JPH0574882B2 - - Google Patents

Info

Publication number
JPH0574882B2
JPH0574882B2 JP61065522A JP6552286A JPH0574882B2 JP H0574882 B2 JPH0574882 B2 JP H0574882B2 JP 61065522 A JP61065522 A JP 61065522A JP 6552286 A JP6552286 A JP 6552286A JP H0574882 B2 JPH0574882 B2 JP H0574882B2
Authority
JP
Japan
Prior art keywords
mol
sio
temperature
dielectric ceramic
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61065522A
Other languages
Japanese (ja)
Other versions
JPS62222513A (en
Inventor
Hiroshi Kishi
Minoru Ooshio
Shunji Murai
Takeshi Wada
Masami Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP61065522A priority Critical patent/JPS62222513A/en
Publication of JPS62222513A publication Critical patent/JPS62222513A/en
Publication of JPH0574882B2 publication Critical patent/JPH0574882B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ニツケル等の卑金属を内部電極とす
る積層磁器ココンデンサの誘電体として好適な誘
電体磁器組成物に関する。 〔従来の技術〕 従来、積層磁器コンデンサを製造する際には、
誘電体磁器原料粉末から成るグリーンシート(未
焼結磁器シート)に白金又はパラジウム等の貴金
属の導電性ペーストを所望パターンに印刷し、こ
れを複数枚積み重ねて圧着し、1300℃〜1600℃の
酸化性雰囲気中で焼結させた。これにより、誘電
体磁器と内部電極とが同時に得られる。上述の如
く、貴金属を使用すれば、酸化性雰囲気中で高温
で焼結させても目的とする内部電極を得ることが
出来る。しかし、白金、パラジウム等の貴金属は
高価であるため、必然的に積層磁器コンデンサが
コスト高になつた。 この種の問題を解決するために、CaZrO3
MnO2とから成る磁器組成物をコンデンサの誘電
体として使用することが、例えば特開昭53−
98099号公報に開示されている。ここに開示され
ている誘電体磁器組成物は還元性雰囲気中で焼成
可能であるので、ニツケル等の卑金属の酸化が生
じない。 〔発明が解決しようとする問題点〕 ところで、上記のCaZrO3とMnO2とから成る
誘電体磁器組成物は高温(1350℃〜1380℃)で焼
成しなければならない。このため、グリーンシー
トにニツケルを主成分とする導電性ペーストを印
刷して焼成すると、たとえ非酸化性雰囲気中での
焼成であつても、ニツケル粒子の溶融凝集が生
じ、ニツケルが玉状に分布する。また、高温焼成
のためにニツケルが誘電体磁器中に拡散し、誘電
体磁器の絶縁劣化が生じる。この結果、所望の静
電容量、及び絶縁抵抗を有する磁器コンデンサを
得ることが困難であつた。 上記問題点を解決するために、本件出願人は、
特願昭60−270540号で(CaO)k・(Zr1-xTix)O2
から成る基本成分と、Li2OとSiO2とMO(但し
MOはBaO、MgO、ZnO、SrO及びCaOの少なく
とも1種)とから成る添加成分とを含む誘電体磁
器組成物を開示し、また特願昭60−270541号で
(SrO)k・(Zr1-xTix)O2から成る基本成分と、
B2O3とSiO2とMOから成る添加成分とを含む誘
電体磁器組成物を開示し、また特願昭60−270542
号で(SrO)k・(Zr1-xTix)O2から成る基本成分
と、Li2OとSiO2とMOとから成る添加成分とを含
む誘電体磁器組成物を開示し、特願昭60−270543
号で(CaO)k・(Zr1-xTix)O2から成る基本成分
と、B2O3とSiO2とMOから成る添加成分とを含
む誘電体磁器組成物を開示した。ここに開示され
ている誘電体磁器組成物は、還元性雰囲気、1200
℃以下の条件の焼成で得ることができ、比誘電率
が約30〜72の範囲、誘電率の温度係数が約−800
〜+140ppm/℃の範囲の特性を有する。 ところで、上記誘電体磁器組成物よりも高い比
誘電率を有するものが要求されることがある。ま
た、上記誘電体磁器組成物よりも低い温度で焼成
可能であれば、エネルギー消費量の低減及び積層
コンデンサの卑金属電極形成上好都合である。 そこで、本発明の目的は、非酸化性雰囲気、
1050℃以下の温度による焼成で得ることができ、
且つ比較的高い比誘電率を有している誘電体磁器
組成物を提供することにある。 〔問題点を解決するための手段〕 上記目的を達成するための本発明の誘電体磁器
組成物は、1−xモル部(但しxは0.2〜0.7の範
囲の数値)のCaTiO3とxモル部のCaTiSiO5とか
ら成る基本成分と、B2O3とSiO2とMO(但しMO
はBaO、MgO、ZnO、SrO及びCaOの内の少な
くとも1種の金属酸化部)との内の少なくとも2
種から成る添加成分とを含む。基本成分と添加成
分との割合は、100重量部:0.2〜10.0重量部とさ
れ、添加成分におけるB2O3とSiO2とMOとの割
合は、これ等の組成を示す三角図における前記
B2O3が15モル%、前記SiO2が25モル%、前記
MOが60モル%の点Aと、前記B2O3が30モル%、
前記SiO2が0モル%、前記MOが70モル%の点B
と、前記B2O3が90モル%、前記SiO2が0モル%、
前記MOが10モル%の点Cと、前記B2O3が90モ
ル%、前記SiO2が10モル%、前記MOが0モル%
の点Dと、前記B2O3が25モル%、前記SiO2が75
モル%、前記MOが0モル%の点Eとを順に結ぶ
5本の直線で囲まれた領域内とされている。 〔作用効果〕 上記発明に従う誘電体磁器組成物を使用するこ
とにより、比誘電率εsが66以上、静電容量の温度
変化率△Cが−5.95〜+6.31、Qが2000以上、抵
抗率ρが1×107MΩ・cm以上の温度補償用積層
磁器コンデンサを提供することができる。また、
この誘電体磁器組成物は、非酸化性雰囲気、1050
℃以下の焼成で得られるので、ニツケル等の卑金
属を内部電極とした温度補償用積層磁器コンデン
サを低消費エネルギーで提供することができる。 〔実施例〕 次に、本発明の実施例を説明する。本発明に従
う誘電体磁器組成物の基本成分(1−x)
CaTiO3+xCaTiSiO5を得るために、CaTiO3
CaTiSiO5とを次の方法で予め用意した。CaTiO3
については、まず、純度99.0%以上のCaCO3
TiO2を出発原料として用意し、不純物を目方に
入れないで、CaCO3を556.82g(1モル部)、
TiO2を443.18g(1モル部)秤量し、これ等を
15時間湿式混合した。次に、上記原料混合物を
150℃で4時間乾燥した後、粉砕して大気中、約
1200℃で2時間仮焼し、CaTiO3粉末を得た。 CaTiSO5については、まず、純度99.0%以上の
CaCO3、TiO2、SiO2を出発原料として用意し、
不純物を目方に入れないで、CaCO3を417.42g
(1モル部)、TiO2を332.23g(1モル部)、SiO2
を250.35g(1モル部)秤量し、15時間湿式混合
した。次に、上記原料混合物を150℃で4時間乾
燥した後、粉砕して大気中、約1100℃で2時間仮
