JPH0574403A - Method and device for drawing fine pattern - Google Patents

Method and device for drawing fine pattern

Info

Publication number
JPH0574403A
JPH0574403A JP3233046A JP23304691A JPH0574403A JP H0574403 A JPH0574403 A JP H0574403A JP 3233046 A JP3233046 A JP 3233046A JP 23304691 A JP23304691 A JP 23304691A JP H0574403 A JPH0574403 A JP H0574403A
Authority
JP
Japan
Prior art keywords
resist
probe
probe electrodes
elastic body
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3233046A
Other languages
Japanese (ja)
Other versions
JP2986127B2 (en
Inventor
Akira Kuroda
亮 黒田
清 ▲瀧▼本
Kiyoshi Takimoto
Toshihiko Miyazaki
俊彦 宮▲崎▼
Kunihiro Sakai
邦裕 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3233046A priority Critical patent/JP2986127B2/en
Publication of JPH0574403A publication Critical patent/JPH0574403A/en
Application granted granted Critical
Publication of JP2986127B2 publication Critical patent/JP2986127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fine pattern drawing method capable of performing drawing at all of the plural probe electrode positions with excellent reproducibility and high stability. CONSTITUTION:Elastic bodies 102-105 each having a small elastic constant are used as members for fitting a plurality of probe electrodes 106-109 respectively. A tip of the probe electrode is brought near to a surface of resist 110 as close as repulsive force of 10<-8>N grade operates between both so as to draw a fine pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はナノメートル・オーダー
の線幅の微細パターンを作成する描画装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drawing device for forming a fine pattern having a line width of the order of nanometers.

【0002】[0002]

【従来の技術】従来、電子線を用いた描画装置として
は、集積回路における微細加工用の装置として10nm
程度の径まで小さく収束した10kW程度のエネルギを
有する電子線を1μm程度の膜厚のレジストを塗布した
基板に入射してレジストを露光することによりパターン
を描画するものが一般的に用いられている。このような
装置では用いる電子線のエネルギが大きくレジスト膜厚
も厚いため、レジスト中でも電子の散乱や2次電子の飛
程などの影響を受け、10nm以下のパターンを描画す
ることは困難であった。
2. Description of the Related Art Conventionally, as a drawing apparatus using an electron beam, a 10 nm device for fine processing in an integrated circuit has been used.
Generally, an electron beam having an energy of about 10 kW which is converged to a diameter of about 10 kW is incident on a substrate coated with a resist having a film thickness of about 1 μm to expose the resist to draw a pattern. .. Since the energy of the electron beam used in such a device is large and the resist film thickness is large, it is difficult to draw a pattern of 10 nm or less due to the influence of electron scattering and the range of secondary electrons in the resist. ..

【0003】最近、走査型トンネル顕微鏡(STM)の
構成を用いてより細かいパターンを描画する方法が提案
されている。例えば米国特許公報4785189号には
STM構成の低エネルギ電子線リソグラフィ装置が提案
されている。これは基板上の導電性薄膜上の電子線感光
レジストに尖鋭な先端を有する電極を近づけ、低エネル
ギの電子線を照射してレジストを描画するものである。
又、特開平2−295050号公報には、マイクロST
Mを用いた回路パターン作成装置が提案されている。こ
れは半導体プロセスによりマイクロSTMのチップ電極
が配置された書込みヘッドを用い、それぞれのチップ電
極を基板に対向させてバイアス印加により有機金属ガス
中から金属をデポさせたり、マスクを形成してデポジッ
トやエッチングを施して基板上に回路パターンを形成す
るというものである。
Recently, a method of drawing a finer pattern using a structure of a scanning tunneling microscope (STM) has been proposed. For example, U.S. Pat. No. 4,785,189 proposes a low energy electron beam lithography apparatus having an STM structure. In this method, an electron beam sensitive resist on a conductive thin film on a substrate is brought close to an electrode having a sharp tip, and a low energy electron beam is irradiated to draw the resist.
Further, Japanese Patent Laid-Open No. 2-295050 discloses a micro ST.
A circuit pattern creating device using M has been proposed. This uses a write head in which chip electrodes of a micro STM are arranged by a semiconductor process, and each chip electrode is opposed to a substrate to apply a bias to deposit metal from an organometallic gas, or to form a mask to deposit or deposit. Etching is performed to form a circuit pattern on the substrate.

【0004】一方、原子間力顕微鏡(AFM)が開発さ
れ [Binnig et al., Phys.Rev.Lett. 56,930(1986)] 、
表面の凹凸情報を原子・分子オーダーで得ることができ
るようになった。AFMは試料表面に対して1nm以下
の距離まで接近させた探針を支持するカンチレバー(弾
性体)が、試料−探針間に働く力を受けて撓む量から逆
に力を検出し、この力を一定にするように試料−探針間
の距離を制御しながら試料表面に走査することにより、
表面の三次元形状をnm以下の分解能で観察するもので
ある。AFMではSTMのように試料が導電性を有する
必要がなく、絶縁性試料、特に半導体レジスト面や生体
高分子などを原子・分子オーダーで観察可能であるため
広い応用が期待されている。
On the other hand, an atomic force microscope (AFM) was developed [Binnig et al., Phys. Rev. Lett. 56 , 930 (1986)],
It is now possible to obtain surface irregularity information on the order of atoms and molecules. The AFM detects a force from the amount by which a cantilever (elastic body) supporting a probe that is brought closer to the sample surface to a distance of 1 nm or less receives the force acting between the sample and the probe and flexes, and By scanning the sample surface while controlling the sample-probe distance so that the force is constant,
The three-dimensional shape of the surface is observed with a resolution of nm or less. Unlike the STM, the AFM does not require the sample to be electrically conductive, and an insulating sample, particularly a semiconductor resist surface or a biopolymer, can be observed on an atomic / molecular order, and thus is expected to be widely applied.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
例では、探針電極をレジスト表面や基板表面に対して横
方向に走査する際に、電極先端やレジストの破壊を避け
るために、接触しないように両者の間隔を微細に制御す
る必要があり、このために電極−基板間にバイアス電圧
を印加し、両者間に流れる電流の値を一定にするように
電極の縦方向の位置を制御する方法をとる。しかしなが
らレジストの膜厚を3nm以上とすると現実的に検出可
能な値のトンネル電流はもはや流れなくなってしまう。
又、トンネル電流の代わりの電界放射電流を流すために
高電圧バイアスを印加すると、レジスト露光が起こって
しまうという問題があった。それゆえ検出可能なトンネ
ル電流が流れるためには、レジスト膜厚は実質3nm以
下の膜厚でなければならず、このような膜厚であっても
描画を行なわない場所でトンネル電流検出のための微弱
なバイアス電圧値ですら露光が起こってしまったり、露
光後のプロセス時にオーバーエッチングやレジスト剥れ
が起こったりしてしまい、実際には10nm以下のパタ
ーンを描画することは困難であった。
However, in the above-mentioned conventional example, when the probe electrode is scanned laterally with respect to the resist surface or the substrate surface, in order to avoid destruction of the electrode tip or the resist, the probe electrode should not come into contact with it. It is necessary to finely control the distance between the electrodes. For this purpose, a bias voltage is applied between the electrodes and the substrate, and a method of controlling the vertical position of the electrodes so that the value of the current flowing between the electrodes is constant is proposed. To take. However, when the film thickness of the resist is set to 3 nm or more, the tunnel current having a practically detectable value no longer flows.
Further, when a high voltage bias is applied to flow a field emission current instead of a tunnel current, there is a problem that resist exposure occurs. Therefore, in order for a detectable tunnel current to flow, the resist film thickness must be substantially 3 nm or less. Exposure occurs even with a weak bias voltage value, and over-etching and resist peeling occur during the process after exposure, so that it is actually difficult to draw a pattern of 10 nm or less.

