JPH0572580A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH0572580A
JPH0572580A JP23515291A JP23515291A JPH0572580A JP H0572580 A JPH0572580 A JP H0572580A JP 23515291 A JP23515291 A JP 23515291A JP 23515291 A JP23515291 A JP 23515291A JP H0572580 A JPH0572580 A JP H0572580A
Authority
JP
Japan
Prior art keywords
nonlinear optical
methyl
optical material
furan
furyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23515291A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ikeda
智之 池田
Yasuhiro Kimura
育弘 木村
Yoshitaka Goto
義隆 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP23515291A priority Critical patent/JPH0572580A/en
Publication of JPH0572580A publication Critical patent/JPH0572580A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nonlinear optical material having improved nonlinear optical effect such as second harmonic wave generation so that the obtd. nonlinear optical material can be effectively used for optical use such as a wavelength converter element, optical controller element, by constituting the nonlinear optical material of a furan deriv. CONSTITUTION:This nonlinear optical material consists of a furan deriv. (furan deriv. A) expressed by formula I. In formula I, R2 and R3 are same or different groups including hydrogen atom, bromine atom, nitro groups, methyl groups, methoxy groups, and trifluoromethyl groups, and n is 0 or 1. The furan deriv. A includes preferably, for example, 1-(2'-(5-methyl)furyl)-3-(4''-nitrophenyl) propene-1-one, 1-(2'-(5-methyl)furyl)-3-(4''-trigluoromethylphenyl)propene-1-one, 1-(2'-(5-methyl)furyl)-3-(3''-bromophenmyl)propene-1-one, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特定のフラン誘導体か
らなる非線形光学材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonlinear optical material composed of a specific furan derivative.

【0002】[0002]

【従来の技術】非線形光学材料とは、物質の中の光の電
界によって誘起される電子の誘発分極が、電界に対して
非線形な応答を生じる、いわゆる非線形光学効果を有す
る材料をさし、一般に下記数1により示される2次以上
の項により生じる。
2. Description of the Related Art Non-linear optical materials refer to materials having a so-called non-linear optical effect in which the induced polarization of electrons induced by an electric field of light in a substance causes a non-linear response to the electric field. It is caused by terms of the second or higher order shown by the following mathematical expression 1.

【0003】[0003]

【数1】 [Equation 1]

【0004】特に2次の効果を利用した第2高調波発生
(SHG)として知られている現象によれば、入射光は
第2高調波である2倍の周波数を有する光波となった
り、また電圧によって屈折率が変化するので、この現象
を利用して、波長変換、信号処理、レーザー光の変調等
の種々の光学的処理を行なうことが可能であり、極めて
有用であることが知られている。
In particular, according to a phenomenon known as second harmonic generation (SHG) utilizing the second-order effect, incident light becomes a light wave having a frequency twice that of the second harmonic, or Since the refractive index changes depending on the voltage, it is known that this phenomenon can be used to perform various optical processes such as wavelength conversion, signal processing, and laser light modulation, and is extremely useful. There is.

【0005】従来の非線形光学材料としては、KH2
4(KDP)、LiNbO3、NH42PO4(AD
P)等の無機結晶が使用されていたが、光学的純度の高
い単結晶が非常に高価であることや、潮解性を示し取扱
いに不便であること、また非線形感受率があまり高くな
い等の問題がある。
As a conventional nonlinear optical material, KH 2 P
O 4 (KDP), LiNbO 3 , NH 4 H 2 PO 4 (AD
Inorganic crystals such as P) were used, but single crystals with high optical purity are very expensive, deliquescent and inconvenient to handle, and non-linear susceptibility is not very high. There's a problem.

【0006】一方1983年アメリカ化学会シンポジウ
ムにおいて有機材料の有用性が示されて以来、尿素やア
ニリン化合物等の有機結晶が非線形光学材料として発表
されている。ところが、前記有機化合物は、未だに十分
な非線形光学効果を示しておらず、また非線形効果の比
較的高い化合物は、化合物自身の光吸収端が長波長側に
相当シフトしているため使用波長範囲が極めて限定され
るという欠点がある。
On the other hand, since the usefulness of organic materials was shown at the symposium of American Chemical Society in 1983, organic crystals such as urea and aniline compounds have been announced as nonlinear optical materials. However, the organic compound does not yet exhibit a sufficient non-linear optical effect, and the compound having a relatively high non-linear effect has a wavelength range of use because the light absorption edge of the compound itself is considerably shifted to the long wavelength side. It has the drawback of being very limited.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、青色
光の透過性、透明性に優れ、極めて高い非線形光学効果
を呈する非線形光学材料を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-linear optical material having excellent blue light transmissivity and transparency and exhibiting an extremely high non-linear optical effect.