焼し、CaTiSiO5粉末を得た。 一方、第1表の試料No.1の添加成分を得るため
に、 B2O3 11.16g (15モル%) SiO2 16.08g (25 〃 ) BaCO3 25.29g (12 〃 ) MgO 5.19g (12 〃 ) ZnO 10.46g (12 〃 ) SrCO3 18.96g (12 〃 ) CaCO3 12.87g (12 〃 ) を秤量し、これにアルコールを300c.c.加え、ポリ
エチレンポツトにてアルミナボールを用いて10時
間撹拌した後、大気中1000℃で2時間仮焼成し、
これを300c.c.の水と共にアルミナポツトに入れ、
アルミナボールで15時間粉砕し、しかる後、150
℃で4時間乾燥させて、B2O3が15モル%、SiO2
が25モル%、MOが60モル%(BaO12モル%、
MgO12モル%、ZnO12モル%、SrO12モル%、
CaO12モル%の組成の添加成分の粉末を得た。 次に、試料No.1のx=0.45の基本成分 (1−0.45)CaTiO3+0.45CaTiSiO5 を得るために、 CaTiO3を458.78g(0.55モル部)、 CaTiSiO5を541.22g(0.45モル部) それぞれ秤量し、この基本成分1000g(100重
量部)に対して上記の添加成分を30g(3重量
部)加え、更にアクリル酸エステルポリマー、グ
リセリン、縮合リン酸塩の水溶液から成る有機バ
インダを基本成分と添加成分との合計重量に対し
て15重量%添加し、更に、50重量%の水を加え、
これ等をボールミルに入れて粉砕及び混合して磁
器原料のスラリーを作製した。 次に、上記スラリーを真空脱泡機に入れて脱泡
し、このスラリーをリバースロールコーターに入
れ、これを使用してポリエステルフイルム上にス
ラリーに基づく薄膜を形成し、この薄膜をフイル
ム上で100℃に加熱して乾燥させ、厚さ約25μm
のグリーンシートを得た。このシートは、長尺な
ものであるが、これを10cm角の正方形に打ち抜い
て使用する。 一方、内部電極用の導電ペーストは、粒径平均
1.5μmのニツケル粉末10gと、エチルセルローズ
0.9gをブチルカルビトール9.1gに溶解させたも
のとを撹拌機に入れ、10時間撹拌することにより
得た。この導電ペーストを長さ14mm、幅7mmのパ
ターンを50個程有するスクリーンを介して上記グ
リーンシートの片面に印刷した後、これを乾燥さ
せた。 次に、上記印刷面を上にしてグリーンシートを
2枚積層した。この際、隣接する上下のシートに
おいて、その印刷面がパターンの長手方向に約半
分程ずれるように配置した。更に、この積層物の
上下両面にそれぞれ4枚ずつ厚さ60μmのグリー
ンシートを積層した。次いで、この積層物を約50
℃の温度で厚さ方向に約40トンの圧力を加えて圧
着させた。しかる後、この積層物を格子状に裁断
し、約100個の積層チツプを得た。 次に、この積層体チツプを雰囲気焼成が可能な
炉に入れ、大気雰囲気中で100℃/hの速度で600
℃まで昇温して、有機バインダを燃焼させた。し
かる後、炉の雰囲気を大気からH22体積%+
N298体積%の還元性雰囲気に変えた。そして、
炉を上述の如き還元性雰囲気とした状態を保つ
て、積層体チツプの加熱温度を600℃から焼結温
度の1010℃まで100℃/hの速度で昇温して1010
℃(最高温度)を3時間保持した後、100℃/h
の速度で600℃まで降温し、雰囲気を大気雰囲気
(酸化性雰囲気)におきかえて、600℃を30分間保
持して酸化処理を行い、その後、室温まで冷却し
て焼結体チツプを作製した。 次に、電極が露出する焼結体チツプの側面に亜
鉛とガラスフリツトとビヒクルとから成る導電性
ペーストを塗布して乾燥し、これを大気中で550
℃の温度で15分間焼付け、亜鉛電極層を形成し、
更にこの上に銅を無電解メツキで被着させて、更
にこの上に電気メツキ法でPb−Sn半田層を設け
て、一対の外部電極を形成した。 これにより、第1図に示す如く、誘電体磁器層
1,2,3と、内部電極4,5と、外部電極6,
7から成る積層磁器コンデンサ10が得られた。
なお、このコンデンサ10の誘電体磁器層2の厚
さは0.02mm、内部電極4,5の対向面積は、5mm
×5mm=25mm2である。また、焼結後の磁器層1,
2,3の組成は、焼結前の基本成分と添加成分と
の混合組成と実質的に同じであり、基本成分の
CaTiO3とCaTiSiO5とからなる結晶粒子間に
B2O315モル%とSiO225モル%とBaO12モル%と
MgO12モル%とZnO12モル%とSrO12モル%と
CaO12モル%とから成る添加成分が均一に分布し
たものが得られる。なお、試料No.1のMO60モル
%は、BaO、MgO、ZnO、SrO、CaOをそれぞ
れ12モル%にしたことに対応する。 次に、完成した積層磁器コンデンサの比誘電率
εs、+20℃の静電容量を基準とした+85℃の静電
容量の変化率△C、Q、抵抗率ρを測定したとこ
ろ、第2表の試料No.1に示す如く、εsは98、△C
は−0.20%、Qは3700、ρは3.7×107MΩ・cmで
あつた。 なお、上記電気的特性は次の要領で測定した。 (A) 比誘電率εsは、温度20℃、周波数1MHz、交
流電圧〔実効値〕0.5Vの条件で静電容量を測
定し、この測定値と一対の内部電極4,5の対
向面積25mm2と磁器層2の厚さ0.05mmから計算で
求めた。 (B) 静電容量の変化率△C(%)は、85℃の静電
容量(C85)と20℃の静電容量(C20)とを測定
し、C85−C20/C20×100(%)で算出した。 (C) Qは温度20℃において、周波数1MHz、電圧
〔実効値〕0.5Vの交流でQメータにより測定し
た。 (D) 抵抗率ρ(MΩ・cm)は、温度20℃において
DC50Vを1分間印加した後に一対の外部電極
6,7間の抵抗値を測定し、この測定値と寸法
とに基づいて計算で求めた。 以上、試料No.1の作製方法及びその特性につい
て述べたが、その他の試料No.2〜49についても、
基本成分及び添加成分の組成、これ等の割合、及
び還元性雰囲気(非酸化性雰囲気)での焼成温度
を第1表及び第2表に示すように変えた他は、試
料No.1と全く同一の方法で積層磁器コンデンサを
作製し、同一方法で電気的特性を測定した。 第1表は、それぞれの試料の基本成分(1−
x)CaTiO3+xCaTiSiO5と添加成分との組成を
示し、第2表はそれぞれの試料の還元性雰囲気に
おける焼結のための焼成温度(最高温度)、及び
電気的特性を示す。なお、第1表の基本成分の欄
には、組成式(1−x)CaTiO3+xCaTiSiO5
xの値が示されている。添加成分の添加量は基本
成分100重量部に対する重量部で示されている。
また第1表の添加成分におけるMOの内容の欄に
は、BaO、MgO、ZnO、SrO、CaOの割合がモ
ル%で示されている。
[Industrial Field of Application] The present invention relates to a dielectric ceramic composition suitable as a dielectric for a laminated ceramic cocapacitor whose internal electrodes are made of a base metal such as nickel. [Conventional technology] Conventionally, when manufacturing multilayer ceramic capacitors,
