JPH0570901A - Fe base soft magnetic alloy - Google Patents

Fe base soft magnetic alloy

Info

Publication number
JPH0570901A
JPH0570901A JP3262733A JP26273391A JPH0570901A JP H0570901 A JPH0570901 A JP H0570901A JP 3262733 A JP3262733 A JP 3262733A JP 26273391 A JP26273391 A JP 26273391A JP H0570901 A JPH0570901 A JP H0570901A
Authority
JP
Japan
Prior art keywords
alloy
phase
soft magnetic
supersaturated
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3262733A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Masaaki Matsui
正顕 松井
Kiyotaka Yamauchi
清隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3262733A priority Critical patent/JPH0570901A/en
Priority to DE19924230986 priority patent/DE4230986C2/en
Publication of JPH0570901A publication Critical patent/JPH0570901A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Abstract

PURPOSE:To provide an Fe base soft magnetic alloy excellent in frequency properties in high frequency exceeding 100kHz. CONSTITUTION:The molten metal of an alloy having a compsn. of Febal.Cu1Nb3 Si14.5B9(at%) is rapidly cooled by a single roll method to manufacture an amorphous thin strip of 5mm width and 18mum thickness. The surface of the alloy thin strip is coated with Al2O3, and after that, it is coiled into 15mm outside diameter and 3mm inside diameter to manufacture a toroidal magnetic core. This magnetic core is subjected to crystallization heat treatment, and its permeability mu10M of 10MHz after the heat treatment is measured. As the measured value, mu10M=850 is obtd. At the time of observing the micro structure of the alloy by a transmission electron microscope, it is confirmed that the alloy is crystallized, its average grain size is about 120Angstrom and, as a result of its analysis by Moessbauer effect, a supersaturated Fe-B solid soln. phase is contained by 23Vol.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種トランス、チョ
ークコイル、可飽和リアクトル、磁気ヘッド等の磁心、
その他磁性部品に用いられるFe基軟磁性合金に関し、
特に微細結晶粒からなるFe基軟磁性合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various transformers, choke coils, saturable reactors, magnetic cores and other magnetic cores,
Regarding Fe-based soft magnetic alloys used for other magnetic parts,
In particular, it relates to an Fe-based soft magnetic alloy composed of fine crystal grains.

【0002】[0002]

【従来の技術】従来、各種磁心としては、フェライトや
珪素鋼等からなる磁心が広く一般に用いられてきた。フ
ェライトは高周波における磁心損失が低いため特に10
0kHz以上の高周波領域で使用されている。一方珪素
鋼は飽和磁束密度が高く低周波では磁心を他の材料に比
べ小型化できるため数kHz以下の周波数帯で主に使用
されている。しかし、フェライトについては飽和磁束密
度が低く温度特性が悪いという欠点があり、一方、珪素
鋼については高周波における磁心損失が大きく、透磁率
も低いという欠点があった。このため、フェライト及び
珪素鋼ともにその特性に応じて用途が限定されるという
問題があった。
2. Description of the Related Art Conventionally, as various magnetic cores, magnetic cores made of ferrite, silicon steel or the like have been widely and generally used. Ferrite has a low core loss at high frequencies, so 10
It is used in the high frequency range of 0 kHz or higher. On the other hand, since silicon steel has a high saturation magnetic flux density and can make the magnetic core smaller at low frequencies than other materials, it is mainly used in a frequency band of several kHz or less. However, ferrite has the drawback that the saturation magnetic flux density is low and the temperature characteristics are poor, while silicon steel has the drawbacks that the core loss at high frequencies is large and the magnetic permeability is low. Therefore, there is a problem that the applications of both ferrite and silicon steel are limited depending on their characteristics.

【0003】近時、以上の従来の磁心材料における問題
を解消するために、飽和磁束密度が高く比較的高周波特
性に優れたFe基アモルファス合金やCo基アモルファ
ス合金が磁心材料としての用途に使用されている。Fe
基アモルファス合金は、特に高周波領域において軟磁気
特性が珪素鋼より優れるという利点を有し、一方Co基
アモルファス合金は軟磁気特性に優れ磁歪が小さいとい
う利点を有する。更に以上の各磁心材料の他に特開平1-
110707号にはFe基の微結晶合金が優れた高周波特性を
示すことが記載されている。
Recently, in order to solve the above problems in conventional magnetic core materials, Fe-based amorphous alloys and Co-based amorphous alloys having a high saturation magnetic flux density and relatively excellent high frequency characteristics have been used for magnetic core materials. ing. Fe
The base amorphous alloy has the advantage that the soft magnetic characteristics are superior to those of silicon steel, especially in the high frequency region, while the Co base amorphous alloy has the advantage that the soft magnetic characteristics are excellent and the magnetostriction is small. Furthermore, in addition to the above core materials,
No. 110707 describes that Fe-based microcrystalline alloy exhibits excellent high-frequency characteristics.