【0008】[0008]

【課題を解決するための手段】本発明によれば、下記一
般式化2で表わされるフラン誘導体(以下フラン誘導体
Aと称す)からなる非線形光学材料が提供される。
According to the present invention, there is provided a nonlinear optical material comprising a furan derivative represented by the following general formula (2) (hereinafter referred to as furan derivative A).

【0009】[0009]

【化2】 [Chemical 2]

【0010】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0011】本発明の非線形光学材料に用いるフラン誘
導体は、前記フラン誘導体Aである。前記フラン誘導体
Aとしては、具体的には列えば、1−{2’−(5−メ
チル)フリル}−3−(4”−ニトロフェニル)プロペ
ン−1−オン、1−{2’−(5−メチル)フリル}−
3−(4”−トリフルオロメチルフェニル)プロペン−
1−オン、1−{2’−(5−メチル)フリル}−3−
(3”−ブロモフェニル)プロペン−1−オン、1−
{2’−(5−メチル)フリル}−3−(3”,4”,
5”−トリメトキシフェニル)プロペン−1−オン、1
−{2’−(5−メチル)フリル}−5−フェニル−
2,4−ペンタジエン1−オン等を好ましく挙げること
ができる。
The furan derivative used in the nonlinear optical material of the present invention is the furan derivative A. Specific examples of the furan derivative A include 1- {2 ′-(5-methyl) furyl} -3- (4 ″ -nitrophenyl) propen-1-one and 1- {2 ′-( 5-methyl) furyl}-
3- (4 "-trifluoromethylphenyl) propene-
1-one, 1- {2 '-(5-methyl) furyl} -3-
(3 "-Bromophenyl) propen-1-one, 1-
{2 '-(5-methyl) furyl} -3- (3 ", 4",
5 "-trimethoxyphenyl) propen-1-one, 1
-{2 '-(5-methyl) furyl} -5-phenyl-
Preferred examples include 2,4-pentadiene 1-one.

【0012】前記フラン誘導体Aを調製するには、例え
ば相当するベンズアルデヒド誘導体1モルと2−アセチ
ル−5−メチルフラン1モルとを水酸化ナトリウム等の
塩基性触媒存在下にて好ましくはメタノール、エタノー
ルなどのアルコール類等の溶媒を用いて、反応温度0℃
〜50℃で、2〜6時間脱水縮合反応させる等して容易
に得ることができる。前記反応温度が50℃を超えると
副反応による生成物が多量に生成し、また0℃未満の場
合には反応に長時間を要し、経済的にも好ましくない。
To prepare the furan derivative A, for example, 1 mol of the corresponding benzaldehyde derivative and 1 mol of 2-acetyl-5-methylfuran are preferably methanol, ethanol in the presence of a basic catalyst such as sodium hydroxide. Using a solvent such as alcohols at a reaction temperature of 0 ° C
It can be easily obtained by conducting a dehydration condensation reaction at -50 ° C for 2 to 6 hours. When the reaction temperature is higher than 50 ° C, a large amount of a product is produced by a side reaction, and when it is lower than 0 ° C, the reaction takes a long time, which is not economically preferable.

【0013】前記フラン誘導体Aを本発明の非線形光学
材料として使用するには、前記フラン誘導体Aをそのま
ま若しくは再結晶等公知の方法により精製する等して用
いることができる。
To use the furan derivative A as the nonlinear optical material of the present invention, the furan derivative A can be used as it is or after being purified by a known method such as recrystallization.

【0014】[0014]

【発明の効果】本発明の非線形光学材料は、特定構造の
フラン誘導体からなるので、従来用いられているKDP
等の無機化合物や尿素などに比して、第2次高調波発生
等の非線形光学効果に優れるので、波長変換素子や光制
御素子等の種々の光学的用途に有用である。
Since the nonlinear optical material of the present invention is composed of a furan derivative having a specific structure, it can be used in conventional KDP.
Since it is excellent in non-linear optical effects such as second harmonic generation as compared with inorganic compounds such as and urea, it is useful for various optical applications such as wavelength conversion elements and light control elements.

