JPH0569268B2 - - Google Patents

Info

Publication number
JPH0569268B2
JPH0569268B2 JP62319518A JP31951887A JPH0569268B2 JP H0569268 B2 JPH0569268 B2 JP H0569268B2 JP 62319518 A JP62319518 A JP 62319518A JP 31951887 A JP31951887 A JP 31951887A JP H0569268 B2 JPH0569268 B2 JP H0569268B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
positive electrode
battery
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62319518A
Other languages
Japanese (ja)
Other versions
JPH01159969A (en
Inventor
Kenkichi Fujii
Mitsuo Yamane
Hiroshi Yufu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP62319518A priority Critical patent/JPH01159969A/en
Publication of JPH01159969A publication Critical patent/JPH01159969A/en
Publication of JPH0569268B2 publication Critical patent/JPH0569268B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種ポータブル機器、ロボツト、可
搬、電気自動車等の測定用あるいは動力用電源等
に用いられる密閉形ニツケル亜鉛蓄電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed nickel zinc storage battery used as a power source for measurement or power of various portable devices, robots, transportable vehicles, electric vehicles, etc.

従来技術とその問題点 ニツケル亜鉛蓄電池は、高エネルギー密度、高
出力特性を有した電池である。
Prior art and its problems Nickel zinc storage batteries are batteries with high energy density and high output characteristics.

この電池を密閉化する試みは、従来より多くの
提案がなされている。その主たる方法は、理論当
量で計算される正極活物質量を負極活物質量より
少なくする。即ち負極活物質として、余分の活物
質である充電リザーブをもたせ、充電末期で負極
が完全充電される前に正極の充電が終了する様に
設計する点にある。
Many proposals have been made in the past to attempt to seal the battery. The main method is to make the amount of positive electrode active material calculated by theoretical equivalent less than the amount of negative electrode active material. That is, the negative electrode active material is designed to have a charge reserve, which is an extra active material, so that charging of the positive electrode ends before the negative electrode is fully charged at the end of charging.

このように充電の終了した正極表面からは電気
化学反応によつて、酸素ガス発生し、このガスが
負極表面の金属亜鉛に吸収され充電リザーブに戻
り、これが充電により再び金属亜鉛に戻るサイク
ルが生じる。しかしながら、ニツケル亜鉛蓄電池
における放電時、負極活物質である亜鉛が酸化亜
鉛となつて電子を放出すると共にその一部が電解
液に溶解する。しかもアルカリ電解液にたいする
酸化亜鉛の溶解度が高いために、引き続き行われ
る充電によつて、負極板中の酸化亜鉛を金属亜鉛
に還元するのみならず、電解液中に溶解している
亜鉛イオンまでも還元する。これが負極板の一部
にデンドライト結晶として成長し、セパレータの
貫通シヨートを引き起こしたり、あるいは負極板
の形状が変化する。このために、負極活物質の利
用率が低下し、電池のサイクル寿命を短かくする
原因となつている。
Oxygen gas is generated from the surface of the positive electrode after charging is completed due to an electrochemical reaction, and this gas is absorbed by the metal zinc on the surface of the negative electrode and returns to the charge reserve, which then returns to metal zinc again upon charging, creating a cycle. . However, during discharging in a nickel-zinc storage battery, zinc, which is a negative electrode active material, becomes zinc oxide and emits electrons, and a portion of the zinc oxide is dissolved in the electrolyte. Moreover, since zinc oxide has a high solubility in the alkaline electrolyte, subsequent charging not only reduces the zinc oxide in the negative electrode plate to metallic zinc, but also reduces the zinc ions dissolved in the electrolyte. Give back. This grows as dendrite crystals in a part of the negative electrode plate, causing a shot through the separator or changing the shape of the negative electrode plate. For this reason, the utilization rate of the negative electrode active material decreases, causing the cycle life of the battery to be shortened.

