JPH0578211U - Mandibular movement simulation measuring machine - Google Patents

Mandibular movement simulation measuring machine

Info

Publication number
JPH0578211U
JPH0578211U JP11105691U JP11105691U JPH0578211U JP H0578211 U JPH0578211 U JP H0578211U JP 11105691 U JP11105691 U JP 11105691U JP 11105691 U JP11105691 U JP 11105691U JP H0578211 U JPH0578211 U JP H0578211U
Authority
JP
Japan
Prior art keywords
mandibular
subject
sensor
right lower
hall element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11105691U
Other languages
Japanese (ja)
Other versions
JP2510019Y2 (en
Inventor
兵衛 下石
Original Assignee
兵衛 下石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兵衛 下石 filed Critical 兵衛 下石
Priority to JP1991111056U priority Critical patent/JP2510019Y2/en
Publication of JPH0578211U publication Critical patent/JPH0578211U/en
Application granted granted Critical
Publication of JP2510019Y2 publication Critical patent/JP2510019Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

(57)【要約】 【目的】 この考案は、被検者に各種条件で咀嚼咬合さ
せ、下顎5点の位置関係、及び咀嚼咬合運動を、下顎運
動シュミレーション測定用センサーで測定し、下顎運動
シュミレーション測定用コンピューターで解析演算させ
必要なデーターを得る、なお顎5点の運動軌跡を下顎運
動シュミレーション測定ディスプレーに表示する医療用
測定機です。 【構成】 頭蓋固定装置1、に磁電変換ホール素子
デバイス12、で形成されたセンサーを所定の位置1
0、に設置する。 永久磁石30、31、32、33、34、を被検
者の所定の位置に、N極をセンサーに向けて固定する。 咀嚼咬時の永久磁石30、31、32、33、3
4、の位置関係、及び偏位を解析演算させ必要なデータ
ーを得るコンヒューターを設ける。 必要なデータより、下顎運動をデイスプレー5
1、にシュミレート出来るコンプューターをもうける。 上記の装置により構成された、下顎運動シュミレーショ
ン測定機です。
(57) [Abstract] [Purpose] This invention makes a subject masticate and occlude under various conditions, and measures the positional relationship between the five lower jaws and the masticatory occlusal movements with a sensor for measuring the lower jaw movements. It is a medical measuring instrument that displays the movement loci of five jaws on the mandibular movement simulation measurement display, in which the necessary data is obtained by analyzing and calculating with a measuring computer. [Structure] A sensor formed of a magnetoelectric conversion Hall element device 12 is attached to a skull fixing device 1 at a predetermined position 1.
Set to 0. The permanent magnets 30, 31, 32, 33, 34 are fixed at predetermined positions on the subject with the N pole facing the sensor. Permanent magnets 30, 31, 32, 33, 3 when chewing
A computer is provided to obtain necessary data by analyzing and calculating the positional relationship of 4 and deviation. From the necessary data, display the mandibular movement 5
Have a computer that can simulate 1. It is a mandibular movement simulation measuring device composed of the above devices.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の分野】[Industrial field]

この考案は、被検者に各種条件で咀嚼咬合させ下顎5点の位置関係及び咀嚼咬 合運動を下顎運動シュミレーション測定センサーで測定し、下顎運動シュミレー ション測定用コンピューターで解析演算させ必要な数値データー、及び下顎5点 の運動軌跡を下顎運動シュミレーション測定ディスプレーに表示する医療用測定 機、下顎運動シュミレーション測定機です。 This invention is to make the subject masticate and bite under various conditions, measure the positional relationship of the 5 points of the lower jaw and the masticatory occlusal movement with the lower jaw movement simulation measurement sensor, and analyze and calculate the lower jaw movement simulation computer to obtain the necessary numerical data. This is a medical measurement device that displays the movement loci of the lower jaw and 5 points of the lower jaw on the lower jaw movement simulation measurement display.

【0002】[0002]

【従来の技術】[Prior Art]

従来、下顎の運動を左右下顎中切歯間の1点で3次元的に測定しシュミレーシ ョンする歯科用測定機が使用されています。 Conventionally, a dental measuring machine has been used that three-dimensionally measures the movement of the lower jaw at one point between the left and right lower central incisors and simulates it.

