JPH056889A - Manufacture of a morphous silicon nitride thin film - Google Patents

Manufacture of a morphous silicon nitride thin film

Info

Publication number
JPH056889A
JPH056889A JP15683691A JP15683691A JPH056889A JP H056889 A JPH056889 A JP H056889A JP 15683691 A JP15683691 A JP 15683691A JP 15683691 A JP15683691 A JP 15683691A JP H056889 A JPH056889 A JP H056889A
Authority
JP
Japan
Prior art keywords
silicon nitride
thin film
film
amorphous silicon
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15683691A
Other languages
Japanese (ja)
Inventor
Masakazu Katsuno
正和 勝野
Noboru Otani
昇 大谷
Yasumitsu Ota
泰光 太田
Shusuke Mimura
秀典 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15683691A priority Critical patent/JPH056889A/en
Publication of JPH056889A publication Critical patent/JPH056889A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce a stress of an amorphous silicon nitride thin film to be used for a gate insulating film, a protective film, etc., of an amorphous thin film transistor. CONSTITUTION:An amorphous silicon nitride thin film is manufactured by 0.01-O.1Torr of a gas pressure at the time of depositing at 250-350 deg.C of a depositing substrate temperature by a parallel flat plate type plasma chemical depositing apparatus using a high frequency of 13.56MHz by using gas in which one or both of hydrogen and nitrogen are applied to monosilane and ammonia or silane and anamonia. Thus, a stress of the manufactured silicon nitride thin film is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質窒化シリコン薄
膜の製造方法に関する。詳しく述べると、例えば、大面
積ディスプレイ等の制御等に使用される非晶質薄膜トラ
ンジスタのゲート絶縁膜、保護膜等に用いられる非晶質
窒化シリコン薄膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an amorphous silicon nitride thin film. More specifically, the present invention relates to a method for manufacturing an amorphous silicon nitride thin film used for a gate insulating film, a protective film, etc. of an amorphous thin film transistor used for controlling a large area display or the like.

【0002】[0002]

【従来の技術】成膜ガスとして、モノシランとアンモニ
アもしくはシランとアンモニアに水素と窒素のいずれか
一方もしくは両方を加えたガスを用い、13.56MH
zの高周波を用いる平行平板型プラズマ化学堆積装置
(プラズマCVD)により堆積されるバンドギャップ5
eV以上の非晶質窒化シリコン薄膜は、エネルギーギャ
ップが大きい、絶縁性が良い、高密度のために水分、ア
ルカリ金属等の封止性に優れる等の特徴を有し、非晶質
半導体薄膜トランジスタのゲート絶縁膜および保護膜と
して広く使用されている。
2. Description of the Related Art As a film-forming gas, monosilane and ammonia, or a gas obtained by adding one or both of hydrogen and nitrogen to silane and ammonia is used, and 13.56 MH is used.
Bandgap 5 deposited by a parallel plate type plasma chemical deposition apparatus (plasma CVD) using high frequency wave of z
The amorphous silicon nitride thin film of eV or higher has features such as a large energy gap, good insulating property, and excellent sealing property of moisture, alkali metal, etc. due to its high density. Widely used as a gate insulating film and a protective film.

【0003】しかしながら、堆積基板温度250〜35
0℃で堆積した従来の非晶質窒化シリコン薄膜は、膜の
応力が非常に強いため、非晶質窒化シリコン薄膜と接し
ている非晶質薄膜トランジスタの活性層である水素化非
晶質シリコン層の界面に欠陥準位が生成し、そのため薄
膜トランジスタ特性の動作しきい値電圧の不安定、サブ
スレッショルドの電流の低下、低移動度等を生じさせる
原因となっていた。
However, the deposition substrate temperature of 250 to 35
Since the conventional amorphous silicon nitride thin film deposited at 0 ° C. has very strong film stress, the hydrogenated amorphous silicon layer, which is the active layer of the amorphous thin film transistor in contact with the amorphous silicon nitride thin film, is used. A defect level is generated at the interface of, which causes unstable operation threshold voltage of thin film transistor characteristics, decrease in subthreshold current, and low mobility.