【0015】[0015]

【実施例】以下実施例及び比較例により本発明をさらに
詳細に説明するが本発明はこれらに限定されるものでは
ない。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited thereto.

【0016】[0016]

【合成例1】 4−ニトロ−ベンズアルデヒド1.52
g(0.010mol)と、2−アセチル−5−メチルフラ
ン1.24g(0.010mol)と、エタノール20mlと
を反応容器に仕込み、0℃で撹拌しながら10重量%水
酸化ナトリウム水溶液20mlを滴下した。滴下終了後、
25℃にて10時間反応を行ない、析出した固体を蒸留
水で数回洗浄した後、乾燥を行ない粗結晶物を得た。次
いで得られた粗結晶物をテトラヒドロフランに溶解さ
せ、得られた溶液をヘキサンに滴下し、再沈殿精製を行
なった。得られた結晶物を更にアセトン:エタノール=
2:1(容量比)の混合溶媒を用いて再結晶して、0.
827g(収率32%)の生成物を得た。分析の結果1
−{2’−(5−メチル)フリル}−3−(4”−ニト
ロフェニル)プロペン−1−オン(融点202.2℃)
であった。
Synthesis Example 1 4-nitro-benzaldehyde 1.52
g (0.010 mol), 1.24 g (0.010 mol) of 2-acetyl-5-methylfuran, and 20 ml of ethanol were charged into a reaction vessel, and 20 ml of a 10 wt% sodium hydroxide aqueous solution was added while stirring at 0 ° C. Dropped. After finishing the dropping
The reaction was carried out at 25 ° C. for 10 hours, the precipitated solid was washed with distilled water several times, and then dried to obtain a crude crystal product. Next, the obtained crude crystal product was dissolved in tetrahydrofuran, the resulting solution was added dropwise to hexane, and reprecipitation purification was performed. The obtained crystal product is further added with acetone: ethanol =
Recrystallization was performed using a mixed solvent of 2: 1 (volume ratio),
827 g (yield 32%) of product was obtained. Results of analysis 1
-{2 '-(5-methyl) furyl} -3- (4 "-nitrophenyl) propen-1-one (melting point 202.2 ° C)
Met.

【0017】[0017]

【合成例2〜5】4−ニトロ−ベンズアルデヒドを4−
トリフルオロメチルベンズアルデヒド(合成例2)、3
−ブロモベンズアルデヒド(合成例3)、3,4,5−
トリメトキシベンズアルデヒド(合成例4)、シンナム
アルデヒド(合成例5)に夫々代えた以外は合成例1と
同様にして合成を行なった。その結果1−{2’−(5
−メチル)フリル}−3−(4”−トリフルオロメチル
フェニル)プロペン−1−オン(融点137.0℃)を
69%の収率で(合成例2)、1−{2’−(5−メチ
ル)フリル}−3−(3”−ブロモフェニル)プロペン
−1−オン(融点92.9℃)を64%の収率で(合成
例3)、1−{2’−(5−メチル)フリル}−3−
(3”,4”,5”−トリメトキシフェニル)プロペン
−1−オン(融点119.9℃)を72%の収率で(合
成例4)、1−{2’−(5−メチル)フリル}−5−
フェニル−2,4−ペンタジエン−1−オン(融点10
8.2℃)を22%の収率で(合成例5)夫々得た。
[Synthesis Examples 2 to 5] 4-nitro-benzaldehyde was added to 4-
Trifluoromethylbenzaldehyde (Synthesis example 2), 3
-Bromobenzaldehyde (Synthesis example 3), 3,4,5-
Synthesis was performed in the same manner as in Synthesis Example 1 except that trimethoxybenzaldehyde (Synthesis Example 4) and cinnamaldehyde (Synthesis Example 5) were used, respectively. As a result, 1- {2 '-(5
-Methyl) furyl} -3- (4 "-trifluoromethylphenyl) propen-1-one (melting point 137.0 ° C) in 69% yield (Synthesis example 2), 1- {2 '-(5 -Methyl) furyl} -3- (3 "-bromophenyl) propen-1-one (mp 92.9 ° C) in 64% yield (Synthesis Example 3), 1- {2 '-(5-methyl ) Frill} -3-
(3 ″, 4 ″, 5 ″ -trimethoxyphenyl) propen-1-one (melting point 119.9 ° C.) in 72% yield (Synthesis Example 4), 1- {2 ′-(5-methyl) Frill} -5
Phenyl-2,4-pentadiene-1-one (melting point 10
(8.2 ° C.) was obtained in a yield of 22% (Synthesis example 5).