【0003】[0003]

【考案が解決しようとする課題】 従来、使用されている1点3次元下顎運動歯科用測定機は、測定用センサ ー部の重量に比較して頭蓋固定装置の固定力が弱く、また咀嚼運動測定時に 咬合筋群の影響を受け不安定であり測定用センサーを目的の位置に固定する のが困難です。 従来、使用されている1点3次元下顎運動歯科用測定機は、歯科医学的に 最も必要な下顎の咀嚼咬合運動測定において、左右下顎関節頭の位置関係及 び精密な下顎運動軌跡測定が出来ない。 上記の歯科医学的に重要な測定が不十分なため、口腔内補綴物、骨内 人工歯根補綴物等の適合性診断等の歯科臨床診断が十分に行えない。 不適合口腔内補綴物装着による上下顎歯槽骨の垂直吸収型歯周病、及び下 顎関節疼痛等、咀嚼咬合時の過重負担が原因で発生する障害の予見診断が充 分出来ない。 従来、使用されている1点3次元下顎運動歯科用測定機は、検知用の永久 磁石の検知面積が広く、またセンサー検知能力、測定値オーダーが大きく微 細な変位に対しコンピューター解析負荷が過重になり微細測定値に誤差がで やすい。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the conventional one-point three-dimensional mandibular movement dental measuring instrument used, the fixing force of the skull fixing device is weak compared with the weight of the measuring sensor part, and the masticatory movement is performed. During measurement, it is unstable due to the influence of the occlusal muscle group and it is difficult to fix the measurement sensor at the target position. The conventional one-point three-dimensional mandibular movement dental measuring instrument used in the past is capable of measuring the positional relationship of the left and right mandibular condyle joints and precise mandibular movement trajectory in the measurement of the masticatory occlusal movement of the mandible, which is the most necessary for dentistry. Absent. Since the above-mentioned dentally important measurement is insufficient, dental clinical diagnosis such as compatibility diagnosis of an intraoral prosthesis, an intraosseous artificial root prosthesis and the like cannot be sufficiently performed. Predictive diagnosis of disorders caused by overloading during masticatory occlusion, such as vertical resorption periodontal disease of the upper and lower alveolar bones due to incompatible oral prosthesis attachment, and mandibular joint pain, etc. is not possible. Conventionally, the one-point three-dimensional mandibular movement dental measuring instrument that has been used has a wide detection area of a permanent magnet for detection, a large sensor detection capability, a large order of measured values, and an excessive computer analysis load for minute displacements. Therefore, the error is likely to occur in the fine measurement value.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案の図1、図2、図3、図4、図5、図6、図7、図8、をもとに課題を 解決する手段内容を説明します。 図1図2に示すように、被検者の咀嚼咬合時、咀嚼筋群に影響されない前 頭骨下端正中部2、左右乳様突起後方上部3、4、外後頭***部5、および 頭頂部に一定圧力で固定できる支持装置を有する丈夫な頭蓋固定装置1に磁 電変換ホール素子デバイス12および永久磁石15で形成されたセンサーを 所定の位置に設置した、下顎運動シュミレーション測定センサーを被検者に 装着する。 図6に示すように、被検者に、非磁性金属でN極面を解放しその他面を被 覆した超小型の最大磁束永久磁石を下顎中切歯間部30、右側下顎第2大臼 歯頬側部31、左側第2大臼歯頬側部32、及び被検者を開口させ下顎開節 頭が触診できる口径を保持器35で保持し右側下顎関節頭近似部33、左側 下顎関節頭近似部34、に着固定させる。 図3に示すように、センサーは、磁電変換ホール素子デバイス12の磁電 変換ホール素子駆動電流入力端子18及び磁電変換ホール素子電圧出力端子 19を配線基盤20にハンダ付けします、電気絶縁物14を介してS極面を 残して他の面を非磁性金属16で被覆した永久磁石15を設置し樹脂ケース 17に収納して形成する。 センサーは、下顎運動シュミレーション測定センサーに設けたセンサーケ ース10に収納し配線基盤20に設けた磁電変換ホール素子駆動電流入力端 子18及び磁電変換ホール素子電圧出力端子19に各対応のソケットを接続 し、頭蓋固定装置1のロジックデバイスブロック収納ケース7、8、9、に 収納してあるロジックデバイスブロックに接続する。 図4図5に示すように、センサーに用いる磁電変換ホール素子デバイス1 2は、インジューム、アセナイド、による多結晶半導体を大きく成長させた 長方形の薄い磁電変換ホール素子プレート22を用いる、長辺に縦0.25 mm横0.25mmの磁電変換ホール素子電圧出力極板23を0.25mm 間隔で設ける、短辺に縦0.25mm横0.25mmの磁電変換ホール素子 駆動電流入力極板24を0.25mm間隔で設ける、総ての極板に金の薄い 層29を電解液の析出法によって形成する、また総ての極板の金の薄い層2 9の上にインジュームの薄い層28を電解液の析出法によって形成する。 上記によって形成された磁電変換ホール素子プレートをアルミナスセラミッ ク板25に接着し、磁電変換ホール素子駆動電流入力端子及び磁電変換ホー ル素子電圧出力端子を設けたプラスチックケースに収納する。 形成された総ての極板と、対応する端子を金のリード線26、27で接続し プラスチックケースを密封する。 上記の作業操作により磁電変換ホール素子デバイス12を形成する。 図1図2に示すように、頭蓋固定装置1の後方正面及び後方左右側面にロ ジックデバイス基盤収納ケース7、8、9、を設ける、ここに収納されるロ ジックデバイス基盤は、同期信号で制御されたロジックデバイスブロック3 6により形成され、センサー駆動電流を各センサーの磁電変換ホール素子駆 動電流入力端子18に入力し、また各磁電変換ホール素子電力出力端子19 より出力された電圧データーをピークディデクター37、及びA/D変換デ バイス38、に出力する。 図8に示すよううに、ロジックデバイスブロック36より出力された電圧 データーを下顎運動シュミレーション測定用コンピューターにリード線11 で取り込み被検者の下顎基本形態および咀嚼咬合運動状態をディスプレー上 にシュミレートする、また歯科医学的に必要な各種測定値を演算解析してデ ィスプレー51に表示する、データーを整理するために必要な項目をキーボ ド42で入力する。 