【0004】この様な事情から、13.56MHzを用
いる平行平板型プラズマ化学堆積法(プラズマCVD
法)において応力の小さい非晶質窒化シリコン膜の製造
方法について検討が行われ、原料ガスとしてシラン、ア
ンモニア、窒素および水素の4種類の混合ガスを用い、
かつ投入電力を最適にすることにより低応力化する方法
が提案された(堀田 定吉:SiNのプラズマCVD堆
積、第36回応用物理学関係連合講習会シンポジウムダ
イジェスト「アモルファスシリコンMIS構造」p.2
(1989))。
Under these circumstances, the parallel plate type plasma chemical deposition method (plasma CVD) using 13.56 MHz is used.
Method), a method for producing an amorphous silicon nitride film having a small stress is studied, and a mixed gas of four kinds of silane, ammonia, nitrogen and hydrogen is used as a source gas,
Moreover, a method for reducing stress by optimizing the input power was proposed (Sadayoshi Hotta: Plasma CVD deposition of SiN, 36th Symposium on Applied Physics-related Joint Symposium Digest "Amorphous Silicon MIS Structure" p. 2
(1989)).

【0005】本発明者らは、前記論文に示されているよ
うにシラン、アンモニア、窒素および水素の混合ガスを
用いて同様の製膜条件にて実験を行った。しかしなが
ら、前記論文に記載されている水素および窒素ガスによ
る大量希釈による非晶質窒化シリコン薄膜の応力低下へ
の効果は確認されなかった。また、投入電力について
は、本発明者らが行った実用的な投入電力密度0.05
〜0.5W/cmで変化はほとんど見られなかった。
傾向としては、投入電力および水素希釈を変化させた場
合は薄膜の応力は実験誤差の範囲内でしか変化せず、一
方、窒素希釈した場合は逆に応力が増加した。この結果
からは、水素および窒素による大量希釈は応力を変化さ
せる本質的な因子ではないことが考えられ、依然として
低応力化の方法を確立することが大きな課題であること
が分かった。
The present inventors conducted an experiment under the same film forming conditions using a mixed gas of silane, ammonia, nitrogen and hydrogen as shown in the above-mentioned paper. However, the effect on the stress reduction of the amorphous silicon nitride thin film by the large-scale dilution with hydrogen and nitrogen gas described in the above paper was not confirmed. Regarding the input power, a practical input power density of 0.05
Almost no change was observed at 0.5 W / cm 2 .
As a tendency, when the input power and the hydrogen dilution were changed, the stress of the thin film changed only within the range of the experimental error, while the nitrogen dilution increased the stress. From this result, it is considered that the large-scale dilution with hydrogen and nitrogen is not an essential factor for changing the stress, and it was found that establishing a method for reducing the stress is still a big issue.

【0006】[0006]

【発明が解決しようとする課題】本発明は、非晶質窒化
シリコン薄膜の応力を小さくすることができる製造方法
を提供することを目的としたものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method capable of reducing the stress of an amorphous silicon nitride thin film.

【0007】[0007]

【課題を解決するための手段】本発明は、成膜ガスとし
て、モノシランとアンモニアもしくはシランとアンモニ
アに水素と窒素のいずれか一方もしくは両方を加えたガ
スを用い、13.56MHzの高周波を用いる平行平板
型プラズマ化学堆積装置により、堆積基板温度250〜
350℃で堆積されるバンドギャップ5eV以上の非晶
質窒化シリコン膜の製造方法において、該非晶質窒化シ
リコン膜の堆積時のガス圧力を0.01〜0.1Tor
rとすることを特徴とする非晶質窒化シリコン薄膜の製
造方法である。
According to the present invention, as a film forming gas, a gas obtained by adding either one or both of hydrogen and nitrogen to monosilane and ammonia or silane and ammonia is used, and a high frequency of 13.56 MHz is used. A flat plate type plasma chemical deposition apparatus is used to deposit a substrate at a temperature of 250-
In the method of manufacturing an amorphous silicon nitride film having a band gap of 5 eV or more deposited at 350 ° C., the gas pressure during the deposition of the amorphous silicon nitride film is 0.01 to 0.1 Tor.
r is a method for manufacturing an amorphous silicon nitride thin film.