A conductive paste of noble metals such as platinum or palladium is printed in a desired pattern on a green sheet (unsintered porcelain sheet) made of dielectric porcelain raw material powder, multiple sheets are stacked and pressed together, and oxidized at 1300°C to 1600°C. sintered in a neutral atmosphere. Thereby, the dielectric ceramic and the internal electrode can be obtained at the same time. As mentioned above, if a noble metal is used, the intended internal electrode can be obtained even if it is sintered at high temperature in an oxidizing atmosphere. However, since precious metals such as platinum and palladium are expensive, the cost of multilayer ceramic capacitors has inevitably increased. To solve this kind of problem, CaZrO 3 and
The use of a ceramic composition consisting of MnO 2 as a dielectric material for a capacitor has been proposed, for example, in JP-A-53-
It is disclosed in Publication No. 98099. Since the dielectric ceramic composition disclosed herein can be fired in a reducing atmosphere, oxidation of base metals such as nickel does not occur. [Problems to be Solved by the Invention] By the way, the dielectric ceramic composition made of CaZrO 3 and MnO 2 described above must be fired at a high temperature (1350°C to 1380°C). For this reason, when a conductive paste containing nickel as a main component is printed on a green sheet and fired, the nickel particles will melt and aggregate, even if fired in a non-oxidizing atmosphere, and the nickel will be distributed in a bead shape. do. Furthermore, due to high temperature firing, nickel diffuses into the dielectric ceramic, causing insulation deterioration of the dielectric ceramic. As a result, it has been difficult to obtain a ceramic capacitor with desired capacitance and insulation resistance. In order to solve the above problems, the applicant
Patent Application No. 1982-270540 (CaO) k・(Zr 1-x Ti x )O 2
basic components consisting of Li 2 O, SiO 2 and MO (however,
MO discloses a dielectric ceramic composition containing an additive component consisting of at least one of (SrO) k . -x Ti x ) O 2 as a basic component,
Discloses a dielectric ceramic composition containing B 2 O 3 and additive components consisting of SiO 2 and MO.
No. 1 discloses a dielectric ceramic composition containing a basic component consisting of (SrO) k .(Zr 1-x Ti x )O 2 and additive components consisting of Li 2 O, SiO 2 and MO, and has filed a patent application. Showa 60-270543
In this issue, we disclosed a dielectric ceramic composition containing a basic component consisting of (CaO) k .(Zr 1-x Ti x )O 2 and additive components consisting of B 2 O 3 , SiO 2 and MO. The dielectric ceramic composition disclosed herein is suitable for use in a reducing atmosphere, 1200
Can be obtained by firing under conditions below ℃, with a relative dielectric constant in the range of approximately 30 to 72, and a temperature coefficient of dielectric constant of approximately -800.
It has properties in the range of ~+140ppm/℃. Incidentally, a dielectric ceramic composition having a higher dielectric constant than the above dielectric ceramic composition is sometimes required. Furthermore, if it can be fired at a lower temperature than the dielectric ceramic composition, it is advantageous for reducing energy consumption and forming base metal electrodes of multilayer capacitors. Therefore, the purpose of the present invention is to provide a non-oxidizing atmosphere,
It can be obtained by firing at a temperature below 1050℃,