シュミレートされたシュミレーショングラフ、各種測定値、必要な項目をコ ンピューターのハードディスク41およびフロッピーディスク46に記憶さ せ必要に応じてプリンター50でプリントアウトさせる。 図6図7に示す被検者の下顎基本状態の測定項目。 イ)左右下顎中切歯間と右側下顎第2大臼歯の距離 ;A ロ)左右下顎中切歯間と左側下顎第2大臼歯の距離 ;B ハ)右側下顎第2大臼歯と左側下顎第2大臼歯の距離;C ニ)左右下顎中切歯間と右側下顎関節頭の距離 ;D ホ)左右下顎中切歯間と左側下顎関節頭の距離 ;E ヘ)右側下顎第2大臼歯と右側下顎関節頭の距離 ;F ト)左側下顎第2大臼歯と左側下顎関節頭の距離 ;G チ)左右下顎中切歯間と右側下顎第2大臼歯を結んだ線と、右側下顎第2大 臼歯と右側下顎関節頭を結んだ線で成す角度 ;H リ)左右下顎中切歯間と左側下顎第2大臼歯を結んだ線と、左側下顎第2大 臼歯と左側下顎関節頭を結んだ線で成す角度 ;I ヌ)右側下顎関節頭と左側下顎関節頭の距離 ;J 上記ABCDEFGHIJデーターを被検者の下顎基本形態としてコンピュー ターのハードディスク41、フロッピーディスク46に記録して、各種条件で咀 嚼咬合させた下顎運動軌跡データーを比較解析演算させる。 ▲10▼ 下顎運動データーをコンピューターへ取り込む方法は、コンピュータ ー制御同期信号によりセンサーである磁電変換ホール素子プレート22をス キャニングし最高電圧部位をリサーチして座標のx点y点を決定する、また センサーである磁電変換ホール素子プレート22の最高電圧部位電圧値で座 標のz点を決定する。 以上の諸条件で従来使用されている1点3次元歯科用下顎運動測定機の問題 点を解決した下顎運動シュミレーション測定機です。 The contents of the means for solving the problem will be explained based on FIGS. 1, 2, 3, 4, 5, 6, 7 and 8 of the present invention. As shown in Fig. 1 and Fig. 2, during the masticatory occlusion of the subject, the midline part 2 of the lower frontal bone, the left and right upper mastoids 3, 4, the external occipital ridge 5, and the parietal region were not affected by the masticatory muscles. A mandibular movement simulation measurement sensor, in which a sensor formed of a magnetoelectric conversion Hall element device 12 and a permanent magnet 15 is installed at a predetermined position in a sturdy skull fixation device 1 having a support device that can be fixed at a constant pressure, is provided to a subject. Mounting. As shown in FIG. 6, the subject was provided with a microminiature maximum magnetic flux permanent magnet whose N-pole surface was opened with a non-magnetic metal and the other surface was covered with the mandibular middle incisor portion 30, the right mandibular second molar. The buccal side part 31, the left second molar buccal side part 32, and the caliber that allows the subject to be opened to palpate the mandibular open head is held by a holder 35, and the right mandibular condyle head approximation part 33 and the left mandibular joint head It is fixedly attached to the approximate part 34. As shown in Fig. 3, the sensor solders the magnetoelectric conversion Hall element drive current input terminal 18 and the magnetoelectric conversion Hall element voltage output terminal 19 of the magnetoelectric conversion Hall element device 12 to the wiring board 20. A permanent magnet 15 whose other surface is covered with a non-magnetic metal 16 is installed via the S pole surface and is housed in a resin case 17 to be formed. The sensor is housed in the sensor case 10 provided in the mandibular movement simulation sensor, and the corresponding socket is connected to the magnetoelectric conversion Hall element drive current input terminal 18 and the magnetoelectric conversion Hall element voltage output terminal 19 provided on the wiring board 20. Then, it is connected to the logic device block housed in the logic device block housing case 7, 8, 9 of the skull fixing device 1. As shown in FIGS. 4 and 5, the magnetoelectric conversion Hall element device 12 used for the sensor uses a rectangular thin magnetoelectric conversion Hall element plate 22 in which a polycrystalline semiconductor made of indium, acenide, etc. is greatly grown. Magnetoelectric conversion Hall element voltage output plate 23 of 0.25 mm in length and 0.25 mm in width is provided at intervals of 0.25 mm, and a magnetic current conversion Hall element of 0.25 mm in length and 0.25 mm in width is provided on the short side. A thin layer 29 of gold is formed on all the plates by 0.25 mm intervals, by an electrolytic solution deposition method, and a thin layer of indium 28 is formed on the thin layer 29 of gold of all the plates. Are formed by an electrolytic solution deposition method. The magnetoelectric conversion Hall element plate formed as described above is adhered to the alumina ceramic plate 25 