【0004】[0004]

【発明が解決しようとする問題点】しかし、以上の各磁
心材料については更に次のような問題があった。Fe基
アモルファス合金については、軟磁気特性が特に高周波
領域においては珪素鋼より優れてはいるものの十分であ
るとはいえず、また磁歪が著しく大きいという問題があ
る。一方Co基アモルファス合金は特に使用温度が高く
なると透磁率、磁心損失等の経時変化が大きいという欠
点があり実用上問題がある。
However, each of the above magnetic core materials has the following problems. Regarding the Fe-based amorphous alloy, the soft magnetic characteristics are superior to those of silicon steel, especially in the high frequency region, but it cannot be said to be sufficient, and there is a problem that the magnetostriction is extremely large. On the other hand, Co-based amorphous alloys have a drawback that their permeability, magnetic core loss, and other changes with time are large, especially when the operating temperature is high, which is a practical problem.

【0005】さらに特開平1-110707号に記載されたFe
基の微結晶合金も含めて、これらの合金は、100kH
zを越えるような周波数領域では周波数特性が十分でな
く一層の特性改善が望まれていた。したがってこの発明
は以上の従来技術における問題に鑑みてなされたもので
あって、100kHzを越えるような高周波における周
波数特性に優れるFe基軟磁性合金を提供することを目
的とする。
Further, Fe described in JP-A 1-110707
These alloys, including the base microcrystalline alloy, are 100 kH
In the frequency region exceeding z, the frequency characteristic is not sufficient, and further improvement of the characteristic has been desired. Therefore, the present invention has been made in view of the above problems in the prior art, and an object thereof is to provide an Fe-based soft magnetic alloy having excellent frequency characteristics at a high frequency exceeding 100 kHz.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
にこの発明の発明者らは、平均粒径が500オングスト
ローム以下である結晶粒からなる合金であり、少なくと
も一部の結晶粒にに過飽和Fe−B固溶相を含有するF
e基軟磁性合金が特に100kHzを越える周波数領域
において優れた高周波磁気特性を示すことを見いだしこ
の発明に想倒した。
In order to achieve the above-mentioned object, the inventors of the present invention are alloys composed of crystal grains having an average grain size of 500 angstroms or less, and at least some of the crystal grains are supersaturated. Fe containing Fe-B solid solution phase
The inventors have found that the e-based soft magnetic alloy exhibits excellent high-frequency magnetic properties, particularly in the frequency range exceeding 100 kHz, and have devised the present invention.

【0007】すなわちこの発明は、平均粒径が500オ
ングストローム以下である結晶粒を含み、少なくとも一
部の結晶粒に過飽和Fe−B固溶相を含有するFe基軟
磁性合金を提供する。
That is, the present invention provides an Fe-based soft magnetic alloy containing crystal grains having an average grain size of 500 angstroms or less, and at least a part of the crystal grains containing a supersaturated Fe-B solid solution phase.

【0008】この発明においては、結晶粒の平均粒径は
500オングストローム以下に調製される。この理由は
平均粒径が500オングストロームを越えると高周波磁
気特性が著しく悪くなるためである。結晶粒の平均粒径
は好ましくは20〜30オングストローム、最も好まし
くは50〜200オングストロームとするのが良い。
In the present invention, the average grain size of crystal grains is adjusted to 500 angstroms or less. The reason for this is that if the average particle size exceeds 500 angstroms, the high frequency magnetic properties are significantly deteriorated. The average grain size of the crystal grains is preferably 20 to 30 angstroms, and most preferably 50 to 200 angstroms.

【0009】ここにこの発明にいう、平均粒径の測定法
としては線分法、X線の半価幅より求める方法、等があ
る。前記過飽和Fe−B固溶相は高周波磁気特性を良好
にするために必要であり、過飽和Fe−B固溶相が存在
しないと、特に100kHzを越える高周波領域におい
て十分な特性が得られない。
The method of measuring the average particle size referred to in the present invention includes a line segment method and a method of obtaining from the half width of X-ray. The supersaturated Fe-B solid solution phase is necessary in order to improve the high frequency magnetic characteristics, and if the supersaturated Fe-B solid solution phase does not exist, sufficient characteristics cannot be obtained particularly in the high frequency region exceeding 100 kHz.