【0006】又、描画用の探針電極が一本である場合に
は、一枚のウェハ基板の描画に長時間を要するため、ス
ループットが極めて低くなり実用上の限界があった。そ
のため複数の探針電極をアレイ化し、並列の描画による
時間の短縮が必須であった。ところが複数の探針電極間
にはプロセス上の誤差による形状、大きさのばらつきや
レジスト基板表面のうねりが存在するため、それらを補
正する機構無しでは複数の探針電極とレジスト表面・基
板表面の間隔がまちまちで、間隔が近過ぎて探針電極先
端がレジスト表面や基板表面と接触破壊を起こす部分が
あったり、逆に間隔が遠過ぎて露光が行なわれない部分
が生じたりする畏れがあり歩留が悪くなってしまう。
又、複数の探針電極の個別の位置制御を行なうため、探
針電極毎にアクチュエータを設け、個別の位置制御を行
なおうとしても、探針電極の数が100本、1000本
・・・・・ というオーダーになると、制御系のハードウェ
ア、ソフトウェアとも大規模かつ複雑なものとなってし
まう。
Further, when the number of probe electrodes for drawing is one, it takes a long time to draw one wafer substrate, so that the throughput is extremely low and there is a practical limit. Therefore, it is essential to reduce the time by arraying a plurality of probe electrodes and drawing in parallel. However, since there are variations in shape and size due to process errors and undulations on the resist substrate surface between multiple probe electrodes, there is no mechanism to correct them, so multiple probe electrodes and resist surface / substrate surface There is a fear that the intervals are different and there are parts where the tips are too close to cause the contact of the tip of the probe electrode with the resist surface or the substrate surface, and conversely, there are parts where the intervals are too long and exposure is not performed. The yield will be poor.
Further, since individual position control of a plurality of probe electrodes is performed, even if an actuator is provided for each probe electrode and individual position control is performed, the number of probe electrodes is 100, 1000 ... If the order becomes ..., the control system hardware and software will become large-scale and complicated.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
すべくなされたもので、その目的は複数の全ての探針電
極位置における描画を再現性良く且つ安定性高く行なう
ことができる微細パターン描画の手法の提供である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide a fine pattern capable of performing drawing at a plurality of all probe electrode positions with good reproducibility and high stability. It is to provide a drawing method.

【0008】この目的を達成する本発明のある形態によ
れば、複数の探針電極の各々を取付ける部材として、小
さい弾性定数を有する弾性体を用いることにより、探針
電極先端をレジスト表面に対して10-8N程度の弱い作
用力(斥力)を作用させながら描画を行なうものであ
る。これによりレジスト中に電流を流す(電子を注入す
る)ことなく、又、探針電極先端やレジスト表面を破壊
することなく、パターン描画の横走査中に探針電極−レ
ジスト表面間の距離を一定に保つことが可能となる。本
発明ではレジスト膜厚は自由に選ぶことができるため、
1〜10nmという好ましい膜厚のレジストを用いるこ
とができる。
According to one embodiment of the present invention that achieves this object, by using an elastic body having a small elastic constant as a member for mounting each of the plurality of probe electrodes, the tip of the probe electrode with respect to the resist surface is used. The drawing is performed while applying a weak acting force (repulsive force) of about 10 −8 N. As a result, the distance between the probe electrode and the resist surface is kept constant during lateral scanning of pattern drawing without passing a current (injecting electrons) in the resist and without destroying the tip of the probe electrode or the resist surface. It is possible to keep In the present invention, since the resist film thickness can be freely selected,
A resist having a preferable film thickness of 1 to 10 nm can be used.

【0009】又、本発明のある形態では、全探針電極を
一括でレジスト表面に接触させる際に、レジストと個々
の探針電極との間に働く作用力(斥力)による弾性体の
変形によってプロセス上の誤差による個々の探針電極間
の形状、大きさのばらつきを吸収するようにしたもので
ある。このことにより個々の探針電極の制御を行なうこ
となく、全探針電極を一定のレベル以下の力(〜10-8
N)でレジスト表面に対して一定の距離に近づけること
ができる。又、複数の探針電極の並びの一部にAFMの
原理を応用した弾性体の弾性変形量を検出することによ
り、全ての探針電極先端とレジスト表面との間に働く力
を一定の範囲に保つようにしたものである。
Further, according to an aspect of the present invention, when all the probe electrodes are brought into contact with the resist surface all at once, the elastic body is deformed by the acting force (repulsive force) acting between the resist and the individual probe electrodes. This is designed to absorb variations in shape and size between individual probe electrodes due to process errors. This allows all the probe electrodes to be operated at a force below a certain level (~ 10 -8 without controlling the individual probe electrodes).
In N), the resist surface can be brought close to a certain distance. Further, by detecting the elastic deformation amount of the elastic body applying the AFM principle to a part of the array of a plurality of probe electrodes, the force acting between all the probe electrode tips and the resist surface can be kept within a certain range. It is something that is kept.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。図1は実施例の装置の側方から見た断面図、
図2は上方から見た断面図である。図1において、筐体
111には弾性体支持部材101が固定され、弾性体支
持部材101は複数の探針電極106,107,10
8,109がそれぞれ取付けられている複数の弾性体1
02,103,104,105を支持する。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view of the apparatus of the embodiment as seen from the side,
FIG. 2 is a sectional view seen from above. In FIG. 1, an elastic body supporting member 101 is fixed to a housing 111, and the elastic body supporting member 101 includes a plurality of probe electrodes 106, 107 and 10.
A plurality of elastic bodies 1 to which 8 and 109 are respectively attached
02, 103, 104, 105 are supported.