and housed in a plastic case provided with a magnetoelectric conversion Hall element drive current input terminal and a magnetoelectric conversion hall element voltage output terminal. All the formed electrode plates and corresponding terminals are connected with gold lead wires 26 and 27, and the plastic case is sealed. The magnetoelectric conversion Hall element device 12 is formed by the above operation. As shown in FIG. 1 and FIG. 2, the logic device board storage cases 7, 8 and 9 are provided on the rear front surface and the rear left and right side surfaces of the skull fixing device 1. The logic device board stored here is a synchronization signal. It is formed by the controlled logic device block 36, and inputs the sensor drive current to the magnetoelectric conversion Hall element drive current input terminal 18 of each sensor, and also outputs the voltage data output from each magnetoelectric conversion Hall element power output terminal 19. The signal is output to the peak detector 37 and the A / D conversion device 38. As shown in FIG. 8, the voltage data output from the logic device block 36 is input to the computer for measuring the mandibular movement by the lead wire 11 to simulate the basic form of the lower jaw of the subject and the masticatory occlusion state on the display, and The keyboard 42 is used to input the necessary items for organizing the data, which are displayed on the display 51 after the various measured values required for dentistry are calculated and analyzed. The simulated simulation graph, various measured values, and necessary items are stored in the hard disk 41 and the floppy disk 46 of the computer and printed out by the printer 50 as needed. 6 Measurement items of the lower jaw basic state of the subject shown in FIG. B) Distance between the left and right lower central incisors and the right lower second molar: A b) Distance between the left and right lower central incisors and the left lower second molar; B c) Right lower second molar and left lower molar 2 Distance between molars; C d) Distance between left and right lower central incisors and right mandibular condyle; D E) Distance between left and right lower central incisors and left mandibular condyle; E f) Right lower mandibular second molar Right mandibular condyle head distance; F) Distance between left lower mandibular second molar and left mandibular joint head; G chi) Line connecting right and left mandibular central incisors and right lower mandibular second molar, and right mandibular second molar Angle formed by the line connecting the molars and the right lower temporomandibular joint; H)) Connecting the line between the left and right lower central incisors and the left second mandibular second molar, and the left lower mandibular second molar and the left mandibular condyle Angle formed by sickle line; I) Distance between right mandibular condyle head and left mandibular joint head; J Above ABCDEFGHIJ data under the subject Hard disk 41 of the computer as a basic form, and recorded on the floppy disk 46, compared to the analysis calculates the mandibular movement trajectory data which engaged Tsui 嚼咬 under various conditions. (10) The method of importing the mandibular movement data into a computer is to scan the magnetoelectric conversion Hall element plate 22 which is a sensor by a computer control synchronization signal, research the highest voltage site, and determine the x point and y point of the coordinates. The z point of the target is determined by the voltage value of the highest voltage portion of the magnetoelectric conversion Hall element plate 22 which is the sensor. This is a mandibular movement simulation measuring device that solves the problems of the one-point three-dimensional dental mandibular movement measuring device that is conventionally used under the above conditions.