【0010】この過飽和Fe−B固溶相は特に好ましく
は合金全体に対し10〜30%の比率で存在する様にす
るのが良い。本発明において前記結晶粒はFe−Si相
を含む場合がある。このFe−Si相は磁歪を低減する
作用や結晶磁気異方性を低減し、透磁率を向上する作用
がある。このFe−Si相とFe−B固溶相とが共存す
る場合の両者の存在形態については、両者が同一結晶粒
内に存在するのか、または各相がそれぞれ別個の結晶粒
内に存在するのか明確となっていない。このFe−Si
相は合金全体に対し30〜70%の比率で存在する様に
するのが望ましい。
The supersaturated Fe-B solid solution phase is particularly preferably present in a proportion of 10 to 30% with respect to the entire alloy. In the present invention, the crystal grains may include a Fe-Si phase. The Fe-Si phase has a function of reducing magnetostriction and a function of reducing crystal magnetic anisotropy and improving magnetic permeability. Regarding the existence form of both the Fe-Si phase and the Fe-B solid solution phase when they coexist, whether both exist in the same crystal grain or whether each phase exists in each separate crystal grain. Not clear. This Fe-Si
The phases are preferably present in a proportion of 30-70% with respect to the total alloy.

【0011】またこの発明のFe基軟磁性合金は、熱処
理条件や組成を調製することによってアモルファス相が
一部に含まれる場合がある。しかし、このアモルファス
相があまり多く存在すると高周波特性が劣化するため、
最大でも50%以下とすべきである。
The Fe-based soft magnetic alloy of the present invention may partially contain an amorphous phase by adjusting heat treatment conditions and composition. However, if there are too many amorphous phases, the high frequency characteristics will deteriorate,
It should be at most 50% or less.

【0012】またFe−Si相には一部に規則相が存在
する場合がある。この場合も高透磁率での優れた軟磁気
特性を得ることができる。ここでこの規則相とはX線解
析等によってその存在が認識され得る。
In some cases, the Fe-Si phase may have an ordered phase. Also in this case, excellent soft magnetic characteristics with high magnetic permeability can be obtained. Here, the presence of this ordered phase can be recognized by X-ray analysis or the like.

【0013】さらにこの発明のFe基軟磁性合金は、組
成式:(Fe1-aa100-x-y-z-α-β-γAxSiyz
M’αM’’βXγ(at%)(但し、MはCo及び/
またはNiであり、AはCu、Ag、Auから選ばれる
少なくとも一種の元素、M’はNb,Mo,Ta,T
i,Zr,Hf,V及びWからなる群から選ばれた少な
くとも1種の元素、M’’はCr,Mn,Al,白金族
元素、Sc,Zn,Sn,Reからなる群から選ばれた
少なくとも1種の元素、XはC、Ge、P、Gaからな
る群から選ばれた少なくとも1種の元素であり、a,
x,y,z,α,β及びγはそれぞれ0≦a≦0.5,
0.1≦x≦10,0≦y≦30,0<z≦30,0≦
α≦20,0≦β≦20,0≦γ≦20を満たす。)に
より表される組成からなる様にするのが好ましい。この
合金系では特に優れた高周波磁気特性が得られるからで
ある。また、a,x,y,z,α,β及びγはそれぞれ
0≦a≦0.1,0.1≦x≦3,0≦y≦25,2≦
z≦25,1≦α≦10,0≦β≦10,0≦γ≦10
とするのがさらに好ましく、さらにa,x,y,z,
α,β及びγはそれぞれ0≦a≦0.05,0.5≦x
≦2,10≦y≦20,3≦z≦18,2≦α≦10,
0≦β≦5,0≦γ≦5とするのが最も好ましい。
Furthermore Fe-base soft magnetic alloy of the present invention, the composition formula: (Fe 1-a M a ) 100-xyz- α - β - γA x Si y B z
M'αM''βXγ (at%) (where M is Co and / or
Or Ni, A is at least one element selected from Cu, Ag and Au, M ′ is Nb, Mo, Ta and T
At least one element selected from the group consisting of i, Zr, Hf, V and W, M ″ is selected from the group consisting of Cr, Mn, Al, platinum group elements, Sc, Zn, Sn and Re. At least one element, X is at least one element selected from the group consisting of C, Ge, P and Ga, and a,
x, y, z, α, β and γ are 0 ≦ a ≦ 0.5,
0.1 ≦ x ≦ 10, 0 ≦ y ≦ 30, 0 <z ≦ 30, 0 ≦
α ≦ 20, 0 ≦ β ≦ 20, 0 ≦ γ ≦ 20 are satisfied. It is preferable to have a composition represented by This is because this alloy system can obtain particularly excellent high-frequency magnetic properties. Further, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.1, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 25, 2 ≦, respectively.
z ≦ 25, 1 ≦ α ≦ 10, 0 ≦ β ≦ 10, 0 ≦ γ ≦ 10
Is more preferable, and a, x, y, z,
α, β and γ are 0 ≦ a ≦ 0.05 and 0.5 ≦ x, respectively.
≦ 2,10 ≦ y ≦ 20, 3 ≦ z ≦ 18, 2 ≦ α ≦ 10,
Most preferably, 0 ≦ β ≦ 5 and 0 ≦ γ ≦ 5.