Another object of the present invention is to provide a dielectric ceramic composition having a relatively high dielectric constant. [Means for Solving the Problems] The dielectric ceramic composition of the present invention for achieving the above object contains 1-x mole parts (where x is a numerical value in the range of 0.2 to 0.7) of CaTiO 3 and x moles. The basic components are CaTiSiO 5 and B 2 O 3 , SiO 2 and MO (however, MO
is at least two metal oxidized moieties of at least one of BaO, MgO, ZnO, SrO and CaO).
and an additional ingredient consisting of seeds. The ratio of the basic component to the added component is 100 parts by weight: 0.2 to 10.0 parts by weight, and the ratio of B 2 O 3 , SiO 2 and MO in the added component is as shown in the triangular diagram showing these compositions.
B 2 O 3 is 15 mol %, SiO 2 is 25 mol %,
Point A where MO is 60 mol%, and the above B 2 O 3 is 30 mol%,
Point B where the SiO 2 is 0 mol% and the MO is 70 mol%
and the B 2 O 3 is 90 mol %, the SiO 2 is 0 mol %,
Point C where the MO is 10 mol%, the B2O3 is 90 mol%, the SiO2 is 10 mol%, and the MO is 0 mol%.
point D, the B 2 O 3 is 25 mol %, and the SiO 2 is 75 mol %.
mol %, within a region surrounded by five straight lines sequentially connecting points E where the MO is 0 mol %. [Operation and Effect] By using the dielectric ceramic composition according to the above invention, the relative permittivity ε s is 66 or more, the capacitance temperature change rate ΔC is -5.95 to +6.31, the Q is 2000 or more, and the resistance is A temperature-compensating multilayer ceramic capacitor having a coefficient ρ of 1×10 7 MΩ·cm or more can be provided. Also,
This dielectric porcelain composition is prepared in a non-oxidizing atmosphere, at 1050
Since it can be obtained by firing at temperatures below .degree. C., temperature-compensating multilayer ceramic capacitors with internal electrodes made of base metals such as nickel can be provided with low energy consumption. [Example] Next, an example of the present invention will be described. Basic components (1-x) of dielectric ceramic composition according to the present invention
To obtain CaTiO 3 +xCaTiSiO 5 , CaTiO 3 and
CaTiSiO 5 was prepared in advance by the following method. CaTiO3
First, CaCO 3 with a purity of 99.0% or more,
Prepare TiO 2 as a starting material, add 556.82 g (1 mole part) of CaCO 3 without adding any impurities,
Weighed 443.18g (1 mole part) of TiO 2 and
Wet mixed for 15 hours. Next, add the above raw material mixture to
After drying at 150℃ for 4 hours, it is crushed and placed in the air for approx.
CaTiO 3 powder was obtained by calcining at 1200° C. for 2 hours. For CaTiSO 5 , first, we need a purity of 99.0% or higher.
Prepare CaCO 3 , TiO 2 and SiO 2 as starting materials,
417.42g of CaCO 3 without any impurities
(1 mole part), 332.23g (1 mole part) of TiO 2 , SiO 2
250.35g (1 mole part) of the above was weighed and wet mixed for 15 hours. Next, the raw material mixture was dried at 150° C. for 4 hours, then pulverized and calcined in the air at about 1100° C. for 2 hours to obtain CaTiSiO 5 powder. On the other hand, in order to obtain the additive components of sample No. 1 in Table 1, B 2 O 3 11.16 g (15 mol%) SiO 2 16.08 g (25〃) BaCO 3 25.29 g (12〃) MgO 5.19 g (12 〃) ZnO 10.46g (12 〃) SrCO 3 18.96g (12 〃) CaCO 3 12.87g (12 〃) was weighed, 300 c.c. of alcohol was added to it, and it was heated in a polyethylene pot using an alumina ball for 10 hours. After stirring, pre-baking at 1000℃ in the atmosphere for 2 hours,
Put this in an alumina pot with 300 c.c. of water,