【0005】[0005]

【本考案の効果】 下顎運動シュミレーション測定センサーがコンパクトに、また機能的に軽量 化できます。 下顎運勤シュミレーション測定センサーと一体の頭蓋固定装置1に一定圧力 で固定できる支持装置を咀嚼筋群に影響されない前頭骨下端正中部2、左右 乳様突起後方上部3、4、外後頭***部5、および頭頂部6に設けているた め咀嚼咬合時に振動動揺がなく測定誤差が非常にすくない。 被検者口腔内所定の位置左右下顎中切歯間30、左右第2大臼歯頬側面31 、32、および被検者を開口させ下顎関節頭が触診できる口径を保持器35 で保持した左右下顎関節頭近似部33、34に非磁性金属でN極面を解放し 他面を被覆した超小型の最大磁束永久磁石を接着固定させるため咀嚼咬合時 に異和感を感じない。 超小型の最大磁束永久磁石に対応する磁電変換ホール素子デバイス12の磁 電変換ホール素子プレート22でスキャニングして最高電位をリサーチする 測定オーダー0.5mm間隔で測定するため下顎運動が正確に測定できます 。 本考案の下顎運動シュミレーション測定機による測定データーは、現在およ び将来の歯科医学に最も重要なものと確信します、下記に測定データー分析 法を記します。 イ)被検者の下顎基本形態が測定データー、A、B、C、D、E、F、G、 H、I、J、としてシュミレートされ、また数値として表示されます、測 定データーは術者に正確に把握され被検者に対しその後の診療に重要な資 料となります。 ロ)被検者が各種条件で咀嚼咬合したときの左右下顎運動の測定データーが シュミレートされ、下顎関節頭、左右下顎第2大臼歯部、左右下顎中切歯 間部、の動きが数値で表示されます、下顎基本形態の測定データーと下顎 運動データーが比較でき臨床治療に重要な資料となります。 ハ)臨床治療に重要な資料の利用法を下記に示します。 a)被検者の経年的下顎形態の変化による下顎運動の変化。 b)被検者の各種条件で咀嚼咬合したときの下顎運動および下顎体の変位 。 c)下顎関節の異常運動。 d)歯牙の排列異常、負担過重による下顎運動異常。 e)不適合口腔内補綴物による習慣性下顎運動異常。 f)神経系および咀嚼咬合筋群の異常による下顎運動異常。 ニ)下顎運動シュミレーション測定機の測定データーにより、下顎関節症、 歯周病、診断がつけやすく治療方針がたてやすい。 口腔内補綴物の適正設計装着の治療方針がたてやすい。 咀嚼咬合異常者、発音異常者にたいし適正の指導ができる。 上記のように、現在まで歯科医療界で測定できなかった咀嚼咬合時における下顎 運動シュミレーション、および測定数値化が本考案んより可能になります、また 現在まで未知数であった下顎の微細な動きが発見できると確信し、本考案の下顎 運動シュミレーション測定機により将来の歯科医学全般に多大な貢献をすると確 信します。[Effect of the present invention] The mandibular movement simulation measurement sensor can be made compact and functionally lightweight. A support device that can be fixed to the cranial fixation device 1 integrated with a mandibular mobilization simulation measurement sensor at a constant pressure is not affected by the masticatory muscle groups, the median part of the lower frontal bone 2, the left and right posterior upper mastoids 3, 4, and the occipital ridge 5 , And because it is provided on the crown 6, there is no vibration and shaking during chewing and biting, and measurement error is very small. Predetermined positions in the oral cavity of the subject Left and right lower mandibular incisors 30, buccal surfaces 31 and 32 of the left and right second molars, and left and right lower jaws with a retainer 35 that holds the caliber so that the mandibular joint head can be palpated Since the N-pole surface is released from the non-magnetic metal to the joint head approximate parts 33 and 34 and the microminiature maximum magnetic flux permanent magnet that covers the other surface is adhered and fixed, no discomfort is felt during chewing. The maximum electric potential is researched by scanning with the magnetoelectric conversion Hall element plate 22 of the magnetoelectric conversion Hall element device 12 corresponding to the ultra-miniature maximum magnetic flux permanent magnet. I will. We believe that the data measured by the mandibular movement simulation measuring device of the present invention is the most important for present and future dentistry, and the method for measuring data analysis is described below. B) The lower jaw basic morphology of the subject is simulated as measurement data, A, B, C, D, E, F, G, H, I, J, and displayed as numerical values. The measurement data is the operator. It is an important material for the medical examination of the subject after being accurately grasped. B) The measured data of the left and right mandibular movements when the subject bites under mastication under various conditions are simulated, and the movements of the mandibular joint head, the left and right lower second molars, and the left and right lower central incisors are displayed numerically. The measurement data of the mandibular basic morphology and the mandibular movement data can be compared, and will be an important data for clinical treatment. C) The usage of important materials for clinical treatment is shown below. a) Changes in mandibular movement due to changes in the mandibular morphology of the subject over time. b) Mandibular movement and displacement of the mandibular body during masticatory occlusion under various conditions of the subject. c) Abnormal movement of the mandibular joint. d) Abnormal tooth arrangement and mandibular movement abnormality due to excessive load. e) Habitual mandibular movement abnormality due to incompatible oral prosthesis. f) Mandibular movement abnormality due to abnormality of nervous system and masticatory bite muscle group. D) Mandibular joint movements, periodontal disease, and diagnosis can be made easily by using the measurement data of the mandibular movement simulation measuring device, and the treatment policy can be easily established. It is easy to establish a treatment policy for properly designing and wearing an oral prosthesis. Be able to give proper guidance to people with masticatory bite and pronunciation abnormalities. As described above, the present invention enables simulation of mandibular movements during chewing and occlusion, which has been unmeasurable in the field of dentistry up to now, and measurement numerical values. We are confident that we will be able to discover it, and we firmly believe that the mandibular movement simulation measurement device of the present invention will make a great contribution to future dental medicine in general.