【0014】ここで、Co,Niの総和の組成比aが
0.5を越えると高周波特性が劣下し好ましくない。A
は組織を微細化しbccFe相を形成しやすくする効果
を有する。Aの組成比xが0.1at%未満では組織微
細化の効果が得られ難い。逆にxが10at%を越える
と軟磁気特性が劣化し好ましくない。M’は結晶粒成長
を抑え組織を微細化する効果を有する。M’の含有量α
が20%を越えると飽和磁束密度の著しい低下を示すた
めαは20at%以下が望ましい。
Here, if the total composition ratio a of Co and Ni exceeds 0.5, the high frequency characteristics deteriorate, which is not preferable. A
Has the effect of making the structure fine and facilitating the formation of the bccFe phase. If the composition ratio x of A is less than 0.1 at%, it is difficult to obtain the effect of refining the structure. On the other hand, if x exceeds 10 at%, the soft magnetic properties deteriorate, which is not preferable. M'has the effect of suppressing crystal grain growth and refining the structure. M'content α
Is more than 20%, the saturation magnetic flux density is remarkably lowered, so that α is preferably 20 at% or less.

【0015】M’’は磁気特性を改善したり耐触性を改
善する効果を有する。M’’の含有量βが20at%を
越えると飽和磁束密度の著しい低下を示すためβは20
at%以下が望ましい。
M ″ has an effect of improving magnetic properties and touch resistance. When the content β of M ″ exceeds 20 at%, the saturation magnetic flux density decreases remarkably, so β is 20
At% or less is desirable.

【0016】Xは磁歪を調整したり磁気特性を調整する
効果を有する。Xの含有量γが20at%を越えると飽
和磁束密度の著しい低下を招くためγは20at%以下
が望ましい。
X has the effect of adjusting magnetostriction and magnetic characteristics. When the content γ of X exceeds 20 at%, the saturation magnetic flux density is remarkably lowered, so γ is preferably 20 at% or less.

【0017】Si及びBは磁心損失の改善及び透磁率の
改善に効果があり、Si量yは30at%以下、B量z
は30at%以下が望ましい。yが30at%を越える
と飽和磁束密度の著しい低下を招き好ましくない。zが
30at%を越えるとやはり飽和磁束密度の著しい低下
を招き好ましくない。
Si and B are effective in improving the magnetic core loss and the magnetic permeability, and the Si content y is 30 at% or less and the B content z.
Is preferably 30 at% or less. When y exceeds 30 at%, the saturation magnetic flux density is significantly lowered, which is not preferable. When z exceeds 30 at%, the saturation magnetic flux density is also remarkably lowered, which is not preferable.