Grind with alumina ball for 15 hours, then 150
Dry at ℃ for 4 hours to obtain 15 mol% B 2 O 3 and SiO 2
is 25 mol%, MO is 60 mol% (BaO 12 mol%,
MgO 12 mol%, ZnO 12 mol%, SrO 12 mol%,
An additive component powder having a composition of 12 mol% CaO was obtained. Next, in order to obtain the basic component (1-0.45) CaTiO 3 +0.45CaTiSiO 5 of sample No. 1 with x=0.45, 458.78 g (0.55 mol parts) of CaTiO 3 and 541.22 g (0.45 mol parts) of CaTiSiO 5 were added. ) Weigh each, add 30g (3 parts by weight) of the above additive components to 1000g (100 parts by weight) of this basic component, and add an organic binder consisting of an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate. Add 15% by weight based on the total weight of ingredients and added ingredients, further add 50% by weight of water,
These were placed in a ball mill, pulverized and mixed to prepare a slurry of porcelain raw materials. Then, the above slurry is put into a vacuum defoaming machine to defoam, and this slurry is put into a reverse roll coater, which is used to form a thin film based on the slurry on a polyester film, and this thin film is coated on a film with a Dry by heating to ℃ to a thickness of approximately 25 μm.
I got a green sheet. This sheet is long and is used by punching it into 10cm squares. On the other hand, the conductive paste for internal electrodes has an average particle size of
10g of 1.5μm nickel powder and ethyl cellulose
A solution of 0.9 g dissolved in 9.1 g of butyl carbitol was placed in a stirrer and stirred for 10 hours. This conductive paste was printed on one side of the green sheet through a screen having about 50 patterns each having a length of 14 mm and a width of 7 mm, and then dried. Next, two green sheets were laminated with the printed side facing up. At this time, the adjacent upper and lower sheets were arranged so that their printed surfaces were shifted by about half in the longitudinal direction of the pattern. Further, four green sheets each having a thickness of 60 μm were laminated on the upper and lower surfaces of this laminate. This laminate is then approximately 50
They were crimped by applying approximately 40 tons of pressure in the thickness direction at a temperature of °C. Thereafter, this laminate was cut into a grid shape to obtain about 100 laminate chips. Next, this laminate chip was placed in a furnace capable of atmospheric firing, and fired at a rate of 100°C/h for 600°C in an atmospheric atmosphere.
The organic binder was burned by increasing the temperature to ℃. After that, the atmosphere of the furnace is changed from the atmosphere to H 2 2% by volume +
The atmosphere was changed to a reducing atmosphere containing 98% by volume of N2 . and,
While maintaining the reducing atmosphere in the furnace as described above, the heating temperature of the stacked chips was increased from 600°C to the sintering temperature of 1010°C at a rate of 100°C/h.
After holding ℃ (maximum temperature) for 3 hours, 100℃/h
The temperature was lowered to 600°C at a rate of , the atmosphere was changed to an air atmosphere (oxidizing atmosphere), 600°C was maintained for 30 minutes to carry out oxidation treatment, and then the sintered chip was produced by cooling to room temperature. Next, a conductive paste consisting of zinc, glass frit, and vehicle is applied to the side surface of the sintered chip where the electrodes are exposed and dried.
Baking for 15 minutes at a temperature of °C to form a zinc electrode layer;