【0006】[0006]

【図面の簡単な説明】[Brief description of drawings]

【図1】下顎運動シュミレーション測定機の斜視図FIG. 1 is a perspective view of a mandibular movement simulation measuring device.

【図2】下顎運動シュミレーション測定機を被検者に装
着した左側面図
FIG. 2 is a left side view of a subject with a mandibular movement simulation measuring device attached to the subject.

【図3】磁電変換ホール素子デバイスの構成斜視図FIG. 3 is a perspective view showing the configuration of a magnetoelectric conversion Hall element device.

【図4】磁電変換ホール素子プレートに多極駆動電流入
力端子および多極ホール素子電圧出力端子を形成し、ア
ルミナスセラミックに接着した部分図
FIG. 4 is a partial view in which a multi-pole driving current input terminal and a multi-pole Hall element voltage output terminal are formed on a magnetoelectric conversion Hall element plate and bonded to an alumina ceramic.

【図5】図4のYを部分拡大した図FIG. 5 is a partially enlarged view of Y in FIG.

【図6】被検者を開口させ下顎関節頭が触診できる口径
を保持器機で保持し超小型の最大磁束永久磁石被検者に
接着固定した右側図
[Fig. 6] Fig. 6 is a right side view in which an examinee is opened and a mandibular condyle head is palpated by a retainer, and an ultra-small maximum magnetic flux permanent magnet is adhesively fixed to the examinee.

【図7】被検者の下顎基本形態測定図FIG. 7: Basic chart of mandibular morphology of subject

【図8】下顎運動シュミレーション測定用コンピュウー
ターの簡単なブロックダイヤグラム
[Fig. 8] A simple block diagram of a computer for measuring lower jaw movement simulation.

【符号の説明】 1 頭蓋固定装置 2 前頭骨下端正中部支持装置 3 右側乳様突起後方上部支持装置 4 左側乳様突起後方上部支持装置 5 外後頭***支持装置 6 頭頂支持装置 7 後方正面ロジックデバイス基盤 8 後方右側面ロジックデバイス基盤 収納ケース 収納ケース 9 後方左側面ロジックデバイス基 10 センサー収納ケース 盤収納ケース 11 リード線 12 磁電変換ホール素子デバイス 13 配線基盤 14 電気絶縁物 15 永久磁石 16 非磁性体金属ケース 17 樹脂性センサーケース 18 駆動電流入力端子 19 磁電変換ホール素子電圧出力端子 20 駆動電流入力端子 21 磁電変換ホール素子電圧出力端子 22 磁電変換ホール素子プレート 23 駆動電流入力極板 24 磁電変換ホール素子電圧出力極 板 25 アルミナスセラミック板 26 金のリード線 27 金のリード線 28 インジューウム板 29 金板 30 左右下顎中切歯間に接着固定し た超小型の最大磁束永久磁石 31 右側下顎第2大臼歯頬側部に接着 32 左側下顎第2大臼歯頬側部に接 固定した超小型の最大磁束永久磁石 着固定した超小型の最大磁束永久磁石 33 左側下顎関節頭近似部に接着固定 34 左側下顎関節頭近似部に接着固 した超小型の最大磁束永久磁石 定した超小型の最大磁束永久磁石 35 保持器 36 ロジックデバイスブロック 37 ピークディデクター 38 A/D変換回路 39 ロジック演算I/Oポート 40 A/D I/Oポート 41 ハードディスク 42 キーボード 43 基準同期信号発信回路 44 フロッピーディスク、ソフト用 45 マイクロコンピュター 46 フロッピーディスク、記録用 47 直列並列変換回路 48 電源 49 ディスプレイI/Oポート 50 プリンター 51 ディスプレイ A 左右下顎中切歯間と右側下顎第2大臼歯の距離 B 左右下顎中切歯間と左側下顎第2大臼歯の距離 C 右側下顎第2大臼歯と左側下顎第2大臼歯の距離 D 左右下顎中切歯間と右側関節頭の距離 E 左右下顎中切歯間と左側関節頭の距離 F 右側下顎第2大臼歯と右側下顎関節頭の距離 G 左側下顎第2大臼歯と左側下顎関節頭の距離 H 左右下顎中切歯間と右側下顎第2大臼歯を結んだ線と、右側下顎第2大 臼歯と右側下顎関節頭を結んだ線で成す角度 I 左右下顎中切歯間と左側下顎第2大臼歯を結んだ線と、左側下顎第2大 臼歯と左側下顎関節頭を結んだ線で成す角度 J 右側下顎関節頭と左側下顎関節頭の距離 Y 磁電変換ホール素子プレートの部分拡大図[Explanation of symbols] 1 skull fixation device 2 median front part of frontal bone 3 right side mastoid posterior upper support device 4 left mastoid posterior upper support device 5 outer occipital protuberance support device 6 parietal support device 7 posterior front logic device Base 8 Rear right side logic device board Storage case Storage case 9 Rear left side logic device board 10 Sensor storage case Board storage case 11 Lead wire 12 Magnetoelectric conversion Hall element device 13 Wiring board 14 Electrical insulator 15 Permanent magnet 16 Non-magnetic metal Case 17 Resin sensor case 18 Drive current input terminal 19 Magnetoelectric conversion Hall element voltage output terminal 20 Drive current input terminal 21 Magnetoelectric conversion Hall element voltage output terminal 22 Magnetoelectric conversion Hall element plate 23 Drive current input electrode plate 24 Magnetoelectric conversion Hall element voltage Output plate 25 Alumina ceramic Plate 26 Gold lead wire 27 Gold lead wire 28 Indium plate 29 Gold plate 30 Microminiature maximum magnetic flux permanent magnet fixed between the left and right lower central incisors 31 Bonded to the buccal side of the right lower jaw second molar 32 Ultra-compact maximum magnetic flux permanent magnet fixed to the buccal side of the left lower jaw second molar 33 Ultra-small maximum magnetic flux permanent magnet fixed to the fixed 33 33 Adhesive fixation to the left mandibular joint head approximate part 34 Adhesion to the left mandibular joint head approximate part Solid miniature maximum magnetic flux permanent magnet Fixed miniature maximum magnetic flux permanent magnet 35 Cage 36 Logic device block 37 Peak detector 38 A / D conversion circuit 39 Logic operation I / O port 40 A / D I / O port 41 Hard Disk 42 Keyboard 43 Reference Sync Signal Transmitting Circuit 44 Floppy Disk, Software 45 Micro Computer 46 Floppy Disk / recording 47 Serial / parallel conversion circuit 48 Power supply 49 Display I / O port 50 Printer 51 Display A Distance between left and right lower mandibular central incisors and right lower mandibular second molar B B Left and right lower central incisors and left mandibular second large Molar distance C Distance between right lower mandibular second molar and left lower mandibular second molar D D Distance between left and right lower central incisors and right joint head E Distance between left and right lower central incisors and left joint head F Right right lower jaw second Distance between molars and right mandibular condylar head G Distance between left lower mandibular second molar and left mandibular condylar head H Line between the right and left mandibular central incisors and right lower mandibular second molar, and right lower mandibular second molar Angle formed by the line connecting the right lower temporomandibular joint heads I Angle formed by the line connecting the left and right mandibular central incisors and the left lower mandibular second molars, and the line connecting the left lower mandibular second molars and the left mandibular joint heads J Right mandibular condyle head and left mandibular condyle head distance Y Partial enlarged view of the magnetoelectric conversion Hall element plate

