less harmful limit. Like Mn, Ni is the most effective element for stabilizing austenite and improving lead oxide corrosion resistance, and for this purpose it must be contained at least 8% or more. However, even if the content exceeds 15%, the effect will not be improved much and it will be expensive, so the upper limit was set at 15%. Cr is an essential element for improving lead oxide corrosion resistance and oxidation resistance, for which at least 15%
It is necessary to contain However, even if the content exceeds 25%, the improvement in the effect is small, and the precipitation of sigma phase deteriorates hot workability, so the upper limit should be set.
It was set at 25%. N is an element that is effective in stabilizing austenite and increases high-temperature strength, but in order to obtain this effect, the content must be at least 0.2%. However, as the amount of Ni added increases, the amount of N in solid solution decreases, so the upper limit was set at 0.45%, which is the solid solution limit. Al is an element added for the purpose of deoxidation, but research by the present inventors has revealed that, like S, it significantly lowers lead oxide corrosion resistance. For this reason, it is desirable that the Al content be 0.005% or less, but it is set to 0.01% or less as the limit at which the effect of improving lead oxide corrosion resistance is significantly improved. Although Mo, Nb, V, and W are not intentionally added to the steel of the present invention, they may be mixed in from the raw materials. However, it has become clear that all of these elements impair lead oxide corrosion resistance, so the total content of these elements was set to 0.1% or less. (Effects of the invention) The steel of the present invention can be applied to SUH35 and
Compared to SUH37, it has much better lead oxide corrosion resistance, so it does not require a stellite alloy. The high temperature tensile strength is also slightly higher than that of conventional steel. Furthermore, since the hardness is lower than that of stellite alloy, wear and tear on the valve seat, which is a mating member, can be reduced. As described above, the steel of the present invention has extremely excellent performance as a material for valves in internal combustion engines that use leaded gasoline, and is inexpensive to manufacture since it does not require stellite overlay. (Example) Next, the characteristics of the steel of the present invention will be clarified by comparing it with conventional steel and comparative steel through examples. Table 1 shows the chemical composition of the invention steel, conventional steel, and comparative steel, and Table 2 shows the chemical composition of each steel shown in Table 1.
After forging, the sample was solution treated at 1070°C for 30 minutes, cooled with water, and then treated at 750°C for 4 hours. The test results are shown below.

【表】【table】

【表】【table】

【表】 第1表において、A,Bは従来鋼で、Aは21−
4N鋼、Bは21−12N鋼であり、C〜Fは比較鋼、
G〜Jは第1発明鋼、K〜Nは第2発明鋼であ
る。 第2表において酸化鉛耐食性については、920
℃に加熱し、溶融した酸化鉛中に試料を1時間浸
漬した場合の単位表面積当たりの腐食減量によつ
て比較し、高温引張強さについては、前記熱処理
を施した平行部直径5mm、同長さ28mmの試片を用
いて900℃で測定した。硬さは前記熱処理を施し
た試料を用いて常温で測定した。 第2表から明らかなように、酸化鉛による腐食
減量は、従来鋼のA鋼が21.4g/dm2h、B鋼が
32.2g/dm2h、また比較鋼(C〜F鋼)が16.0
〜20.8g/dm2hであるのに対して、第1発明鋼
(G〜J鋼)が13.3〜14.1g/dm2h、第2発明
鋼(K〜N鋼)が11.2〜12.9g/dm2hであつ
て、第1発明鋼、第2発明鋼の順に従来鋼と比べ
て酸化鉛耐食性の顕著な改善が示されている。こ
のような結果が得られた理由としては、従来鋼の
A鋼では本発明鋼に比べてNi含有量が低く、か
つS含有量が高いためであり、B鋼ではS含有量
が高くMn含有量が低いことによる。比較鋼のC
〜F鋼では、いずれもS含有量が高く、Ni含有
量が低いか、又はAl含有量が高いためである。
また、第2発明鋼が第1発明鋼よりも高い耐食性
を示しているのは、主としてMo,Nb,V,Wの
含有量の総和が0.1%より低いためである。 高温における引張強さは、従来鋼のA鋼が19.4
Kgf/mm2、B鋼が13.8Kgf/mm2、また比較鋼(C
〜F鋼)が19.0〜20.1Kgf/mm2であるのに対し
て、第1発明鋼(G〜J鋼)が19.6〜20.1Kgf/
mm2、第2発明鋼(K〜N鋼)が19.9〜20.4Kgf/
mm2と従来鋼と比べて若干ではあるが高い値となつ
ている。従来鋼のB鋼の高温引張強さが低いの
は、主としてCおよびMnの含有量が低いためで
ある。 硬さについては、従来鋼と変わりなく、ステラ
イトよりはいずれもかなり低い値となつている。
なお、B鋼は引張強さと同じ理由で硬さも極めて
低い。
[Table] In Table 1, A and B are conventional steels, and A is 21-
4N steel, B is 21-12N steel, C to F are comparative steels,
G to J are the first invention steels, and K to N are the second invention steels. In Table 2, for lead oxide corrosion resistance, 920
The corrosion loss per unit surface area was compared when the sample was heated to ℃ and immersed in molten lead oxide for 1 hour. Measurements were made at 900°C using a 28mm sample. Hardness was measured at room temperature using the heat-treated sample. As is clear from Table 2, the corrosion loss due to lead oxide is 21.4 g/dm 2 h for conventional steel A and 21.4 g/dm 2 h for steel B.
32.2g/dm 2 h, and comparative steel (C to F steel) is 16.0
~20.8 g/dm 2 h, whereas the first invention steel (G to J steel) is 13.3 to 14.1 g/dm 2 h, and the second invention steel (K to N steel) is 11.2 to 12.9 g/dm 2 h. dm 2 h, the first invention steel and the second invention steel show a remarkable improvement in lead oxide corrosion resistance compared to the conventional steel. The reason why such results were obtained is that steel A, which is a conventional steel, has a lower Ni content and higher S content than the steel of the present invention, whereas steel B has a higher S content and a higher Mn content. Due to low quantity. Comparative steel C
This is because the ~F steels all have a high S content and a low Ni content, or a high Al content.
Furthermore, the reason why the second invention steel exhibits higher corrosion resistance than the first invention steel is mainly because the sum of the contents of Mo, Nb, V, and W is lower than 0.1%. The tensile strength at high temperatures is 19.4 for conventional steel A steel.
Kgf/mm 2 , B steel is 13.8Kgf/mm 2 , comparative steel (C
~F steel) is 19.0~20.1Kgf/ mm2 , while the first invention steel (G~J steel) is 19.6~20.1Kgf/mm2.
mm 2 , the second invention steel (K to N steel) is 19.9 to 20.4 Kgf/
mm 2 , which is a slightly higher value than conventional steel. The low high-temperature tensile strength of conventional steel B is mainly due to the low C and Mn contents. In terms of hardness, it is the same as conventional steel, and both values are considerably lower than Stellite.
Note that steel B has extremely low hardness for the same reason as its tensile strength.