【0018】[0018]

【実施例1】合成例1〜5で得られた化合物の第2次高
調波発生(以下SHG強度と称す)の測定を行なった。
測定方法は直径106〜150μmに粒状化した試料を
スライドグラスに挟み、該試料にQスイッチ付きNd+
−YAGレーザー(波長1064nm)により10nsecの
パルス照射を行ない、試料より発生した第2次高調波を
検知した。標準試料には同様に粒状化した尿素を用い、
尿素のSHG強度を1とした際における試料のSHG強
度比を求めることにより行なった。この測定方法は、当
業者には公知の方法であり、例えば、ジャーナル・オブ
・アプライド・フィジックス36巻、8号3798頁〜
3813頁、1968年などを参考にすることができ
る。また前記化合物の0.05mmol/lエタノール溶液
を夫々調製し、吸収スペクトルの測定も行なった。SH
G強度、最大吸収波長(λmax)及び吸収端波長(λcut
off)の値を表1に示す。
Example 1 The second harmonic generation (hereinafter referred to as SHG intensity) of the compounds obtained in Synthesis Examples 1 to 5 was measured.
The measurement method is such that a granulated sample with a diameter of 106 to 150 μm is sandwiched between slide glasses, and the sample is Nd + with a Q switch.
Pulse irradiation for 10 nsec was performed with a -YAG laser (wavelength 1064 nm), and the second harmonic generated from the sample was detected. For the standard sample, similarly granulated urea was used,
It was carried out by obtaining the SHG intensity ratio of the sample when the SHG intensity of urea was set to 1. This measuring method is a method known to those skilled in the art, and for example, Journal of Applied Physics 36, No. 8, page 3798-
Reference can be made to pages 3813 and 1968. Further, 0.05 mmol / l ethanol solutions of the above compounds were prepared and the absorption spectra were also measured. SH
G intensity, maximum absorption wavelength (λmax) and absorption edge wavelength (λcut
The values of (off) are shown in Table 1.

【0019】[0019]

【比較例1】尿素、KDP及び表1に示す化合物を用い
た以外は実施例1と同様にして各測定を行なった。結果
を表1に示す。
Comparative Example 1 Each measurement was carried out in the same manner as in Example 1 except that urea, KDP and the compounds shown in Table 1 were used. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式化1で表わされるフラン誘導
体からなる非線形光学材料。 【化1】
1. A non-linear optical material comprising a furan derivative represented by the following general formula 1. [Chemical 1]
JP23515291A 1991-09-13 1991-09-13 Nonlinear optical material Pending JPH0572580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23515291A JPH0572580A (en) 1991-09-13 1991-09-13 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23515291A JPH0572580A (en) 1991-09-13 1991-09-13 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH0572580A true JPH0572580A (en) 1993-03-26

Family

ID=16981824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23515291A Pending JPH0572580A (en) 1991-09-13 1991-09-13 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH0572580A (en)

Similar Documents

Publication Publication Date Title
JPH075572B2 (en) 2- [2- (2-hydroxyphenyl) vinylpyrazine and method for producing the same
JPS6385526A (en) Non-linear optical material
JPH0572580A (en) Nonlinear optical material
JP2887833B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPH03112961A (en) Squarylium derivative and production thereof
JPH0740105B2 (en) Non-linear optical element
US5100584A (en) Non-linear optical device
JPH0197926A (en) Organic nonlinear optical material
US5045239A (en) Non-linear optical material
JP2574697B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same
JPH0719003B2 (en) Non-linear optical material
JP2725929B2 (en) Organic nonlinear optical material
JPH04261524A (en) Nonlinear optical material
JPH01100521A (en) Nonlinear optical material
JPH02259735A (en) Material for nonlinear optical element
JPH06128234A (en) Compound having asymmetric carbon atom and non-linear optical material composed of the compound
JPH04212937A (en) Nonlinear optical material
JPH06289443A (en) Nonlinear optical material
JPH03112982A (en) Benzalacetophenone and nonlinear optical material
JPH0196628A (en) Organic nonlinear optical material
JPH05188416A (en) Organic nonlinear optical material
JP2685380B2 (en) Organic nonlinear optical material
JP2763224B2 (en) Organic nonlinear optical material
JPH0578343A (en) 2-furylacrylic acid disubstituted-anilide compound and organic non-linear optical material
JP2725935B2 (en) Organic nonlinear optical material