【手続補正書】[Procedure amendment]

【提出日】平成5年4月20日[Submission date] April 20, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】実用新案登録の範囲[Name of item to be amended] Scope of utility model registration

【補正内容】[Correction content]

【実用新案登録請求の範囲】[Scope of utility model registration request]

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 被検者が咀嚼咬合時に咀嚼筋群に影響さ
れない前頭骨下端正中部2、左右乳様突起後方上部3、
4、外後頭***部5、および頭頂部6に一定圧で固定で
きる支持装置を有する頭蓋固定装置1に磁電変換ホール
素子ディバイス12および永久磁石15で形成されたセ
ンサーを所定の位置に設置した、下顎運動シュミレーシ
ョン測定センサーを被検者に装着する。被検者の左右下
顎第2大臼歯頬側部31、32、左右下顎中切歯間部3
0、および左右下顎関節頭近似部33、34、にN極面
を解放し他の面を非磁性体金属で被覆した超小型で最大
磁束永久磁石のN極を外側に向けて固定する。被検者に
各種条件で咀嚼咬合をさせ、左右下顎第2大臼歯頬側部
31、32、左右下顎中切歯間部30、及び左右下顎関
節頭近似部33、34、に固定した超小型で最大磁束永
久磁石センターポイントの位置関係及び咀嚼咬合運動を
下顎運動シュミレーション測定センサーで測定し下顎運
動シュミレーション測定用コンピューターで解析演算さ
せ必要な数値データー、及び下顎5点の運動軌跡を下顎
運動シュミレーション測定ディスプレーに表示する下顎
運動シュミレーション測定機です。
1. A lower midline of the frontal bone 2, a left upper part of the left mastoid 3 and an upper part 3 of the left and right mastoids, which are not affected by the masticatory muscle group when the subject bites the mastication.
4, a sensor formed by a magnetoelectric conversion Hall element device 12 and a permanent magnet 15 is installed at a predetermined position in a skull fixing device 1 having a supporting device that can be fixed to the outer occipital ridge 5 and the crown 6 with a constant pressure. Wear the mandibular movement simulation sensor on the subject. Buccal parts 31, 32 of the left and right lower second molars of the subject, and the inter-part 3 of the left and right lower central incisors
The N pole of the microminiature maximum magnetic flux permanent magnet having the N pole surface open to the 0 and the left and right mandibular joint approximation parts 33 and 34 and the other surfaces covered with a non-magnetic metal is fixed to the outside. An ultra-compact type in which the subject is allowed to chew under various conditions and is fixed to the buccal parts 31, 32 of the left and right lower second molars, the inter-parts of the left and right lower central incisors 30, and the left and right mandibular joint head approximation parts 33, 34. The positional relationship of the maximum magnetic flux permanent magnet center point and the masticatory occlusal motion are measured by the mandibular motion simulation measurement sensor, and the necessary numerical data is calculated and calculated by the computer for measuring the mandibular motion simulation, and the mandibular motion simulation of the locus of the mandibular 5 points is measured. It is a mandibular movement simulation measuring instrument displayed on the display.
JP1991111056U 1991-11-20 1991-11-20 Lower jaw movement simulation measuring machine Expired - Lifetime JP2510019Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991111056U JP2510019Y2 (en) 1991-11-20 1991-11-20 Lower jaw movement simulation measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991111056U JP2510019Y2 (en) 1991-11-20 1991-11-20 Lower jaw movement simulation measuring machine