Claims (1)

【特許請求の範囲】 1 重量比にして、C:0.3〜0.6%,Si:0.5%以
下,Mn:5〜15%,S:0.005%以下,Ni:8
〜15%,Cr:15〜25%,N:0.20〜0.45%,Al:
0.01%以下、残部がFe及び不純物元素からなるこ
とを特徴とする酸化鉛耐食性、高温強度の優れた
エンジンバルブ用鋼。 2 重量比にして、C:0.3〜0.6%,Si:0.5%以
下,Mn:5〜15%,S:0.005%以下,Ni:8
〜15%,Cr:15〜25%,N:0.20〜0.45%,Al:
0.01%以下、残部がFe及び不純物元素からなり、
かつ不純物中のMo,Nb,V,Wの含有量の総和
が0.1%以下であることを特徴とする酸化鉛耐食
性、高温強度の優れたエンジンバルブ用鋼。
[Claims] 1. In terms of weight ratio, C: 0.3 to 0.6%, Si: 0.5% or less, Mn: 5 to 15%, S: 0.005% or less, Ni: 8
~15%, Cr: 15~25%, N: 0.20~0.45%, Al:
A steel for engine valves with excellent corrosion resistance and high-temperature strength, characterized by a lead oxide content of 0.01% or less, the remainder consisting of Fe and impurity elements. 2 Weight ratio: C: 0.3 to 0.6%, Si: 0.5% or less, Mn: 5 to 15%, S: 0.005% or less, Ni: 8
~15%, Cr: 15~25%, N: 0.20~0.45%, Al:
0.01% or less, the remainder consisting of Fe and impurity elements,
A steel for engine valves having excellent lead oxide corrosion resistance and high-temperature strength, characterized in that the total content of Mo, Nb, V, and W in impurities is 0.1% or less.
JP33183487A 1987-12-25 1987-12-25 Engine valve steel excellent in resistance to lead oxide corrosion and strength at high temperature Granted JPH01172551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33183487A JPH01172551A (en) 1987-12-25 1987-12-25 Engine valve steel excellent in resistance to lead oxide corrosion and strength at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33183487A JPH01172551A (en) 1987-12-25 1987-12-25 Engine valve steel excellent in resistance to lead oxide corrosion and strength at high temperature

Publications (2)

Publication Number Publication Date
JPH01172551A JPH01172551A (en) 1989-07-07
JPH0579749B2 true JPH0579749B2 (en) 1993-11-04

Family

ID=18248166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33183487A Granted JPH01172551A (en) 1987-12-25 1987-12-25 Engine valve steel excellent in resistance to lead oxide corrosion and strength at high temperature

Country Status (1)

Country Link
JP (1) JPH01172551A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650703B2 (en) 2011-12-28 2017-05-16 Posco Wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones thereof and method for producing same

Also Published As

Publication number Publication date
JPH01172551A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
US5019332A (en) Heat, corrosion, and wear resistant steel alloy
US4631169A (en) Alloys for exhaust valves
JP2004277860A (en) Heat-resistant alloy for high-strength exhaust valve excellent in overaging resistance
EP0124348B1 (en) Heat resisting steels
US4871512A (en) Alloys for exhaust valve
US4767597A (en) Heat-resistant alloy
EP0411569B1 (en) Heat resistant steel for use as material of engine valve
JPS6263653A (en) High strength case hardening steel
JPH0579749B2 (en)
EP0480461A1 (en) Aluminum-containing ferritic stainless steel having excellent high temperature oxidation resistance and toughness
JPS6346141B2 (en)
JPH03177543A (en) Valve steel
JPS59107064A (en) Corrosion-resistant steel material
JPH0230373B2 (en)
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JPS6112843A (en) Co base alloy for engine valve and it valve sheet
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JP3492848B2 (en) Exhaust valve steel with excellent high temperature fatigue strength, normal and high temperature corrosion resistance and oxidation resistance
JPS6046343A (en) Alloy for exhaust valve
JPH03122257A (en) Piston ring material
JPH03285050A (en) Exhaust valve steel excellent in high temperature characteristic
JP3068868B2 (en) Heat resistant steel for engine valves
JPS59211557A (en) Heat-resistant steel
JPH05302151A (en) Duplex stainless steel having high corrosion resistance, high strength and high toughness