【0008】なお、非晶質窒化シリコン膜のバンドギャ
ップとしては、5〜6eVのものが多い。
The band gap of the amorphous silicon nitride film is often 5 to 6 eV.

【0009】本発明者らは、これまでの結果をふまえて
非晶質窒化シリコン薄膜の応力の減少に本質的な因子を
希釈以外の条件を変化させることによって調べた。その
結果、成膜時の圧力が0.01〜0.1Torrで作成
された非晶質窒化シリコン膜の応力が小さくなることを
確認した。この結果より、成膜時のガス圧力が応力を減
少させる本質的な因子であることが明らかになった。本
発明で成膜時の圧力を0.01〜0.1Torrとした
のは、圧力が0.01Torr未満ではプラズマ放電の
持続が困難なためであり、一方、0.1Torrを越え
る圧力では低応力化が認められなかったためである。な
お、堆積速度、放電の安定性を考慮すると、より好まし
くは0.02〜0.07Torrである。
Based on the results obtained so far, the present inventors investigated the factors essential to the reduction of stress in an amorphous silicon nitride thin film by changing conditions other than dilution. As a result, it was confirmed that the stress of the amorphous silicon nitride film formed at the film formation pressure of 0.01 to 0.1 Torr was small. From this result, it became clear that the gas pressure during film formation is an essential factor for reducing the stress. In the present invention, the pressure during film formation is set to 0.01 to 0.1 Torr because the plasma discharge is difficult to sustain when the pressure is less than 0.01 Torr, while the stress is low when the pressure exceeds 0.1 Torr. This is because no change was recognized. In consideration of the deposition rate and the stability of discharge, it is more preferably 0.02 to 0.07 Torr.

【0010】[0010]

【作用】ガス圧力が非晶質窒化シリコンの応力を減少さ
せる理由は、本発明者らの実験結果に基づくと次ぎのと
うりであると考えられる。
The reason why the gas pressure reduces the stress of the amorphous silicon nitride is considered to be the following based on the experimental results of the present inventors.

【0011】ガス圧力が0.1Torr以下の圧力の領
域では、プラズマ中の粒子(中性ラジカル、イオン)の
持つ平行自由行程が長くなり、結果として成膜時に膜成
長表面に衝突するイオン(イオン衝撃)の数が増加す
る、このため、膜は成膜時にイオン衝撃の影響を受け
る。成膜時の膜成長へのイオン衝撃の影響は過去の論文
でも考察されており、例えば、成膜時の高周波プラズマ
CVD法における周波数を変化(0.1〜13.56M
Hz)させることによる実験をプラズマ中のイオンが交
流電界の変化に追従可能な周波数(約4MHz以下)の
領域にて膜の応力が減少することが報告されている
(W.A.P.Claassen et al.、J.
Electrochem.Soc.、1985、p.8
93−898)。
In the region where the gas pressure is 0.1 Torr or less, the parallel free path of particles (neutral radicals, ions) in the plasma becomes long, and as a result, the ions (ions) colliding with the film growth surface during film formation. The number of bombardments is increased, so that the film is affected by ion bombardment during deposition. The influence of ion bombardment on film growth during film formation has been considered in past papers, and for example, the frequency in the high frequency plasma CVD method during film formation was changed (0.1 to 13.56M).
It is reported that the stress of the film decreases in the region of the frequency (about 4 MHz or less) at which the ions in the plasma can follow the change of the alternating electric field in the experiment by (Hz) (W.A.P. Claassen). et al., J.
Electrochem. Soc. 1985, p. 8
93-898).