Publications (2)

Publication Number Publication Date
JPH0578211U true JPH0578211U (en) 1993-10-26
JP2510019Y2 JP2510019Y2 (en) 1996-09-11

Family

ID=14551289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991111056U Expired - Lifetime JP2510019Y2 (en) 1991-11-20 1991-11-20 Lower jaw movement simulation measuring machine

Country Status (1)

Country Link
JP (1) JP2510019Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114271981A (en) * 2021-07-09 2022-04-05 航空总医院 Method for detecting occlusion precision of dental prosthesis and occlusion booster thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52317A (en) * 1975-06-23 1977-01-05 Toshiba Corp Controller of an ac electric motor
JPS58175545A (en) * 1982-04-07 1983-10-14 株式会社モリタ製作所 Electric circuit of lower mandible motion diagnostic apparatus
JPS63203135A (en) * 1987-02-18 1988-08-23 マイオ−トロニクス リサ−チ,インコ−ポレイテツド Magnetic sensor for jaw tracking apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52317A (en) * 1975-06-23 1977-01-05 Toshiba Corp Controller of an ac electric motor
JPS58175545A (en) * 1982-04-07 1983-10-14 株式会社モリタ製作所 Electric circuit of lower mandible motion diagnostic apparatus
JPS63203135A (en) * 1987-02-18 1988-08-23 マイオ−トロニクス リサ−チ,インコ−ポレイテツド Magnetic sensor for jaw tracking apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114271981A (en) * 2021-07-09 2022-04-05 航空总医院 Method for detecting occlusion precision of dental prosthesis and occlusion booster thereof

Also Published As

Publication number Publication date
JP2510019Y2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US20220015878A1 (en) Method and system for acquiring data from an individual for preparing a 3d model
US11432919B2 (en) Physical and virtual systems for recording and simulating dental motion having 3D curvilinear guided pathways and timing controls
US11452585B2 (en) Device and method for measuring a movement of a mandible
RU2536608C2 (en) Method and device for dental model development
CN113412098B (en) Digital three-dimensional tooth model dental system
Miura et al. The measurement of physiological tooth displacement in function
Michler et al. Graphic assessment of natural mandibular movements.
Madhavan et al. Methods of recording mandibular movements-A review
Oyen et al. A biomechanical analysis of craniofacial form and bite force
US20200060796A1 (en) Device and method for measuring a movement of a mandible
GLICKMAN et al. Functional occlusion as revealed by miniaturized radio transmitters
JP3181517U (en) Byte fork
Soboļeva et al. Jaw tracking devices--historical review of methods development. Part II
JP2510019Y2 (en) Lower jaw movement simulation measuring machine
Brudvik et al. Evaluation of eccentric occlusal contacts in complete dentures.
KR101645880B1 (en) 3D Digital recording system of Maxillo-Mandibular jaw relation
Yoshida et al. Development of a magnetic sensing device for tooth displacement under orthodontic forces
JP2003220079A (en) Apparatus and method for analyzing articulation and reference marker
JP2006187407A (en) Dental occlusal plane form and dental face bow
CN111823595B (en) Personalized intraoral stent for deep-covered crowds
RU2721879C1 (en) Method for spatial transfer of position of upper jaw relative to horizontal plane
CN216908222U (en) Dental occlusion recording device
Rizzatti et al. A new clinical method for evaluating the closest speaking space in dentulous and edentulous subjects: a pilot study.
US20230092457A1 (en) Device for Simulating Lower Jaw Activity
JP4150895B2 (en) Check bite system for Gothic arch tracer