【0011】ここで用いられる探針電極を有する弾性体
は以下のように作成される。Si基板を熱酸化により表
面に厚さ0.3μmのSiO2 膜を生成し、長さ100
0μm、幅20μmの複数の弾性体形状をパターニング
する。次に探針電極への電気信号配線パターンを形成
し、基板裏面からKOH液によって異方性エッチングを
行ない、複数の弾性体を形成する。続いて炭素等の電子
ビームデポジション法によって、弾性体先端に高さ5μ
mの探針電極電極を形成する。こうして作成された複数
の弾性体の先端の撓みに対する弾性定数は0.01N/
m程度となる。又、個々の弾性体のそり、探針電極の高
さのプロセス誤差等を考慮すると、弾性体支持部材10
1を基準にした探針電極の先端の高さ方向の位置のばら
つきは1μm程度となる。
The elastic body having the probe electrode used here is prepared as follows. The Si substrate is thermally oxidized to form a SiO 2 film having a thickness of 0.3 μm on the surface and a length of 100 μm.
A plurality of elastic body shapes of 0 μm and a width of 20 μm are patterned. Next, an electric signal wiring pattern to the probe electrode is formed, and anisotropic etching is performed from the back surface of the substrate with KOH liquid to form a plurality of elastic bodies. Then, using an electron beam deposition method using carbon or the like, a height of 5 μ is attached to the tip of the elastic body.
m probe electrodes are formed. The elastic constant with respect to the bending of the tips of the plurality of elastic bodies thus created is 0.01 N /
It will be about m. Further, in consideration of the warp of each elastic body, the process error of the height of the probe electrode, etc., the elastic body supporting member 10
The variation in the height direction position of the tip of the probe electrode based on 1 is about 1 μm.

【0012】112は基板であり、その上に導電層11
3及びレジスト110が形成されて描画媒体を構成す
る。基板112はSiウェハ、ガラス基板、サファイア
基板、雲母劈開面など、広い面積に渡って平滑性を有す
ものが用いられ、基板112上に金、アルミ、白金など
の導電層113を10nm程度の膜厚で形成する。この
とき通常の蒸着法やスパッタ法のみでなく、プロセス中
に基板を数百度に加熱しながらエピタキシャル成長させ
たり、プロセス後に熱アニールを施すことにより、より
平滑な面を有する導電層であることが望ましい。このよ
うな導電層113の上にPMMA(ポリメタクリル酸メ
チル)、PIBM(ポリイソブチルメタクリレート)、
11/8AFAジアセチレン(ペンタコサ−10,12
−ジノイック酸)、ωトリコセン酸などの電子線感光レ
ジスト材料110を、LB法(ラングミュア・ブロジェ
ット法)やスピンコート法により1〜10nmの膜厚で
塗布する。この時、数nmという膜厚でしかも均一にレ
ジストを塗布するためには、LB法のように単分子膜を
積層して成膜する方法が望ましい。なお、前記弾性体の
弾性定数はレジスト110の弾性定数よりも小さくなっ
ている。
Reference numeral 112 is a substrate on which the conductive layer 11 is formed.
3 and the resist 110 are formed to form a drawing medium. A substrate 112 having a smoothness over a wide area such as a Si wafer, a glass substrate, a sapphire substrate, or a cleaved surface of mica is used, and a conductive layer 113 such as gold, aluminum, or platinum having a thickness of about 10 nm is formed on the substrate 112. It is formed with a film thickness. At this time, in addition to the usual vapor deposition method and sputtering method, it is preferable that the conductive layer has a smoother surface by performing epitaxial growth while heating the substrate to several hundred degrees during the process or performing thermal annealing after the process. .. PMMA (polymethylmethacrylate), PIBM (polyisobutylmethacrylate), or the like on the conductive layer 113.
11/8 AFA diacetylene (pentacosa-10,12
-Dinoic acid), ω-tricosenoic acid, or another electron beam photosensitive resist material 110 is applied to a film thickness of 1 to 10 nm by the LB method (Langmuir-Blodgett method) or the spin coating method. At this time, in order to apply the resist evenly with a film thickness of several nm, a method of laminating monomolecular films like the LB method is desirable. The elastic constant of the elastic body is smaller than that of the resist 110.