【0012】イオン衝撃により応力が減少するのは次ぎ
のような理由からである。成膜時に膜成長表面にはガス
分子から生成したラジカル(SiHx、NHy、ただ
し、x=1,2,3、y=1,2)が飛来し、膜成長表
面においてSiとNが結合してSi−N結合のネットワ
ークを形成すると考えられる。しかし、膜成長表面にイ
オンによる衝撃が起こると、一度生成したSi−N結合
が再び切断され、結果として膜中におけるSi−N結合
のネットワークのつながりの周期がイオン衝撃のない場
合よりも短くなる。これが膜中の結合の自由度の増加に
つながり、その効果として膜の応力が減少する。
The stress is reduced by the ion bombardment for the following reasons. Radicals (SiHx, NHy, where x = 1,2,3, y = 1,2) generated from gas molecules fly to the film growth surface during film formation, and Si and N are bonded on the film growth surface. It is considered to form a network of Si-N bonds. However, when an ion bombardment occurs on the film growth surface, the generated Si-N bond is broken again, and as a result, the cycle of the network of Si-N bonds in the film becomes shorter than that in the case without ion bombardment. .. This leads to an increase in the degree of freedom of bonding in the film, and as a result, the stress of the film decreases.

【0013】本発明は上記のイオン衝突による効果を高
周波電源の周波数の変化によらず、より制御しやすい圧
力変化によって起こすことを特徴とするものである。実
際に高周波プラズマCVD法にて成膜する場合、工場に
設置されている装置に通常使用されている13.56M
Hz以外の周波数を使用することは電波法の問題も含め
て困難であり、実際の工場の量産ラインへの応用には適
していない。このことからも、現在の汎用プラズマCV
D装置において容易に適用可能な本発明の成膜方法は非
常に有用である。
The present invention is characterized in that the above-mentioned effect of ion collision is caused not by the change of the frequency of the high frequency power source but by the pressure change which is more easily controlled. When actually forming a film by the high frequency plasma CVD method, 13.56M which is usually used in the equipment installed in the factory
It is difficult to use a frequency other than Hz, including the problem of the Radio Law, and it is not suitable for application to an actual factory mass production line. From this, the current general-purpose plasma CV
The film forming method of the present invention, which can be easily applied to the D device, is very useful.

【0014】[0014]

【実施例】以下に本発明の実施例を図1に基づいて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.

【0015】図1は非晶質窒化シリコン薄膜の応力の圧
力依存性を示す図である。非晶質窒化シリコン薄膜を1
3.56MHzの高周波を用いた平行平板型高周波プラ
ズマCVD装置を用いて作製した。ガス圧力は1.0、
0.15、0.06、0.03Torrの4点で行っ
た。ガス圧力以外の非晶質窒化シリコン薄膜の堆積条件
は、投入高周波電力密度0.25W/cm、基板温度
300℃、ガス流量はシラン(SiN4 )5sccm、
アンモニア(NH3 )75sccm、成膜ガス比SiN
4 :NH3 =1:15である。この膜のバンドギャップ
は膜の透過特性から求めた吸収係数5×104 cm-1
基づいて決定した。
FIG. 1 is a diagram showing the pressure dependence of stress in an amorphous silicon nitride thin film. 1 amorphous silicon nitride thin film
It was produced using a parallel plate type high frequency plasma CVD apparatus using a high frequency of 3.56 MHz. Gas pressure is 1.0,
The test was performed at four points of 0.15, 0.06, and 0.03 Torr. The deposition conditions of the amorphous silicon nitride thin film other than the gas pressure are as follows: input high frequency power density 0.25 W / cm 2 , substrate temperature 300 ° C., gas flow rate silane (SiN 4 ) 5 sccm,
Ammonia (NH 3 ) 75 sccm, film forming gas ratio SiN
4 : NH 3 = 1: 15. The band gap of this film was determined based on the absorption coefficient of 5 × 10 4 cm −1 obtained from the transmission characteristics of the film.