Furthermore, copper was deposited on this by electroless plating, and a Pb-Sn solder layer was further provided on this by electroplating to form a pair of external electrodes. As a result, as shown in FIG.
A multilayer ceramic capacitor 10 consisting of 7 was obtained.
Note that the thickness of the dielectric ceramic layer 2 of this capacitor 10 is 0.02 mm, and the opposing area of the internal electrodes 4 and 5 is 5 mm.
×5mm= 25mm2 . In addition, the porcelain layer 1 after sintering,
The compositions of Nos. 2 and 3 are substantially the same as the mixed composition of the basic components and additive components before sintering, and the compositions of the basic components are
Between crystal grains consisting of CaTiO 3 and CaTiSiO 5
B 2 O 3 15 mol %, SiO 2 25 mol % and BaO 12 mol %
MgO12 mol%, ZnO12 mol% and SrO12 mol%
A uniformly distributed additive component consisting of 12 mol % of CaO is obtained. Note that the MO of sample No. 1 of 60 mol% corresponds to 12 mol% of each of BaO, MgO, ZnO, SrO, and CaO. Next, we measured the dielectric constant ε s of the completed multilayer ceramic capacitor, the rate of change in capacitance at +85°C with reference to the capacitance at +20°C, △C, Q, and the resistivity ρ, and the results are shown in Table 2. As shown in sample No. 1, ε s is 98, ΔC
was −0.20%, Q was 3700, and ρ was 3.7×10 7 MΩ·cm. Note that the above electrical characteristics were measured in the following manner. (A) The relative permittivity ε s is determined by measuring the capacitance under the conditions of temperature 20℃, frequency 1MHz, AC voltage [effective value] 0.5V, and the opposing area of the pair of internal electrodes 4 and 5 of 25 mm. 2 and the thickness of porcelain layer 2 of 0.05 mm. (B) The rate of change in capacitance △C (%) is determined by measuring the capacitance at 85°C (C 85 ) and the capacitance at 20°C (C 20 ), and calculating C 85 −C 20 /C 20 Calculated as ×100 (%). (C) Q was measured using a Q meter at a temperature of 20° C., a frequency of 1 MHz, and an AC voltage [effective value] of 0.5 V. (D) Resistivity ρ (MΩ・cm) at a temperature of 20℃
After applying DC 50V for 1 minute, the resistance value between the pair of external electrodes 6 and 7 was measured, and calculated based on this measured value and the dimensions. The preparation method and characteristics of sample No. 1 have been described above, but the other samples No. 2 to 49 have also been described.
The composition of the basic components and additive components, their proportions, and the firing temperature in a reducing atmosphere (non-oxidizing atmosphere) were changed as shown in Tables 1 and 2. A multilayer ceramic capacitor was manufactured using the same method, and its electrical characteristics were measured using the same method. Table 1 shows the basic components (1-
x) CaTiO 3 +xThe composition of CaTiSiO 5 and additive components is shown, and Table 2 shows the firing temperature (maximum temperature) for sintering in a reducing atmosphere and electrical characteristics of each sample. In addition, in the column of basic components in Table 1, the value of x in the compositional formula (1-x) CaTiO 3 +xCaTiSiO 5 is shown. The amount of the additive component added is shown in parts by weight based on 100 parts by weight of the basic component.
Furthermore, in the column of MO content in the additive components in Table 1, the proportions of BaO, MgO, ZnO, SrO, and CaO are shown in mol%.