【0013】レジスト110及び導電層113を設けた
基板112はステージ114上に固定され、このステー
ジをXYθ駆動機構115、及びZ駆動機構116,1
17,201,202(図2に記載)によって駆動し、
探針電極106,107,108,109に対してレジ
スト110上部の面上の所望の位置に接近させる。この
接近方法について詳細に説明する。図1、図2に示すよ
うに、規則的に並んだ複数の探針電極の四隅に位置する
探針電極106,109,203,204の裏面にレー
ザ光源118、205からのレーザ光をビームスプリッ
タ119,120,206,207を通して照射し、そ
の反射光のスポット位置をそれぞれ位置検出素子12
1,122,208,209によって検知する。その上
で、Z駆動機構116,117,201,202によ
り、図中Z方向に探針電極に対して基板112を徐々に
近づけていく。探針電極106,109,203,20
4のいずれかがレジスト110上部の面に接触(両者間
に斥力が働く程度に接近)すると、いま仮にに接触した
電極を106とすると、その探針電極106が取付けら
れている弾性体102に弾性変形(撓み)が生じるた
め、位置検出素子121上の反射光スポット位置に位置
ずれが生じ、その位置ずれ量に対応して大きさが変化す
る検出信号が制御コンピュータ123に送られる。ここ
で弾性体の長さをl、探針電極裏面から位置検出素子ま
での光路長をL、弾性体先端の弾性変形量をΔxとする
と、位置検出素子上での反射光スポットの位置ずれ量Δ
Xは、ΔX=2L・Δx/lと表わされる。実際にl=
100μm,L=50mm,位置検出素子上での位置ず
れ検出分解能を10nmとすると、弾性変形量Δxの検
出分解能は10pmとなり、探針電極とレジスト面が接
触した際に間に働く力が十分に小さい段階で接触を検知
することができる。前述のように、弾性体の先端の撓み
の弾性定数を0.01N/mの大きさ程度に作成すれ
ば、検出可能な作用力は10-13 Nとなる。
A substrate 112 provided with a resist 110 and a conductive layer 113 is fixed on a stage 114, and this stage is provided with an XYθ drive mechanism 115 and Z drive mechanisms 116, 1.
Driven by 17, 201, 202 (shown in FIG. 2),
The probe electrodes 106, 107, 108 and 109 are brought close to desired positions on the upper surface of the resist 110. This approach method will be described in detail. As shown in FIGS. 1 and 2, laser beams from laser light sources 118 and 205 are beam splitters on the back surfaces of the probe electrodes 106, 109, 203, and 204 located at the four corners of a plurality of regularly arranged probe electrodes. Irradiation through 119, 120, 206, and 207, and the spot position of the reflected light is detected by the position detection element 12 respectively.
1, 122, 208, 209. After that, the Z drive mechanisms 116, 117, 201, 202 gradually bring the substrate 112 closer to the probe electrode in the Z direction in the drawing. Probe electrodes 106, 109, 203, 20
When any one of the four contacts with the surface of the resist 110 (approaches to the extent that a repulsive force acts between the two), it is assumed that the contacting electrode 106 is the elastic body 102 to which the probe electrode 106 is attached. Due to elastic deformation (deflection), the position of the reflected light spot on the position detection element 121 is displaced, and a detection signal whose size changes according to the amount of displacement is sent to the control computer 123. Here, when the length of the elastic body is 1, the optical path length from the back surface of the probe electrode to the position detecting element is L, and the elastic deformation amount of the tip of the elastic body is Δx, the amount of positional deviation of the reflected light spot on the position detecting element. Δ
X is represented as ΔX = 2L · Δx / l. Actually l =
Assuming that 100 μm, L = 50 mm, and the position shift detection resolution on the position detection element is 10 nm, the detection resolution of the elastic deformation amount Δx is 10 pm, and the force acting when the probe electrode and the resist surface come into contact is sufficient. Contact can be detected at a small stage. As described above, if the elastic constant of the bending of the tip of the elastic body is made to be about 0.01 N / m, the action force that can be detected becomes 10 −13 N.

【0014】探針電極106がレジスト110面に接触
した信号が位置制御コンピュータ123に送られると、
Z位置制御回路124を通してZ駆動機構116にはそ
の位置を保持するための駆動信号が伝えられ、他の3つ
のZ駆動機構117,201,202には更にZ方向に
探針電極109,203,204に対して基板112を
近づけるよう信号が伝えられる。同様にして2番目に接
触した探針電極のZ駆動機構を保持制御する。更に同様
に残りの2つのZ駆動機構をZ方向に駆動し、3番目の
探針電極がレジスト110面に接触したことが検知され
たら、ここで4つの駆動機構116,117,201,
202を同時に更にΔZだけ探針電極に対して基板11
2を近づける。このようなステップで制御を行なうこと
により、製造プロセスで生ずる複数の探針電極のZ方向
の位置のばらつきやレジスト表面のうねりに影響を受け
ず、全ての探針電極をレジスト110面に接触させるこ
とができる。ΔZの大きさとしては、探針電極とレジス
ト面が接触した際に互いに破壊するような力が加わらな
いように選ぶ必要がある。本実施例にあげた有機薄膜の
レジスト材料の例においては、破壊の力の閾値は約1×
10-7N程度である。前述のように探針電極のZ方向の
位置のばらつきやレジスト表面のうねりは、約1μm程
度にすることは可能であるので、探針電極が取付けられ
ている弾性体の弾性定数を0.01N/mとすれば、全
ての探針電極とレジスト面との間に働く作用力をそれぞ
れ2×10-8N(=0.01N/m×1μm×2)程度
にすることができ、この程度の大きさの力であれば探針
電極とレジスト面との間での破壊を避けることができ
る。本発明では使用する弾性体の弾性定数は、探針電極
−レジスト間に働く力により破壊の起こる力の閾値を、
各探針電極のレジスト表面に対する距離のばらつき量の
最大値で割った値よりも小さくすることが前提となる。
本実施例であげた探針電極材料−レジスト材料では弾性
定数は1×10-7N/zμm=0.05N/mより小さ
くなくてはならない。
When a signal that the probe electrode 106 contacts the surface of the resist 110 is sent to the position control computer 123,
A drive signal for holding the position is transmitted to the Z drive mechanism 116 through the Z position control circuit 124, and the other three Z drive mechanisms 117, 201, 202 are further probed with the probe electrodes 109, 203, 203 in the Z direction. A signal is transmitted to bring the substrate 112 closer to 204. Similarly, the Z drive mechanism for the second contacting probe electrode is held and controlled. Further, similarly, the remaining two Z drive mechanisms are driven in the Z direction, and when it is detected that the third probe electrode contacts the surface of the resist 110, the four drive mechanisms 116, 117, 201,
202 at the same time by ΔZ to the probe electrode to the substrate 11
Bring 2 closer. By performing control in such steps, all the probe electrodes are brought into contact with the surface of the resist 110 without being affected by variations in the Z-direction positions of the plurality of probe electrodes that occur in the manufacturing process and undulations of the resist surface. be able to. It is necessary to select the magnitude of ΔZ so as not to exert a force that destroys each other when the probe electrode and the resist surface come into contact with each other. In the example of the resist material of the organic thin film described in this example, the threshold of the breaking force is about 1 ×.
It is about 10 −7 N. As described above, the variation in the Z-direction position of the probe electrode and the waviness of the resist surface can be set to about 1 μm. Therefore, the elastic constant of the elastic body to which the probe electrode is attached is 0.01N. / M, the acting force acting between all the probe electrodes and the resist surface can be about 2 × 10 −8 N (= 0.01 N / m × 1 μm × 2), respectively. With a force of, it is possible to avoid breakage between the probe electrode and the resist surface. The elastic constant of the elastic body used in the present invention is the threshold value of the force at which breakage occurs due to the force acting between the probe electrode and the resist.
It is premised that the value is smaller than the value obtained by dividing the variation amount of the distance between each probe electrode and the resist surface by the maximum value.
In the probe electrode material-resist material described in this example, the elastic constant must be smaller than 1 × 10 −7 N / z μm = 0.05 N / m.