【0018】以上のこの発明のFe基軟磁性合金は通常
以下のように製造される。まず、周知の単ロール法や双
ロール法、アトマイズ法、回転液中紡糸法等の液体急冷
法や、スパッタ法や蒸着法等の気相急冷法等によりBを
含むFe基アモルファス合金薄帯、粉末、線や膜を形成
する。次にこの合金をアルゴンガスや窒素ガス等の不活
性ガス雰囲気中あるいは真空中で熱処理し平均粒径50
0オングストローム以下の結晶粒を形成し、一部に過飽
和Fe−B固溶相を含有する合金を製造する。
The Fe-based soft magnetic alloy of the present invention described above is usually produced as follows. First, an Fe-based amorphous alloy ribbon containing B by a known liquid quenching method such as a single roll method, a twin roll method, an atomizing method, a rotating liquid spinning method, or a vapor phase quenching method such as a sputtering method or a vapor deposition method, Form powder, wire and film. Next, this alloy is heat-treated in an atmosphere of an inert gas such as argon gas or nitrogen gas or in a vacuum to obtain an average particle size of 50.
An alloy is formed in which crystal grains of 0 angstroms or less are formed and a supersaturated Fe-B solid solution phase is partially contained.

【0019】なお、この発明のFe基軟磁性合金では、
Fe3B、Fe2B、Fe236等のFe−B化合物相が
存在する場合もあるがFe−B化合物相は軟磁気特性を
劣下させるためできる限り存在しないようにするのが好
ましく、具体的にはFe−B化合物相は体積率で10%
以下となるようにするのが良く、可能であれば5%以下
最も好ましくは3%以下とするのが良い。
In the Fe-based soft magnetic alloy of the present invention,
Fe 3 B, Fe 2 B, there is a case where Fe-B compound phase such as Fe 23 B 6 is present but Fe-B compound phase is preferably to not exist as far as possible for please poor soft magnetic properties Specifically, the Fe-B compound phase is 10% by volume.
It is preferable that the amount be 5% or less, and most preferably 3% or less, if possible.

【0020】[0020]

【実施例】以下この発明を実施例にしたがって説明す
る。実施例1 Feba1.Cu1Nb3Si14.59(at%)の組成の合
金溶湯を単ロール法により急冷し、幅5mm、厚さ18
μmのアモルファス合金薄帯を作製した。次にこの合金
薄帯表面にAl23を被覆した後外径15mm、内径1
3mmに巻回しトロイダル磁心を作製した。次にこの磁
心に結晶化熱処理を施した。熱処理後の10MHzの透
磁率μ10Mを測定した。測定値としてμ10M=850が得
られた。次にこの合金のミクロ組織を透過電子顕微鏡に
より観察した。合金は結晶化しており平均粒径は約12
0オングストロームであった。次に合金をメスバウァー
効果により解析した。その結果過飽和Fe−B固溶相が
体積で23%含まれていることが確認された。
EXAMPLES The present invention will be described below with reference to examples. Example 1 A molten alloy having a composition of Fe ba1. Cu 1 Nb 3 Si 14.5 B 9 (at%) was rapidly cooled by a single roll method to obtain a width of 5 mm and a thickness of 18
A μm amorphous alloy ribbon was prepared. Next, after coating the surface of this alloy ribbon with Al 2 O 3 , an outer diameter of 15 mm and an inner diameter of 1
The toroidal magnetic core was wound around 3 mm. Next, this magnetic core was subjected to crystallization heat treatment. The magnetic permeability μ 10 M at 10 MHz after the heat treatment was measured. As a measured value, μ 10M = 850 was obtained. Next, the microstructure of this alloy was observed by a transmission electron microscope. The alloy is crystallized and the average grain size is about 12
It was 0 angstrom. The alloy was then analyzed by the Mossbauer effect. As a result, it was confirmed that the supersaturated Fe-B solid solution phase contained 23% by volume.

【0021】比較例1 実施例1と同様な方法によりFeba1.Cu1Nb3Si
12.510(at%)の組成を有する合金薄板を作製し結
晶化熱処理を行った。この合金のミクロ組織を透過電子
顕微鏡により観察した。合金は結晶化しており、平均粒
径は約180オングストロームであった。次に熱処理後
の合金をメスバウアー効果により解析した。その結果過
飽和Fe−B固溶相は存在しないことが確認された。ま
た得られた合金の透磁率を測定した結果μ10M=50で
あり、実施例1の過飽和Fe−B固溶相を含む合金より
低い値であった。
Comparative Example 1 By the same method as in Example 1, Fe ba1. Cu 1 Nb 3 Si
An alloy thin plate having a composition of 12.5 B 10 (at%) was prepared and heat-treated for crystallization. The microstructure of this alloy was observed by a transmission electron microscope. The alloy was crystallized and had an average grain size of about 180 Å. Next, the heat-treated alloy was analyzed by the Mossbauer effect. As a result, it was confirmed that the supersaturated Fe-B solid solution phase did not exist. Further, the magnetic permeability of the obtained alloy was measured to be μ 10M = 50, which was lower than that of the alloy containing the supersaturated Fe—B solid solution phase of Example 1.

【0022】実施例2 実施例1と組成は同じであるが過飽和Fe−B固溶相の
量が異なる合金薄板を準備し、透磁率μ10Mを測定し
た。その結果を図1に示す。図1より過飽和Fe−B固
溶相が存在することにより存在しない場合に比べて著し
く透磁率μ10Mが向上することがわかる。また、過飽和
Fe−B固溶相の量が30%を越えるとμ10Mは低下す
る傾向にあり、過飽和Fe−B固溶相の量は10〜30
%の範囲が望ましいことがわかる。
Example 2 An alloy thin plate having the same composition as in Example 1 but different in the amount of supersaturated Fe-B solid solution phase was prepared, and the magnetic permeability μ 10M was measured. The result is shown in FIG. It can be seen from FIG. 1 that the presence of the supersaturated Fe-B solid solution phase significantly improves the magnetic permeability μ 10 M as compared with the case where it does not exist. Further, when the amount of the supersaturated Fe-B solid solution phase exceeds 30%, μ 10 M tends to decrease, and the amount of the supersaturated Fe-B solid solution phase is 10 to 30%.
It turns out that the range of% is desirable.

【0023】実施例3 表1に示す組成の合金溶湯を単ロール法により急冷し熱
処理を行い、粒径500オングストローム以下の合金を
作製した。500kHz、2kGにおける磁心損失Pc
を測定し、更にこれらの合金をメスバウァー効果により
解析し過飽和Fe−B固溶相が存在するかを確認した。
得られた結果を表1に示す。過飽和Fe−B固溶相を含
む実施例の合金の磁心損失Pcが低く優れていることが
確認された。また表1には、Fe−Si相、アモルファ
ス相、規則相、化合物相の有無も併せて示す。表1に示
すように、Fe−Si相を含む場合に比較的低い磁心損
失が得られ、またFe−B化合物相が存在しない方が、
磁心損失が優れる。
Example 3 A molten alloy having the composition shown in Table 1 was quenched by a single roll method and heat-treated to produce an alloy having a grain size of 500 angstroms or less. Magnetic core loss Pc at 500 kHz and 2 kG
Was measured, and these alloys were analyzed by the Mossbauer effect to confirm whether a supersaturated Fe-B solid solution phase was present.
The results obtained are shown in Table 1. It was confirmed that the core loss Pc of the alloy of the example containing the supersaturated Fe-B solid solution phase was low and excellent. Further, Table 1 also shows the presence / absence of Fe-Si phase, amorphous phase, ordered phase, and compound phase. As shown in Table 1, when a Fe-Si phase is included, a relatively low magnetic core loss is obtained, and when the Fe-B compound phase does not exist,
Excellent magnetic core loss.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例3 表2に示す組成の厚さ3μmの合金膜をスパッタ法によ
り作製した。得られた合金膜を熱処理し10MHzの透
磁率μ10Mを測定した。また、メスバウァー効果により
Fe−B相が存在するかを確認した。得られた結果を表
2に示す。過飽和Fe−B固溶相を含む実施例合金のμ
10Mが高く優れていることが確認された。
Example 3 An alloy film having a composition shown in Table 2 and a thickness of 3 μm was prepared by a sputtering method. The obtained alloy film was heat-treated and the magnetic permeability μ 10 M at 10 MHz was measured. Further, it was confirmed by the Mossbauer effect whether or not the Fe-B phase was present. The results obtained are shown in Table 2. Μ of the example alloy containing a supersaturated Fe-B solid solution phase
It was confirmed that 10M was high and excellent.

【0026】また表2には、Fe−Si相、アモルファ
ス相、規則相、化合物相の有無も併せて示す。表2に示
すように、Fe−Si相を含む合金膜が比較的高い透磁
率μ10Mを示す。また、化合物相は存在しない方が高い
透磁率が得られる。
Table 2 also shows the presence or absence of Fe-Si phase, amorphous phase, ordered phase, and compound phase. As shown in Table 2, the alloy film containing the Fe—Si phase exhibits a relatively high magnetic permeability μ 10M . Further, a higher magnetic permeability can be obtained when the compound phase does not exist.

【0027】[0027]

【表2】 [Table 2]

【0028】なおこの発明の実施例は、以上の各実施例
に限定されるものではなく、例えば合金製造法としては
実施例の方法の他に双ロール法、アトマイズ法、回転液
中紡糸法等の液体急冷法や、蒸着法等の気相急冷法等を
用いることができる。また製造の対象となる合金の形態
も薄帯、膜に限られず粉末、線状とすることができる。
すなわち平均粒径が500オングストローム以下であ
る結晶粒を含み、少なくとも一部の結晶粒に過飽和Fe
−B固溶相を含有するすべての合金はその製造方法、形
態その他に拘らずこの発明の合金の範囲に含まれる。
The embodiments of the present invention are not limited to the above-mentioned embodiments. For example, as the alloy manufacturing method, a twin roll method, an atomizing method, a rotating submerged spinning method, etc., can be used. The liquid quenching method, the vapor quenching method such as the vapor deposition method, and the like can be used. Further, the form of the alloy to be manufactured is not limited to the ribbon and the film, and may be powder or linear.
That is, at least some of the crystal grains contain supersaturated Fe containing crystal grains having an average grain size of 500 angstroms or less.
All alloys containing the -B solid solution phase are included in the scope of the alloy of the present invention regardless of the manufacturing method, morphology and the like.

【0029】[0029]

【発明の効果】以上のようにこの発明のFe基軟磁性合
金によれば、平均粒径が500オングストローム以下で
ある結晶粒からなる合金であり、一部に過飽和Fe−B
固溶相を含有する様にしたので、高周波磁気特性特に1
00kHzを越える高周波の軟磁気特性を向上すること
ができるという優れた効果が奏される。
As described above, the Fe-based soft magnetic alloy of the present invention is an alloy composed of crystal grains having an average grain size of 500 angstroms or less, and partially supersaturated Fe-B.
Since it contains a solid solution phase, high frequency magnetic characteristics, especially 1
The excellent effect that the soft magnetic characteristics of high frequencies exceeding 00 kHz can be improved is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例の合金のμ10Mにおける過
飽和Fe−B固溶相含有量依存性を示す図である。
FIG. 1 is a graph showing the dependency of supersaturated Fe—B solid solution phase content on μ 10 M of alloys of Examples of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が500オングストローム以下
である結晶粒を含み、少なくとも一部の結晶粒に過飽和
Fe−B固溶相が存在することを特徴とするFe基軟磁
性合金。
1. An Fe-based soft magnetic alloy comprising crystal grains having an average grain size of 500 angstroms or less, and at least a part of the crystal grains having a supersaturated Fe-B solid solution phase.
【請求項2】 平均粒径が500オングストローム以下
である結晶粒及びアモルファス相からなる合金であり、
少なくとも一部の結晶粒に過飽和Fe−B固溶相が存在
することを特徴とするFe基軟磁性合金。
2. An alloy composed of crystal grains and an amorphous phase having an average grain size of 500 angstroms or less,
An Fe-based soft magnetic alloy having a supersaturated Fe-B solid solution phase present in at least a part of crystal grains.
【請求項3】 平均粒径が500オングストローム以下
である結晶粒を含み、少なくとも一部の結晶粒に過飽和
Fe−B固溶相およびFe−Si相が存在することを特
徴とするFe基軟磁性合金。
3. An Fe-based soft magnetic material comprising crystal grains having an average grain size of 500 angstroms or less, wherein a supersaturated Fe—B solid solution phase and an Fe—Si phase are present in at least a part of the crystal grains. alloy.
【請求項4】 前記Fe−Si相に規則相が含まれる請
求項3に記載のFe基難磁性合金。
4. The Fe-based hard magnetic alloy according to claim 3, wherein the Fe—Si phase contains an ordered phase.
【請求項5】 組成式:(Fe1-aa100-x-y-z-α-
β-γAxSiyzM’αM’’βXγ(at%)(但
し、MはCo及び/またはNiであり、AはCu、A
g、Auから選ばれる少なくとも一種の元素、M’はN
b,Mo,Ta,Ti,Zr,Hf,V及びWからなる
群から選ばれた少なくとも1種の元素、M’’はCr,
Mn,Al,白金族元素、Sc,Zn,Sn,Reから
なる群から選ばれた少なくとも1種の元素、xはC、G
e、P、Gaからなる群から選ばれた少なくとも1種の
元素であり、a,x,y,z,α,β及びγはそれぞれ
0≦a≦0.5,0.1≦x≦10,0≦y≦30,0
<z≦30,0≦α≦20,0≦β≦20,0≦γ≦2
0を満たす。)により表される組成からなる請求項1乃
至5のいずれかに記載したFe基軟磁性合金。
5. The composition formula: (Fe 1-a M a ) 100-xyz- α -
β - γA x Si y B z M′αM ″ βXγ (at%) (where M is Co and / or Ni, A is Cu, A
g, at least one element selected from Au, M ′ is N
at least one element selected from the group consisting of b, Mo, Ta, Ti, Zr, Hf, V and W, M ″ is Cr,
Mn, Al, platinum group element, at least one element selected from the group consisting of Sc, Zn, Sn, Re, x is C, G
It is at least one element selected from the group consisting of e, P and Ga, and a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.5 and 0.1 ≦ x ≦ 10, respectively. , 0 ≦ y ≦ 30,0
<Z ≦ 30, 0 ≦ α ≦ 20, 0 ≦ β ≦ 20, 0 ≦ γ ≦ 2
Satisfies 0. The Fe-based soft magnetic alloy according to any one of claims 1 to 5, which has a composition represented by (4).
JP3262733A 1991-09-16 1991-09-16 Fe base soft magnetic alloy Pending JPH0570901A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3262733A JPH0570901A (en) 1991-09-16 1991-09-16 Fe base soft magnetic alloy
DE19924230986 DE4230986C2 (en) 1991-09-16 1992-09-16 Nanocrystalline, soft magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262733A JPH0570901A (en) 1991-09-16 1991-09-16 Fe base soft magnetic alloy

Publications (1)

Publication Number Publication Date
JPH0570901A true JPH0570901A (en) 1993-03-23

Family

ID=17379833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262733A Pending JPH0570901A (en) 1991-09-16 1991-09-16 Fe base soft magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0570901A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780880A1 (en) 1995-12-20 1997-06-25 Ushiodenki Kabushiki Kaisha Discharge lamp
KR19990006483A (en) * 1997-06-04 1999-01-25 므나르드 쟝-가브리엘 Methods of heat treating components made of soft magnetic materials in a magnetic field
JP2018053319A (en) * 2016-09-29 2018-04-05 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
JP2018056363A (en) * 2016-09-29 2018-04-05 セイコーエプソン株式会社 Soft magnetic powder, powder-compact magnetic core, magnetic device and electronic equipment
CN109440023A (en) * 2018-12-26 2019-03-08 中国科学院宁波材料技术与工程研究所 A kind of high magnetic strength nitrogen coupling Fe-based amorphous nanocrystalline alloy and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780880A1 (en) 1995-12-20 1997-06-25 Ushiodenki Kabushiki Kaisha Discharge lamp
KR19990006483A (en) * 1997-06-04 1999-01-25 므나르드 쟝-가브리엘 Methods of heat treating components made of soft magnetic materials in a magnetic field
JP2018053319A (en) * 2016-09-29 2018-04-05 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
JP2018056363A (en) * 2016-09-29 2018-04-05 セイコーエプソン株式会社 Soft magnetic powder, powder-compact magnetic core, magnetic device and electronic equipment
CN109440023A (en) * 2018-12-26 2019-03-08 中国科学院宁波材料技术与工程研究所 A kind of high magnetic strength nitrogen coupling Fe-based amorphous nanocrystalline alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JPH044393B2 (en)
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
EP0429022B1 (en) Magnetic alloy with ulrafine crystal grains and method of producing same
JPH06322472A (en) Production of fe base soft magnetic alloy
JP3231149B2 (en) Noise filter
JP2667402B2 (en) Fe-based soft magnetic alloy
JP2713364B2 (en) Ultra-microcrystalline soft magnetic alloy with excellent heat resistance
JPH07103453B2 (en) Alloy with excellent permeability and method for producing the same
JPH0570901A (en) Fe base soft magnetic alloy
JP2713373B2 (en) Magnetic core
JP3705446B2 (en) Nanocrystallization heat treatment method for nanocrystalline alloys
JP4437563B2 (en) Magnetic alloy with excellent surface properties and magnetic core using the same
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2713714B2 (en) Fe-based magnetic alloy
JP3322407B2 (en) Fe-based soft magnetic alloy
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0468382B2 (en)
JPH0499253A (en) Iron-based soft magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2005187917A (en) Soft magnetic alloy, and magnetic component