【表】【table】

【表】【table】

【表】【table】

〔変形例〕[Modified example]

以上、本発明の実施例について述べたが、本発
明はこれに限定されるものではなく、例えば次の
変形例が可能なものである。 (a) 基本成分の中に、本発明の目的を阻害しない
範囲で微量のMnO2(好ましくは0.05〜0.1重量
%)等の鉱化剤を添加し、焼結性を向上させて
もよい。また、その他の物質を必要に応じて添
加してもよい。 (b) 出発原料を、実施例で示したもの以外の酸化
物又は水酸化物又はその他の化合物としてもよ
い。 (c) 酸化温度を600℃以外で且つ焼結温度よりも
低い温度(好ましくは500℃〜800℃の範囲)と
してもよい。即ち、ニツケル等の電極と磁器の
酸化とを考慮して種々変更することが可能であ
る。 (d) 非酸化性雰囲気中の焼成温度を、電極材料を
考慮して、好ましくは950℃〜1050℃の範囲で
種々変えることが出来る。なお、必要に応じて
1050℃よりも高い温度焼成としてもよい。 (e) 焼結を中性雰囲気で行つてもよい。 (f) 積層磁器コンデンサ以外の一般的な磁器コン
デンサにも勿論適用可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and, for example, the following modifications are possible. (a) A trace amount of a mineralizing agent such as MnO 2 (preferably 0.05 to 0.1% by weight) may be added to the basic components to improve the sinterability, within a range that does not impede the object of the present invention. Further, other substances may be added as necessary. (b) The starting materials may be oxides or hydroxides or other compounds other than those shown in the examples. (c) The oxidation temperature may be set to a temperature other than 600°C and lower than the sintering temperature (preferably in the range of 500°C to 800°C). That is, various changes can be made in consideration of the electrodes made of nickel or the like and the oxidation of the porcelain. (d) The firing temperature in a non-oxidizing atmosphere can be varied, preferably within the range of 950°C to 1050°C, taking into consideration the electrode material. In addition, if necessary
Firing may be performed at a temperature higher than 1050°C. (e) Sintering may be performed in a neutral atmosphere. (f) It is of course applicable to general ceramic capacitors other than multilayer ceramic capacitors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる積層型磁器コ
ンデンサを示す断面図、第2図は添加成分の組成
範囲を示す三角図である。 1,2,3……磁器層、4,5……内部電極、
6,7……外部電極。
FIG. 1 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a triangular diagram showing the composition range of additive components. 1, 2, 3...Porcelain layer, 4,5...Internal electrode,
6, 7...external electrode.