【0015】以降、前述の3つの探針電極が取付けられ
ているそれぞれの弾性体の弾性変形量(=撓み量)が一
定になるように、位置検出素子からの信号をを基に位置
制御コンピュータ、Z位置制御回路によってそれぞれの
Z駆動機構を駆動しながらxyθ方向の位置合わせ動
作、描画動作を行なう。
Thereafter, the position control computer is based on the signal from the position detecting element so that the elastic deformation amount (= deflection amount) of each elastic body to which the above-mentioned three probe electrodes are attached becomes constant. , Z position control circuits drive respective Z drive mechanisms to perform alignment operation and drawing operation in the xyθ directions.

【0016】ここでxyθ方向におけるレジスト110
と複数の各探針電極との間の位置合わせ方法について説
明する。前述のように全ての探針電極がレジスト110
面に(2×10-8N程度の)弱い作用力(斥力)で接触
した状態でxyθ駆動機構115によりステージ114
をxy方向の2次元走査を行なう。2次元走査に伴い3
つの探針電極(仮にa,b,cとする)がレジスト11
0表面の凹凸によって作用力の変化を受け、それらが各
探針電極に取付けられている弾性体a,b,cの弾性変
形量に変化を与える。この弾性変形量がそれぞれ一定に
なるように駆動するZ駆動機構の駆動量を2次元走査中
に探針電極の位置に対してマップ化することにより、レ
ジスト表面の探針電極走査領域の凹凸情報を得ることが
できる。探針電極a,b,cのそれぞれに対応するレジ
スト表面の凹凸情報の例を図3に示す。図中、”イ”で
示すマークはプロセスのまだ行なわれていないバージン
基板上にある位置合わせ用マークである。このマークと
してはもともと基板上に存在するキズや凹凸パターン等
の特徴的な形状を用いても良いし、探針電極と導電層間
にパルス電圧を印加することによって作成した凹凸形状
を用いても良い。図3では”イ”で示すマークが3つの
探針電極a,b,cの走査範囲の中心に位置するように
描いているが、中心からずれたところにある形状をマー
クとして用いても良い。
Here, the resist 110 in the xyθ directions
A method of aligning the probe electrode with each of the plurality of probe electrodes will be described. As described above, all the probe electrodes are made of the resist 110.
The stage 114 is moved by the xyθ drive mechanism 115 while being in contact with the surface with a weak acting force (repulsive force) (about 2 × 10 −8 N).
Is two-dimensionally scanned in the xy directions. 3 due to two-dimensional scanning
The two probe electrodes (probably a, b, and c) are resist 11
0 The unevenness on the surface causes a change in the acting force, which changes the elastic deformation amount of the elastic bodies a, b, c attached to each probe electrode. By mapping the drive amount of the Z drive mechanism that drives so that the elastic deformation amounts become constant with respect to the position of the probe electrode during the two-dimensional scanning, the unevenness information of the probe electrode scanning region on the resist surface is obtained. Can be obtained. FIG. 3 shows an example of unevenness information on the resist surface corresponding to each of the probe electrodes a, b, and c. In the figure, the mark indicated by "a" is an alignment mark on the virgin substrate which has not been processed yet. As this mark, a characteristic shape such as a scratch or an uneven pattern originally existing on the substrate may be used, or an uneven shape created by applying a pulse voltage between the probe electrode and the conductive layer may be used. .. In FIG. 3, the mark "a" is drawn so as to be located at the center of the scanning range of the three probe electrodes a, b, c, but a shape deviated from the center may be used as the mark. ..

【0017】パターン描画後、リフトオフ、エッチング
等のプロセスを経た基板は、歪みや再セッティング時の
誤差等により、各々の探針電極に対してプロセス前と同
じ位置を再現しない。従って探針電極a,b,cのそれ
ぞれに対応するレジスト表面の凹凸情報を再び得ると、
例えば図3中に示した”ニ”の位置にずれてしまう。こ
のときのそれぞれのプロセス前からの位置ずれ量を(x
a,ya )(xb,yb )(xc,yc )とする。これらのず
れの要因としては、再セッティング時のx、y方向のず
れΔx1,Δy1 、回転ずれΔθ、プロセス時の歪みΔx
2,Δy2 があり位置ずれ量との間には以下の関係があ
る。
After the pattern drawing, the substrate that has undergone processes such as lift-off and etching does not reproduce the same position as before the process with respect to each probe electrode due to distortion or error during resetting. Therefore, when the unevenness information of the resist surface corresponding to each of the probe electrodes a, b, and c is obtained again,
For example, it is displaced to the position of "d" shown in FIG. At this time, the amount of positional deviation from before each process is (x
a, y a) (x b , y b) (x c, and y c). The causes of these deviations are the deviations Δx 1, Δy 1 in the x and y directions during resetting, the rotation deviations Δθ, and the distortion Δx during the process.
There are 2 and Δy 2 , and there is the following relationship with the amount of positional deviation.

【0018】[0018]

【外1】 [Outer 1]

【0019】これらの関係式を用いて、Δx1 ,Δy
1 ,Δx2 ,Δy2 ,Δθを算出し、xyθ位置制御回
路125によってxyθ駆動機構115を駆動し、再セ
ッティング時の位置ずれを補正する。なおここでプロセ
ス時の歪みΔx2 ,Δy2 については完全には補正でき
ないので、全体の位置ずれ量が小さくなるように(例え
ば位置ずれの偏差が最小になるように)補正を行なう。
Using these relational expressions, Δx 1 , Δy
1 , Δx 2 , Δy 2 , and Δθ are calculated, and the xyθ position control circuit 125 drives the xyθ drive mechanism 115 to correct the positional deviation at the time of resetting. Since the distortions Δx 2 and Δy 2 during the process cannot be completely corrected, correction is performed so that the total amount of positional deviation becomes small (for example, the deviation of positional deviation becomes minimum).