【0016】図1に示したように、膜の応力は圧力が
0.06Torrのところで大きく減少していることが
確認できる。なお、シラン、アンモニアおよび水素もし
くは水素と窒素を加えた場合も0.1Torr以下で、
得られた薄膜の応力が減少する特性が得られた。
As shown in FIG. 1, it can be confirmed that the stress of the film is greatly reduced at the pressure of 0.06 Torr. Even when silane, ammonia and hydrogen or hydrogen and nitrogen are added, the pressure is 0.1 Torr or less,
The stress of the obtained thin film was reduced.

【0017】応力測定は以下の方法にて行った。まず、
あらかじめ基板の反りを測定した単結晶シリコンウェハ
上に非晶質窒化シリコン薄膜を堆積し、再び基板の反り
を測定した。後者の測定値から前者のそれを差引いた値
が非晶質窒化シリコン薄膜による反りの絶対値となる。
測定値から実際の応力を求めるには次式を用いた。
The stress was measured by the following method. First,
An amorphous silicon nitride thin film was deposited on a single crystal silicon wafer whose substrate warpage was measured in advance, and the substrate warpage was measured again. A value obtained by subtracting the former value from the latter measured value is the absolute value of the warpage due to the amorphous silicon nitride thin film.
The following equation was used to obtain the actual stress from the measured values.

【0018】[0018]

【数1】 [Equation 1]

【0019】ただし、式中、 E:ヤング率 ν:ポアソン比 ts :基板(シリコンウェハ)の厚さ tf :薄膜(非晶質窒化シリコン)の厚さ R:曲率半径(この値が基板の反りから求まる) 今回使用した面方位<100>の単結晶シリコンウェハ
においては
Where, E: Young's modulus ν: Poisson's ratio t s : Thickness of substrate (silicon wafer) t f : Thickness of thin film (amorphous silicon nitride) R: Radius of curvature (This value is the substrate In the single crystal silicon wafer with the plane orientation <100> used this time,

【0020】[0020]

【数2】 [Equation 2]

【0021】である。なお、シリコンウェハの大きさは
直径3インチ(76.2mm)で、反りの測定はSLO
AN株式会社製のDEKTAK2を用いた。
[0021] The size of the silicon wafer is 3 inches (76.2 mm) in diameter, and the warp is measured by SLO.
DEKTAK2 manufactured by AN Corporation was used.

【0022】[0022]

【発明の効果】本発明によれば、平行平板型プラズマ化
学堆積装置(プラズマCVD装置)により堆積されるバ
ンドギャップ5eV以上の非晶質窒化シリコン薄膜にお
いて、応力の小さい非晶質窒化シリコン膜を作製するこ
とができる。
According to the present invention, in an amorphous silicon nitride thin film having a band gap of 5 eV or more deposited by a parallel plate type plasma chemical deposition apparatus (plasma CVD apparatus), an amorphous silicon nitride film having a small stress can be formed. It can be made.

【0023】このことにより、非晶質窒化シリコン膜を
ゲート絶縁膜および保護膜に用いる非晶質薄膜トランジ
スタの動作特性を向上できるものである。
As a result, the operating characteristics of the amorphous thin film transistor using the amorphous silicon nitride film as the gate insulating film and the protective film can be improved.