負極板の形状が変化することは、一般的には負
極板全体の表面積が縮小し、多孔性が低下し、こ
れらによつて電気化学的特性が悪くなると考えら
れる。この形状変化の防止のために、亜鉛活物質
に酸化ビスマスやそれに類似する金属酸化物の添
加、あるいは保液紙の材質、厚みを変える等の提
案がなされている。これらの提案の内で金属酸化
物の添加は、ある程度の効果は認められているも
のの、その効果の程度が小さく、その反面自己放
電量を増大する欠点を有している。保液紙の改善
として、繊維径の細いポリプロピレン繊維を用い
ることは、電解液の保液率が低く、また負極板の
形状変化を抑制する効果も小さく、サイクル寿命
の改良には効果が少なかつた。
It is thought that the change in the shape of the negative electrode plate generally reduces the surface area of the entire negative electrode plate and reduces the porosity, thereby degrading the electrochemical properties. In order to prevent this shape change, proposals have been made such as adding bismuth oxide or similar metal oxides to the zinc active material, or changing the material and thickness of the liquid-retaining paper. Among these proposals, although the addition of metal oxides has been recognized to be effective to some extent, the degree of the effect is small and, on the other hand, has the disadvantage of increasing the amount of self-discharge. The use of polypropylene fibers with a small fiber diameter as an improvement to liquid-retaining paper has a low electrolyte retention rate, is less effective in suppressing changes in the shape of the negative electrode plate, and has little effect on improving cycle life. Ta.

又、電池の極群の最外部負極の外側面に酸素ガ
ス吸収性能のある撥水性不織布を配置し、ガス吸
収性を改善する提案は、負極板の形状変化を改善
する効果が小さい。
Further, a proposal to improve gas absorption by arranging a water-repellent nonwoven fabric with oxygen gas absorption ability on the outer surface of the outermost negative electrode of a battery electrode group has little effect on improving the shape change of the negative electrode plate.

発明の目的 本発明は、負極板のガス吸収性能を向上したサ
イクル寿命特性の優れた密閉形ニツケル亜鉛蓄電
池を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a sealed nickel-zinc storage battery with improved gas absorption performance of the negative electrode plate and excellent cycle life characteristics.

発明の構成 本発明は上記目的を達成すべく、極群の最外部
の一方または両方が負極板からなる電池におい
て、最外部負極板に面した正極板の酸素過電圧が
他の正極板の酸素過電圧よりも低くし、且つ最外
部負極板の正極板に対向しない面の一部或は全部
を露出させたことを特徴とする密閉形ニツケル亜
鉛蓄電池である。
Composition of the Invention In order to achieve the above-mentioned object, the present invention provides a battery in which one or both of the outermost electrode plates is a negative electrode plate, in which the oxygen overvoltage of the positive electrode plate facing the outermost negative electrode plate is higher than the oxygen overvoltage of the other positive electrode plates. This is a sealed nickel-zinc storage battery characterized in that the outermost negative electrode plate is lower than the positive electrode plate, and a part or all of the surface of the outermost negative electrode plate that does not face the positive electrode plate is exposed.

又、上記において、最外部負極板の正極板に対
向しない面の一部或は全部に撥水性不織布層を設
けた密閉形ニツケル亜鉛蓄電池である。
Moreover, in the above, the sealed nickel-zinc storage battery is provided with a water-repellent nonwoven fabric layer on part or all of the surface of the outermost negative electrode plate that does not face the positive electrode plate.

実施例 以下、本発明の詳細について、一実施例により
説明する。
Example Hereinafter, the details of the present invention will be explained based on one example.

第1図は本発明による電池の水平断面図、第2
図は本発明による電池と従来電池との過充電々圧
特性の比較図、第3図は本発明電池における各々
の負極に流れる充電々流と電池電圧との関係を示
した図、第4図は本発明の電池と従来電池とのサ
イクル寿命比較の図である。こゝで、1及び1′
はニツケル正極、1は酸素過電圧を低くした極
板、1′は1のニツケル正極よりも酸素過電圧が
高い極板、2及3は保液紙で2は正極板に面し、
3は負極板に面する。4はセパレータ、5は負
極、6は電槽、7はスペーサである。
FIG. 1 is a horizontal sectional view of a battery according to the present invention;
The figure is a comparison diagram of the overcharge voltage characteristics of the battery according to the present invention and a conventional battery. Figure 3 is a diagram showing the relationship between the charge current flowing to each negative electrode and the battery voltage in the battery of the present invention. Figure 4 FIG. 2 is a diagram comparing the cycle life of the battery of the present invention and a conventional battery. Here, 1 and 1'
is a nickel positive electrode, 1 is an electrode plate with a lower oxygen overvoltage, 1' is an electrode plate with a higher oxygen overvoltage than the nickel positive electrode in 1, 2 and 3 are liquid retaining papers, and 2 faces the positive electrode plate.
3 faces the negative electrode plate. 4 is a separator, 5 is a negative electrode, 6 is a battery case, and 7 is a spacer.