【0020】次にパターン描画の方法について説明す
る。描画制御コンピュータ126からの信号を基に複数
の探針電極に対する描画速度をxyθ位置制御回路12
5、xyθ駆動機構115を用いて選択し、同時に描画
パターン信号を描画用電圧印加回路127、切替回路1
28を経て複数の各探針電極と導電層113との間に与
える。このとき全ての探針電極に対して同じパターンを
描画するときには切替回路128において全ての回路を
同時にONにすれば良いし、異なるパターンを描画する
ときには描画パターン信号に同期した切替信号によって
回路を切替えていけば良い。
Next, a pattern drawing method will be described. Based on a signal from the drawing control computer 126, the xyθ position control circuit 12 sets the drawing speeds for a plurality of probe electrodes.
5, the xyθ drive mechanism 115 is used for selection, and at the same time, the drawing pattern signal is applied to the drawing voltage applying circuit 127 and the switching circuit 1.
It is applied between the plurality of probe electrodes and the conductive layer 113 via 28. At this time, when drawing the same pattern for all the probe electrodes, all the circuits may be turned on at the same time in the switching circuit 128, and when drawing different patterns, the circuits are switched by the switching signal synchronized with the drawing pattern signal. You should go.

【0021】図4に上記描画装置を用いたパターン描画
のプロセスの一例を示す。10-8N程度の斥力が作用し
ている探針電極402と導電層403との間に描画用電
圧印加回路405により−10V程度の電圧を印加す
る。これを探針電極402に対して基板404をx,y
2次元方向に走査しながら描画を行なうべき位置に来た
時に電圧を印加することにより、例えば図中、斜線で示
した描画部分406が得られる。なお本装置の特徴とし
て探針電極402と導電層403との間に電圧を印加す
る必要なしに、探針電極402とレジスト401とのZ
方向位置関係が保たれるための描画を行なわない位置に
おいてレジストを露光することがない。
FIG. 4 shows an example of a pattern drawing process using the drawing apparatus. A voltage of about −10 V is applied by the drawing voltage application circuit 405 between the probe electrode 402 and the conductive layer 403 on which a repulsive force of about 10 −8 N is applied. This is the substrate electrode 404 x, y with respect to the probe electrode 402.
By applying a voltage when the position where drawing should be performed is performed while scanning in the two-dimensional direction, for example, a drawing portion 406 indicated by hatching in the drawing can be obtained. A feature of the present device is that Z between the probe electrode 402 and the resist 401 does not need to be applied between the probe electrode 402 and the conductive layer 403.
The resist is not exposed at a position where drawing is not performed for maintaining the directional positional relationship.

【0022】次に、現像、エッチング、レジスト除去の
各プロセスを行なって図4の最後に示した所望のパター
ンを得る。本実施例で示した方法では、レジストは現像
のプロセスに耐え得る程度であって且つできるだけ薄く
することが望ましい。具体的にはレジスト膜厚1〜10
nm程度に選び、しかも低エネルギパターン描画である
ため散乱2次電子によるパターンの広がりを避けること
ができるため、精度の及び再現性が良く、絶縁性基板の
上に1〜10nm程度の幅の導電性細線を同程度の間隔
で2次元方向に自由に作成することができる。
Next, development, etching and resist removal processes are performed to obtain the desired pattern shown at the end of FIG. In the method shown in this example, it is desirable that the resist be as thin as possible and endure the development process. Specifically, the resist film thickness 1 to 10
Since it is possible to avoid pattern spread due to scattered secondary electrons because it is a low-energy pattern drawing, it is highly accurate and reproducible, and has a width of about 1 to 10 nm on the insulating substrate. The characteristic thin lines can be freely created in the two-dimensional direction at equal intervals.

【0023】次に図5にパターン描画プロセスの別の例
を示す。基板501上に例えば図5に示すような導電層
502パターンを設け、電子線照射によって導電性化す
るようなレジスト材料、例えばジアセチレン誘導体(1
1/8AFAジアセチレン)503を塗布後、10-8
程度の斥力が作用している探針電極504−導電層50
2間に、描画用電圧印加回路506により−10V程度
の電圧を印加する。この状態のまま探針電極504に対
して基板501を所望のパターンに沿って走査していく
と、走査後のレジスト材料は導電性化(本実施例ではジ
アセチレン誘導体のポリマー化による導電性化)が連続
的に進み、図中に示したような導電同502のパターン
間に連続的な導電性パターンを描くことができる。本実
施例の方法によれば、前記実施例と同様、精度及び再現
性良く絶縁性基板の上に1〜10nm程度の幅の導電性
細線を同程度の間隔で2次元方向に連続的に直接描画に
より作成することができる。なお図5は描画途中の説明
図であるが、描画完成後は図中の導電性細線aとbをそ
れぞれ通る電子波信号がcの部分で互いに量子的な干渉
を起こすような量子効果デバイスの一例を示したもので
ある。
Next, FIG. 5 shows another example of the pattern drawing process. A conductive layer 502 pattern as shown in FIG. 5, for example, is provided on the substrate 501, and a resist material, such as a diacetylene derivative (1
1/8 AFA diacetylene) 503 is applied, then 10 -8 N
Probe electrode 504 on which a repulsive force of a certain degree acts-Conductive layer 50
Between the two, a voltage of about -10V is applied by the drawing voltage application circuit 506. When the substrate 501 is scanned along the desired pattern with respect to the probe electrode 504 in this state, the resist material after scanning becomes conductive (in this embodiment, it becomes conductive by polymerizing the diacetylene derivative). ) Continuously progresses, and a continuous conductive pattern can be drawn between the patterns of the conductive layers 502 as shown in the figure. According to the method of this embodiment, as in the case of the above embodiment, conductive thin wires having a width of about 1 to 10 nm are directly and two-dimensionally continuously arranged on the insulating substrate with good accuracy and reproducibility at equal intervals. It can be created by drawing. Although FIG. 5 is an explanatory view during drawing, after the drawing is completed, a quantum effect device in which electron wave signals passing through the conductive thin lines a and b in the drawing cause quantum interference with each other at a portion c This is an example.