【図面の簡単な説明】[Brief description of drawings]

図1は、本発明の実施例により作製した非晶質窒化シリ
コン膜の成膜時のガス圧力と膜の応力との関係を示す図
である。なお、縦軸は作製した膜の応力を示し、横軸は
成膜時のガス圧力を示す。
FIG. 1 is a diagram showing the relationship between gas pressure and film stress during the formation of an amorphous silicon nitride film produced according to an example of the present invention. Note that the vertical axis represents the stress of the formed film, and the horizontal axis represents the gas pressure during film formation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三村 秀典 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第1技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidenori Mimura Inventor Hidenori Mimura 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 成膜ガスとして、モノシランとアンモニ
アもしくはシランとアンモニアに水素と窒素のいずれか
一方もしくは両方を加えたガスを用い、13.56MH
zの高周波を用いる平行平板型プラズマ化学堆積装置に
より、堆積基板温度250〜350℃で堆積されるバン
ドギャップ5eV以上の非晶質窒化シリコン膜の製造方
法において、該非晶質窒化シリコン膜の堆積時のガス圧
力を0.01〜0.1Torrとすることを特徴とする
非晶質窒化シリコン薄膜の製造方法。
Claims: 1. As a film-forming gas, monosilane and ammonia, or a gas obtained by adding one or both of hydrogen and nitrogen to silane and ammonia is used, and 13.56 MH is used.
In a method of manufacturing an amorphous silicon nitride film having a band gap of 5 eV or more, which is deposited at a deposition substrate temperature of 250 to 350 ° C. by a parallel plate plasma chemical deposition apparatus using a high frequency of z, during the deposition of the amorphous silicon nitride film. And a gas pressure of 0.01 to 0.1 Torr.
JP15683691A 1991-06-27 1991-06-27 Manufacture of a morphous silicon nitride thin film Withdrawn JPH056889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15683691A JPH056889A (en) 1991-06-27 1991-06-27 Manufacture of a morphous silicon nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15683691A JPH056889A (en) 1991-06-27 1991-06-27 Manufacture of a morphous silicon nitride thin film

Publications (1)

Publication Number Publication Date
JPH056889A true JPH056889A (en) 1993-01-14

Family

ID=15636431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15683691A Withdrawn JPH056889A (en) 1991-06-27 1991-06-27 Manufacture of a morphous silicon nitride thin film

Country Status (1)

Country Link
JP (1) JPH056889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175494B1 (en) 1998-03-12 2001-01-16 Nec Corporation Cooling apparatus and cooling method capable of cooling an encapsulated type housing in a high cooling efficiency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175494B1 (en) 1998-03-12 2001-01-16 Nec Corporation Cooling apparatus and cooling method capable of cooling an encapsulated type housing in a high cooling efficiency

Similar Documents

Publication Publication Date Title
JP2938361B2 (en) Multi-stage CVD for thin film transistors
US6235650B1 (en) Method for improved semiconductor device reliability
JPH10209077A (en) Manufacturing method for semiconductor device
JP2607503B2 (en) Double dielectric MOS gate insulating device and method of forming the same
JPH06291114A (en) Semiconductor device
JPH066789B2 (en) Deposition method of borophosphosilicate glass
JPH056889A (en) Manufacture of a morphous silicon nitride thin film
JPH0570957A (en) Plasma vapor phase growth device
US5229333A (en) Method for improving the interface characteristics of CaF2 on silicon
JPH0745610A (en) Manufacture of semiconductor device
JPH04184932A (en) Formation of passivation film
JPH01304735A (en) Method of forming protective film of semiconductor device
JPH0629222A (en) Manufacture of semiconductor device
JP2802011B2 (en) Method for forming amorphous silicon alloy film
JPH0722130B2 (en) Silicon thin film and method for producing the same
JPH04137525A (en) Method for preventing peeling of silicon thin film
KR950007671B1 (en) Method for evaporation a thin film of tungsten
JPH0316129A (en) Generation of silicon nitride film
JP2723224B2 (en) Amorphous semiconductor and manufacturing method thereof
JPH07254590A (en) Manufacture of semiconductor device
JPH0760869B2 (en) High thermal conductivity insulating substrate
JPS60140726A (en) Plasma vapor growth device
JPH0855851A (en) Film-formation method of sin-based insulating film
JP2000040675A (en) Manufacture of semiconductor device and semiconductor device manufactured thereby
JPH0697079A (en) Manufacture of amorphous silicon

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903