Claims (1)

【特許請求の範囲】 1 100重量部の基本成分と0.2〜10.0重量部の添
加成分とから成り、 前記基本成分が、 (1−x)CaTiO3+xCaTiSiO5(但しxは0.2
≦x≦0.7の範囲の数値)であり、 前記添加成分が、B2O3とSiO2とMO(但しMO
はBaO、MgO、ZnO、SrO及びCaOの内の少な
くとも1種の金属酸化物)との組成を示す三角図
における、 前記B2O3が15モル%、前記SiO2が25モル%、
前記MOが60モル%の点Aと、 前記B2O3が30モル%、前記SiO2が0モル%、
前記MOが70モル%の点Bと、 前記B2O3が90モル%、前記SiO2が0モル%、
前記MOが10モル%の点Cと、 前記B2O3が90モル%、前記SiO2が10モル%、
前記MOが0モル%の点Dと、 前記B2O3が25モル%、前記SiO2が75モル%、
前記MOが0モル%の点Eと を順に結ぶ5本の直線で囲まれた領域内のもので
ある誘電体磁器組成物。
[Scope of Claims] 1 Consists of 100 parts by weight of a basic component and 0.2 to 10.0 parts by weight of additional components, wherein the basic component is (1-x)CaTiO 3 +xCaTiSiO 5 (where x is 0.2
≦x≦0.7), and the additive components are B 2 O 3 , SiO 2 and MO (however, MO
is at least one metal oxide among BaO, MgO, ZnO, SrO, and CaO), in which the B 2 O 3 is 15 mol %, the SiO 2 is 25 mol %,
Point A where the MO is 60 mol%, the B 2 O 3 is 30 mol%, the SiO 2 is 0 mol%,
Point B where the MO is 70 mol %, the B 2 O 3 is 90 mol %, the SiO 2 is 0 mol %,
Point C where the MO is 10 mol %, the B 2 O 3 is 90 mol %, the SiO 2 is 10 mol %,
Point D where the MO is 0 mol%, the B 2 O 3 is 25 mol%, the SiO 2 is 75 mol%,
A dielectric ceramic composition that is within a region surrounded by five straight lines sequentially connecting point E where MO is 0 mol %.
JP61065522A 1986-03-24 1986-03-24 Dielectric porcelain compound Granted JPS62222513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065522A JPS62222513A (en) 1986-03-24 1986-03-24 Dielectric porcelain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065522A JPS62222513A (en) 1986-03-24 1986-03-24 Dielectric porcelain compound

Publications (2)

Publication Number Publication Date
JPS62222513A JPS62222513A (en) 1987-09-30
JPH0574882B2 true JPH0574882B2 (en) 1993-10-19

Family

ID=13289438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065522A Granted JPS62222513A (en) 1986-03-24 1986-03-24 Dielectric porcelain compound

Country Status (1)

Country Link
JP (1) JPS62222513A (en)

Also Published As

Publication number Publication date
JPS62222513A (en) 1987-09-30

Similar Documents

Publication Publication Date Title
JPH0355002B2 (en)
JPS621595B2 (en)
JPH0552604B2 (en)
JPH0518201B2 (en)
JPH0524656B2 (en)
JPH0552602B2 (en)
JPH0559523B2 (en)
JPH0524655B2 (en)
JPH0518204B2 (en)
JPH0559522B2 (en)
JPH0524653B2 (en)
JPH0544764B2 (en)
JPH0524654B2 (en)
JPH0524652B2 (en)
JPS621596B2 (en)
JPH0552603B2 (en)
JPS6114610B2 (en)
JPH0518202B2 (en)
JPH0524651B2 (en)
JPH0574883B2 (en)
JPH0551127B2 (en)
JPH0518203B2 (en)
JPH0574882B2 (en)
JPS6114608B2 (en)
JPH0532892B2 (en)