【0024】図6はパターン描画プロセスの更なる実施
例を示す。半導電性を有する基板601上に例えば図に
示すような導電層602パターンを設け、電子線照射に
よって導電性化するようなレジスト材料(前記実施例と
同様)603を塗布後、10-8N程度の斥力が作用して
いる探針電極604−半導電性基板601間に、描画用
電圧印加回路606により−10V程度の電圧を印加す
る。これを探針電極604に対して半導電性基板601
をx,y2次元方向に走査しながら描画を行なうべき位
置に来た時に電圧を印加することにより、その部分のレ
ジスト材料603の導電性化(本実施例ではポリマー
化)が進む。本実施例の方法によれば前記実施例と同
様、図中に示したパターンを始め、任意のパターンを精
度及び再現性良く、半導電性基板の上に1〜10nm程
度の幅の導電性細線を同程度の間隔で2次元方向に直接
描画により作成することができる。なお本実施例の図は
描画途中の説明図であるが、描画完成後は図中、導電層
aからcへと伝わる電子波信号がbに示す周期的構造の
部分で量子的な干渉を起こすような量子効果デバイスの
一例を示したものである。
FIG. 6 shows a further embodiment of the pattern writing process. For example, a conductive layer 602 pattern as shown in the figure is provided on a substrate 601 having semi-conductivity, and a resist material (similar to the above embodiment) 603 that becomes conductive by electron beam irradiation is applied and then 10 −8 N is applied. A voltage of about −10 V is applied by the drawing voltage application circuit 606 between the probe electrode 604 and the semiconductive substrate 601 on which a repulsive force of a certain degree is applied. This is a semi-conductive substrate 601 for the probe electrode 604.
Is applied to the resist material 603 at the portion where the drawing is to be performed while scanning in the x and y two-dimensional directions to make the resist material 603 conductive (polymerization in this embodiment). According to the method of the present embodiment, similar to the above-described embodiments, the conductive thin wire having a width of about 1 to 10 nm can be formed on the semiconductive substrate including the pattern shown in the drawing with good accuracy and reproducibility. Can be created by drawing directly in a two-dimensional direction at equal intervals. Although the drawing of the present embodiment is an explanatory view during drawing, after completion of drawing, in the drawing, the electron wave signal transmitted from the conductive layers a to c causes quantum interference at the portion of the periodic structure shown by b. An example of such a quantum effect device is shown.

【0025】以上示したような複数の探針電極を有する
低エネルギ電子線描画装置と、従来の描画装置や光ステ
ッパやX線ステッパ等と組み合わせることにより、超L
SI等の半導体素子中に種々の量子効果機能を有する部
分を作り込むことが可能である。又、このような微細構
造を複数の探針電極で同時に作成することができるので
スループット(生産性)も向上する。
By combining the low energy electron beam drawing apparatus having a plurality of probe electrodes as described above with a conventional drawing apparatus, an optical stepper, an X-ray stepper, etc.
It is possible to build a portion having various quantum effect functions in a semiconductor element such as SI. Moreover, since such a fine structure can be simultaneously formed by a plurality of probe electrodes, the throughput (productivity) is also improved.

【0026】[0026]

【発明の効果】以上説明したように、個々の探針電極を
取付ける部材として小さい弾性定数を有する弾性体を用
い、全探針電極を一括でレジスト表面との間に非常に弱
い力(斥力)を作用させながら位置制御を行なうことに
より、全ての探針電極位置におけるパターン描画を再現
性良く且つ安定性高く行なうことが可能になった。又、
描画を行なわない位置におけるレジストの露光を避ける
ことができ、個々の探針電極の制御なしでも走査中の探
針電極やレジスト表面の破壊を避けることができる。こ
のため複数の描画ヘッド(探針電極)を有する描画装置
において、探針電極の位置制御系のハード、ソフトを大
幅に簡素化することが可能となり同時に生産性も大幅に
向上した。
As described above, an elastic body having a small elastic constant is used as a member for mounting individual probe electrodes, and a very weak force (repulsive force) between all probe electrodes and the resist surface at once. By performing the position control while operating, it becomes possible to perform pattern drawing at all probe electrode positions with good reproducibility and high stability. or,
It is possible to avoid exposure of the resist at a position where drawing is not performed, and it is possible to avoid destruction of the probe electrode or the resist surface during scanning without controlling individual probe electrodes. Therefore, in a drawing apparatus having a plurality of drawing heads (probe electrodes), the hardware and software of the position control system for the probe electrodes can be greatly simplified, and at the same time the productivity is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】描画装置の装置構成を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a device configuration of a drawing device.

【図2】描画装置の装置構成を示す横断面図である。FIG. 2 is a cross-sectional view showing a device configuration of a drawing device.

【図3】基板再セッティング時のxyθ方向の位置合わ
せ法の説明図である。
FIG. 3 is an explanatory diagram of an alignment method in xyθ directions when resetting a substrate.

【図4】描画方法の第1の実施例の説明図である。FIG. 4 is an explanatory diagram of a first embodiment of a drawing method.

【図5】描画方法の第2の実施例の説明図である。FIG. 5 is an explanatory diagram of a second embodiment of the drawing method.

【図6】描画方法の第3の実施例の説明図である。FIG. 6 is an explanatory diagram of a third embodiment of a drawing method.

【符号の説明】[Explanation of symbols]