本発明の電池は、焼結式正極板、シート式負極
板よりなり公称容量3Ahの密閉形ニツケル亜鉛蓄
電池であり、正極板3枚、負極板3枚よりなる。
The battery of the present invention is a sealed nickel-zinc storage battery with a nominal capacity of 3 Ah, consisting of a sintered positive electrode plate and a sheet negative electrode plate, and consists of three positive electrode plates and three negative electrode plates.

正極板1は主成分が水酸化ニツケルで5〜10%
の水酸化コバルトが添加されている。正極板1′
は主成分が水酸化ニツケルで水酸化コバルト、水
酸化カドミウムが各々5〜10%添加されている。
保液紙はセルロース系、ポリアミド系或はポリオ
レフイン系の不織布である。セパレータはポリプ
ロピレン膜、グラフト化ポリエチレン膜あるいは
セロハン等からなり、これ等の単体を各々1〜3
重に、あるいは組み合わせたものを重ね合わせ
て、正極並びに正極側保液層を包みこんだもので
ある。負極板は金属亜鉛粉末及び酸化亜鉛粉末を
ポリテトラフロロエチレン樹脂と混合し、これを
ロール掛けしてシート状になした後、銅または銀
の集電体に圧着したものである。スペーサーは負
極板を露出させるためのものであり、クシ状或は
格子状が用いられる。上記構成の極群を電槽に挿
入し、電解液として比重1.30〜1.40の水酸化カリ
ウムを主体とする水溶液を正極・負極・セパレー
タ及び保液層の全空〓の90〜98%を満たす液量を
注入する。これを密閉化して本発明の電池が得ら
れる。
The main component of the positive electrode plate 1 is 5-10% nickel hydroxide.
of cobalt hydroxide is added. Positive electrode plate 1'
The main component is nickel hydroxide, with 5 to 10% each of cobalt hydroxide and cadmium hydroxide added.
The liquid-retaining paper is a cellulose-based, polyamide-based, or polyolefin-based nonwoven fabric. The separator is made of polypropylene membrane, grafted polyethylene membrane, cellophane, etc.
The positive electrode and the positive electrode side liquid retaining layer are wrapped in layers or a combination of layers. The negative electrode plate is made by mixing metal zinc powder and zinc oxide powder with polytetrafluoroethylene resin, rolling this into a sheet shape, and then pressing it onto a copper or silver current collector. The spacer is for exposing the negative electrode plate, and has a comb shape or a grid shape. Insert the electrode group with the above configuration into a battery container, and use an aqueous solution mainly composed of potassium hydroxide with a specific gravity of 1.30 to 1.40 as an electrolyte to fill 90 to 98% of the total vacancies in the positive electrode, negative electrode, separator, and liquid retaining layer. Inject amount. By sealing this, the battery of the present invention is obtained.

尚、上記の正極板において、1′の極板のみを
用いてその他はすべて同じ構成としたものが、従
来電池である。本発明品をAとし、従来品をBと
する。
In the above-mentioned positive electrode plate, a conventional battery uses only the 1' electrode plate and has the same structure in all other respects. The product of the present invention is designated as A, and the conventional product is designated as B.

本発明品Aと従来品Bを用いて、過充電試験を
行つた結果を第2図に示した。こゝで充電々流は
0.5CAである。この結果より、本発明電池の充
電々圧は、充電量百数十パーセントで最大1.95V
となり、その後少しずつ低下している。これに対
して従来電池では、充電量400%付近の後、水素
発生電位に達し更に600%付近では電圧の乱れが
生じる。これは初期亜鉛極に与えられた充電リザ
ーブが、過充電時に負極における酸素ガス吸収効
率が低いためどんどん減少し、ついには水素発生
に到り、更に亜鉛デンドライトによるセパレータ
の貫通シヨートを生じるためである。
FIG. 2 shows the results of an overcharge test conducted using product A of the present invention and conventional product B. The current of charging is here.
It is 0.5 CA. From this result, the charging voltage of the battery of the present invention is a maximum of 1.95V at a charge level of 100-odd percent.
After that, it gradually decreased. On the other hand, in conventional batteries, the hydrogen generation potential is reached after around 400% charge, and further voltage disturbances occur around 600%. This is because the charge reserve given to the initial zinc electrode gradually decreases due to the low oxygen gas absorption efficiency at the negative electrode during overcharging, eventually leading to hydrogen generation, and furthermore, the zinc dendrites cause penetration shoots in the separator. .

本発明の場合は、負極板3枚に流れる電流値を
第3図に示した如く、サイド負極板には初期約
0.1CA相当電流分が、又それ以外の中央負極板2
枚には各々約0.2CA相当電流分が流れる。充電量
が約100%を超えると中央負極板の電流は漸減し
零に近づくのに対し、サイド負極板の電流は、漸
増し0.5CAに近づく。このために、過充電時サイ
ド負極板の正極に面していない面では、酸素ガス
吸収反応がどんどん起り、又それにより生じた充
電リザーブは充電により元の金属亜鉛に還元され
るサイクルが効率的に進行する。これに対して酸
素ガス吸収効率のよくない中央負極板には電流が
ほとんど流れないため、この中央負極板の充電リ
ザーブの減少は極めて少ない。
In the case of the present invention, as shown in Figure 3, the current value flowing through the three negative electrode plates is approximately
0.1CA equivalent current, and other central negative electrode plate 2
A current equivalent to approximately 0.2 CA flows through each plate. When the amount of charge exceeds approximately 100%, the current in the central negative plate gradually decreases and approaches zero, while the current in the side negative plates gradually increases and approaches 0.5CA. For this reason, during overcharging, the oxygen gas absorption reaction occurs rapidly on the side of the side negative electrode plate that does not face the positive electrode, and the resulting charge reserve is reduced to the original metal zinc during charging, which is an efficient cycle. Proceed to. On the other hand, since almost no current flows through the central negative electrode plate, which does not have good oxygen gas absorption efficiency, the charge reserve of this central negative electrode plate decreases very little.

本発明品と従来品とのサイクル寿命試験を行
い、その結果を第4図に示した。放電深度を80%
とし、充電量は放電量の110%としたものである。
従来品ではサイクルと共に容量低下が大きく、約
150サイクルで公称容量の60%を割つた。このサ
イクルと共に容量が低下する主な原因は、過充電
時に、負極板の周縁部のみで酸素ガス吸収が起
り、生じたジンケートイオンがその元の位置より
も少し内側に金属亜鉛として析出し、その繰返し
のために負極板の面積が減少する形状変化による
ものである。これに対して、本発明では、前述し
たようにガス吸収の悪い中央板ではほとんど過充
電されず、ガス吸収効率のよいサイド負極板のみ
で過充電々流が消費されるために、サイド板及び
中央板共に形状変化が緩和され、かつ充電リザー
ブの減少が極めて少ない。このために、大巾にサ
イクル寿命が改良された。
A cycle life test was conducted on the product of the present invention and the conventional product, and the results are shown in FIG. 80% depth of discharge
The amount of charge is assumed to be 110% of the amount of discharge.
With conventional products, the capacity decreases significantly with each cycle, and approximately
It lost 60% of its nominal capacity in 150 cycles. The main reason why the capacity decreases with this cycle is that during overcharging, oxygen gas absorption occurs only at the periphery of the negative electrode plate, and the generated zincate ions are deposited as metallic zinc a little inside from their original position. This is due to a shape change in which the area of the negative electrode plate decreases due to repetition. On the other hand, in the present invention, as mentioned above, overcharging is hardly caused in the center plate with poor gas absorption, and the overcharge current is consumed only in the side negative electrode plates with good gas absorption efficiency. Changes in shape of both the center plate are alleviated, and the decrease in charge reserve is extremely small. This has resulted in a significant improvement in cycle life.

更にこの効果を確実にするために、最外部負極
板の正極板に対向しない面の一部或は全部に撥水
性不織布層を設けることにより、サイド負極板に
おける酸素ガス吸収効率の向上及び形状変化の緩
和を計り更に寿命を延ばすことができる。
Furthermore, in order to ensure this effect, a water-repellent nonwoven fabric layer is provided on part or all of the surface of the outermost negative electrode plate that does not face the positive electrode plate, thereby improving the oxygen gas absorption efficiency and changing the shape of the side negative electrode plate. It is possible to further extend the lifespan by mitigating the

発明の効果 上述した如く、本発明は負極板のガス吸収性能
を向上した、サイクル寿命特性の優れた密閉形ニ
ツケル亜鉛蓄電池を提供することが出来るので、
その工業的価値は極めて大である。
Effects of the Invention As described above, the present invention can provide a sealed nickel-zinc storage battery with improved gas absorption performance of the negative electrode plate and excellent cycle life characteristics.
Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池の水平断面図、第2
図は本発明と従来品との過充電々圧特性の比較
図、第3図は本発明電池における充電々流と電池
電圧との関係を示した図、第4図はサイクル寿命
比較の図である。 1,1′……ニツケル正極、2,3……保液紙、
4……セパレータ、5……負極、6……電槽、7
……スペーサ、A……本発明、B……従来品。
FIG. 1 is a horizontal sectional view of a battery according to the present invention;
The figure shows a comparison of the overcharge and voltage characteristics between the present invention and a conventional product, Figure 3 shows the relationship between the charge current and battery voltage in the battery of the present invention, and Figure 4 shows a comparison of cycle life. be. 1,1'...Nickel positive electrode, 2,3...Liquid retaining paper,
4... Separator, 5... Negative electrode, 6... Battery container, 7
...Spacer, A...This invention, B...Conventional product.

Claims (1)

【特許請求の範囲】 1 極群の最外部の一方または両方が負極板から
なる電池において、最外部負極板に面した正極板
の酸素過電圧が他の正極板の酸素過電圧よりも低
くし、且つ最外部負極板の正極板に対向しない面
の一部或は全部を露出させたことを特徴とする密
閉形ニツケル亜鉛蓄電池。 2 最外部負極板の正極板に対向しない面の一部
或は全部に撥水性不織布層を設けた特許請求の範
囲第1項記載の密閉形ニツケル亜鉛蓄電池。
[Scope of Claims] 1. In a battery in which one or both of the outermost electrode plates of an electrode group is a negative electrode plate, the oxygen overvoltage of the positive electrode plate facing the outermost negative electrode plate is lower than the oxygen overvoltage of the other positive electrode plates, and A sealed nickel zinc storage battery characterized in that a part or all of the surface of the outermost negative electrode plate that does not face the positive electrode plate is exposed. 2. The sealed nickel-zinc storage battery according to claim 1, wherein a water-repellent nonwoven fabric layer is provided on part or all of the surface of the outermost negative electrode plate that does not face the positive electrode plate.
JP62319518A 1987-12-16 1987-12-16 Sealed ni-zn storage battery Granted JPH01159969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319518A JPH01159969A (en) 1987-12-16 1987-12-16 Sealed ni-zn storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319518A JPH01159969A (en) 1987-12-16 1987-12-16 Sealed ni-zn storage battery

Publications (2)

Publication Number Publication Date
JPH01159969A JPH01159969A (en) 1989-06-22
JPH0569268B2 true JPH0569268B2 (en) 1993-09-30

Family

ID=18111121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319518A Granted JPH01159969A (en) 1987-12-16 1987-12-16 Sealed ni-zn storage battery

Country Status (1)

Country Link
JP (1) JPH01159969A (en)

Also Published As

Publication number Publication date
JPH01159969A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
US3558358A (en) Nickel-zinc secondary battery
JP3389252B2 (en) Alkaline storage battery and charging method thereof
JPH0787102B2 (en) Sealed nickel-zinc battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH0569268B2 (en)
JP3118716B2 (en) Sealed nickel-zinc battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2926732B2 (en) Alkaline secondary battery
JP2884570B2 (en) Sealed alkaline secondary battery
JPH01100872A (en) Sealed type nickel-zinc cell
JPH06215796A (en) Cylindrical nickel-hydrogen storage battery
CN1155170A (en) Alkaline hydrogen (MH)/manganese deoxide chargeable cell
JPH0481305B2 (en)
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS60225373A (en) Alkaline zinc storage battery
JPH0696796A (en) Sealed secondary battery
JPS60235367A (en) Sealed-type nickel-zinc storage battery
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0562706A (en) Metal oxide-hydrogen storage battery and manufacture thereof
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPS63126162A (en) Alkali zinc storage battery