101 弾性体支持部材 102〜105 弾性体 106〜109 探針電極 110 レジスト 111 筐体 112 基板 113 導電層 114 ステージ 115 xyθ駆動機構 116、117、118 Z駆動機構 119、120 ビームスプリッタ 121、122 位置検出素子 123 位置制御コンピュータ 124 Z位置制御回路 125 xyθ位置制御回路 126 描画制御コンピュータ 127 描画用電圧印加回路 128 切替え回路 101 elastic body support member 102-105 elastic body 106-109 probe electrode 110 resist 111 housing 112 substrate 113 conductive layer 114 stage 115 xyθ drive mechanism 116, 117, 118 Z drive mechanism 119, 120 beam splitter 121, 122 position detection Element 123 Position control computer 124 Z position control circuit 125 xyθ position control circuit 126 Drawing control computer 127 Drawing voltage application circuit 128 Switching circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 邦裕 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihiro Sakai 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 描画媒体に複数の探針電極を介して微細
パターンの描画を行なう方法で、複数の探針電極おのお
のを弾性体により支持し、前記複数の探針電極おのおの
と前記描画媒体との間に発生する斥力によって前記弾性
体を変形させることにより、前記複数の探針電極の前記
描画媒体に対する位置調整を行なうことを特徴とする微
細パターンの描画方法。
1. A method of drawing a fine pattern on a drawing medium via a plurality of probe electrodes, wherein each of the plurality of probe electrodes is supported by an elastic body, and each of the plurality of probe electrodes and the drawing medium are connected to each other. A fine pattern writing method, characterized in that the elastic body is deformed by a repulsive force generated between the two to adjust the positions of the plurality of probe electrodes with respect to the drawing medium.
【請求項2】 描画媒体に複数の探針電極を介して微細
パターンの描画を行なう装置で、複数の探針電極おのお
のを支持する弾性体と、前記複数の探針電極おのおのと
前記描画媒体との間に斥力が発生するまで近接させるた
めの駆動手段とを有し、該斥力によって前記弾性体を変
形させることにより、前記複数の探針電極の前記描画媒
体に対する位置調整を行なうことを特徴とする微細パタ
ーンの描画装置。
2. An apparatus for drawing a fine pattern on a drawing medium via a plurality of probe electrodes, an elastic body for supporting each of the plurality of probe electrodes, each of the plurality of probe electrodes, and the drawing medium. Drive means for bringing them closer to each other until a repulsive force is generated, and by deforming the elastic body by the repulsive force, position adjustment of the plurality of probe electrodes with respect to the drawing medium is performed. Fine pattern writing device.
【請求項3】 前記弾性体を変形させる際に前記複数の
探針電極のうちの特定のものの位置を検出し、該検出位
置から前記複数の探針電極全体と記録媒体との相対位置
関係を算出し、該算出結果より前記複数の探針電極全体
と描画媒体とを相対駆動することを特徴とする請求項1
記載の描画方法または請求項2記載の描画装置。
3. The position of a specific one of the plurality of probe electrodes is detected when the elastic body is deformed, and the relative positional relationship between the entire plurality of probe electrodes and the recording medium is detected from the detected position. 2. The calculation is performed, and the whole of the plurality of probe electrodes and the drawing medium are driven relative to each other based on the calculation result.
The drawing method according to claim 2 or the drawing device according to claim 2.
【請求項4】 前記弾性体は一端が支持体に固定され、
他端に探針電極を配置した梁である請求項1記載の描画
方法または請求項2記載の描画装置。
4. The elastic body has one end fixed to a support,
The drawing method according to claim 1, or the drawing device according to claim 2, wherein the drawing electrode is a beam having a probe electrode arranged at the other end.
【請求項5】 前記弾性体の弾性定数は0.05N/m
以下であり、1×10-7N以下の斥力が作用するように
した請求項1記載の描画方法または請求項2記載の描画
装置。
5. The elastic constant of the elastic body is 0.05 N / m.
The drawing method according to claim 1 or the drawing device according to claim 2, wherein a repulsive force of 1 × 10 −7 N or less is applied.
【請求項6】 前記描画媒体はレジスト材料である請求
項1記載の描画方法または請求項2記載の描画装置。
6. The drawing method according to claim 1, or the drawing apparatus according to claim 2, wherein the drawing medium is a resist material.
【請求項7】 前記レジストは1〜10nmの膜厚を有
する請求項6記載の描画方法又は装置。
7. The drawing method or apparatus according to claim 6, wherein the resist has a film thickness of 1 to 10 nm.
JP3233046A 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern Expired - Fee Related JP2986127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233046A JP2986127B2 (en) 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233046A JP2986127B2 (en) 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern

Publications (2)

Publication Number Publication Date
JPH0574403A true JPH0574403A (en) 1993-03-26
JP2986127B2 JP2986127B2 (en) 1999-12-06

Family

ID=16948954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233046A Expired - Fee Related JP2986127B2 (en) 1991-09-12 1991-09-12 Drawing method and drawing apparatus for fine pattern

Country Status (1)

Country Link
JP (1) JP2986127B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640433B1 (en) * 1997-05-13 2003-11-04 Canon Kabushiki Kaisha Method for forming a micro-pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640433B1 (en) * 1997-05-13 2003-11-04 Canon Kabushiki Kaisha Method for forming a micro-pattern

Also Published As

Publication number Publication date
JP2986127B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
JP3618896B2 (en) Manufacturing method of probe having minute aperture, probe thereby, combined apparatus of scanning near-field light microscope and scanning tunneling microscope using the probe, and recording / reproducing apparatus using the probe
US6313905B1 (en) Apparatus and method for defining a pattern on a substrate
JP3000492B2 (en) Information processing device
US5929438A (en) Cantilever and measuring apparatus using it
JPH05284765A (en) Cantilever type displacement element, cantilever type probe using the same, scan type tunnel microscope using the same probe and information processor
US6376833B2 (en) Projection having a micro-aperture, probe or multi-probe having such a projection and surface scanner, aligner or information processor comprising such a probe
JP3135779B2 (en) Information processing device
JPH05217861A (en) Method for detecting positional deviation and aligner
US4785189A (en) Method and apparatus for low-energy scanning electron beam lithography
US20020101573A1 (en) Electron exposure apparatus
JP2986127B2 (en) Drawing method and drawing apparatus for fine pattern
JP3224174B2 (en) Micro displacement element, optical deflector, scanning probe microscope, and information processing device
US6640433B1 (en) Method for forming a micro-pattern
JPH10340700A (en) Fine working method and fine working device
JP3189451B2 (en) Substrate alignment method
GB2267997A (en) Atomic scale devices
EP0200083B1 (en) Apparatus for low-energy scanning electron beam lithography
JPH06333276A (en) Recording medium and its production and information processor using this recording medium
JPH04263142A (en) Probe device, information processor using the probe device and information processing method
JP2605621B2 (en) Semiconductor whisker probe and method of manufacturing the same
JP2945725B2 (en) Atomic probe microscope
JPH0528545A (en) Device and method for information processing and face fitting method, using scanning probe microscope
JP2994833B2 (en) Recording and / or reproducing apparatus, method and information detecting apparatus
JP2942011B2 (en) Information storage device
JP3093065B2 (en) Recording / reproducing method and recording / reproducing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees