JPH0568612B2 - - Google Patents

Info

Publication number
JPH0568612B2
JPH0568612B2 JP60059998A JP5999885A JPH0568612B2 JP H0568612 B2 JPH0568612 B2 JP H0568612B2 JP 60059998 A JP60059998 A JP 60059998A JP 5999885 A JP5999885 A JP 5999885A JP H0568612 B2 JPH0568612 B2 JP H0568612B2
Authority
JP
Japan
Prior art keywords
intake
valve
engine
volume chamber
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60059998A
Other languages
Japanese (ja)
Other versions
JPS61218720A (en
Inventor
Mitsuo Hitomi
Fumio Hitase
Kazuhiko Ueda
Yasuhiro Kunugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60059998A priority Critical patent/JPS61218720A/en
Publication of JPS61218720A publication Critical patent/JPS61218720A/en
Publication of JPH0568612B2 publication Critical patent/JPH0568612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の動的効果により出力の向上を
図るようにした過給機付エンジンの吸気装置の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an intake system for a supercharged engine that improves output through the dynamic effect of intake air.

(従来技術) 従来から過給機を備えたエンジンの吸気装置に
おいて、吸気開始に伴つて生じる圧力波が吸気通
路上流側の大気または容積室への開口端で反射さ
れて吸気ポート方向に戻されることを利用し、上
記反射波が吸気弁の閉弁の寸前に吸気ポートに達
して吸気圧力を高めるようにして、いわゆる吸気
の慣性効果で吸気の充填効率を高めるようにした
ものがある。このような吸気の動的効果を利用し
た出力向上技術を用いようとする場合に、吸気経
路が一定であると、吸気通路に生じる圧力波の振
動周期と吸気弁開閉周期とがマツチングして慣性
効果が高められるのは特定速度域に限られる。
(Prior Art) Conventionally, in the intake system of an engine equipped with a supercharger, pressure waves generated at the start of intake are reflected at the open end of the intake passage to the atmosphere or volume chamber on the upstream side and returned toward the intake port. Taking advantage of this fact, there is a system in which the reflected wave reaches the intake port just before the intake valve closes to increase the intake pressure, thereby increasing the filling efficiency of intake air due to the so-called inertia effect of intake air. When trying to use power improvement technology that utilizes the dynamic effects of intake air, if the intake path is constant, the oscillation cycle of the pressure waves generated in the intake passage and the intake valve opening/closing cycle will not match, resulting in inertia. The effect is only enhanced in a specific speed range.

このため、特開昭56−105626号公報に見られる
ように、過給機付エンジンの回転数に応じて吸気
通路の長さを変えるようにし、例えば、各気筒別
の吸気通路を上流部で分岐させて長い通路と短い
通路とを形成し、これらの通路の上流端を吸気容
積室等に開口させるとともに、短い通路に開閉弁
を設けて、高速域でこの開閉弁を開くことにより
吸気通路の有効長を短縮するようにし、こうして
低速域と高速域とでそれぞれ吸気の慣性効果を高
めるようにした吸気装置も提案されている。
For this reason, as seen in Japanese Patent Application Laid-Open No. 56-105626, the length of the intake passage is changed depending on the rotation speed of the supercharged engine. A long passage and a short passage are formed by branching, and the upstream ends of these passages are opened to the intake volume chamber, etc., and an on-off valve is provided in the short passage, and this on-off valve is opened in the high speed range to open the intake passage. An intake device has also been proposed in which the effective length of the intake air is shortened, thereby increasing the inertia effect of intake air in both low speed ranges and high speed ranges.

上記のように吸気の動的効果を広い範囲で得る
ようにするためには、その吸気経路をエンジン回
転数に応じて選択する開閉弁等の吸気切換機構を
設けて切換作動するようにしている。しかし、上
記吸気切換機構の作動の前後においては、トルク
の谷間が形成されて、低速域から高速域まで滑か
なトルク特性を得ることができないものである。
すなわち、例えば、前記開閉弁が閉じている吸気
通路の長い状態では、低速域においてエンジン回
転数の上昇に対し、そのトルクカーブは吸気通路
長さとエンジン回転数がマツチングした時のピー
ク値を過ぎて徐々に低下してから上記開閉弁が開
作動し、高速域においても同様にエンジン回転数
の上昇に対してその吸気通路長さとエンジン回転
数がマツチングするピーク値となるまで徐々に上
昇し、ピーク値を過ぎて徐々に下降するものであ
る。よつて、開閉弁の閉じた状態におけるピーク
値から、開閉弁が開いた状態のピーク値までの間
は、両側のトルクカーブの谷間となつて、トルク
特性の息つき現象が生起して切換作動時のトルク
シヨツクとなる問題を有している。
In order to obtain the dynamic effect of the intake air over a wide range as described above, an intake switching mechanism such as an on-off valve that selects the intake path according to the engine speed is installed to switch the intake path. . However, a torque valley is formed before and after the operation of the intake switching mechanism, making it impossible to obtain smooth torque characteristics from a low speed range to a high speed range.
That is, for example, in a state where the intake passage is long and the on-off valve is closed, as the engine speed increases in the low speed range, the torque curve will exceed the peak value when the intake passage length and engine speed match. After it gradually decreases, the on-off valve opens, and in the high speed range as well, the intake passage length and engine speed match the increase in engine speed, which gradually increases until the peak value is reached. It gradually declines after passing this value. Therefore, between the peak value when the on-off valve is closed and the peak value when the on-off valve is open, there is a valley between the torque curves on both sides, and a breathing phenomenon in the torque characteristics occurs, causing switching operation. This has the problem of torque shock during operation.

(発明の目的) 本発明は上記事情に鑑み、低速域から高速域に
までわたり、吸気の動的効果を利用して吸気充填
効率を高めるとともに、上記動的効果を拡大する
ための吸気切換機構の切換作動時のトルクシツヨ
クを解消するようにした過給機付エンジンの吸気
装置を提供することを目的とするものである。
(Object of the Invention) In view of the above-mentioned circumstances, the present invention provides an intake air switching mechanism for increasing the intake air filling efficiency by utilizing the dynamic effect of intake air and expanding the above-mentioned dynamic effect from a low speed range to a high speed range. An object of the present invention is to provide an intake system for a supercharged engine that eliminates torque shock during switching operation.

(発明の構成) 本発明の吸気装置は、過給圧制御手段を備える
とともに、吸気の動的効果をエンジン回転数の変
化に対応してマツチングさせるために、複数の経
路をエンジン回転数に応じて選択する吸気切換機
構を設け、この吸気切換機構の作動時に、前記過
給圧制御手段を過給圧が上昇するように作動させ
る切換制御手段を設けたことを特徴とするもので
ある。
(Structure of the Invention) The intake device of the present invention includes boost pressure control means, and in order to match the dynamic effect of intake air in response to changes in engine speed, a plurality of paths are arranged according to the engine speed. The present invention is characterized in that it is provided with an intake switching mechanism that selects the desired intake air, and a switching control means that operates the supercharging pressure control means so that the supercharging pressure increases when the intake switching mechanism is activated.

(発明の効果) 本発明によれば、吸気切換機構の作動によつて
吸気の動的効果をエンジン回転数の広い範囲で有
効に利用し、低速域から高速域まで高い充填効率
を得て、出力性能の向上を図ることができるもの
である。
(Effects of the Invention) According to the present invention, by operating the intake air switching mechanism, the dynamic effect of intake air is effectively utilized over a wide range of engine speeds, and high charging efficiency is obtained from low speed ranges to high speed ranges. This makes it possible to improve output performance.

また、上記吸気切換機構の切換作動時に発生す
るトルクの谷間に対応して、その切換作動時には
過給圧制御手段によつて過給圧を高くするように
制御することにより、過給圧の上昇によつて充填
効率が増大してトルクの谷間を埋めるように作用
し、切換作動時のトルクシヨツクが解消でき、低
速域から高速域まで滑かなトルク特性が得られる
ものである。
In addition, the boost pressure is increased by controlling the boost pressure to be increased by the boost pressure control means during the switching operation in response to the torque valley that occurs when the switching operation of the intake switching mechanism is performed. This increases charging efficiency and acts to fill the torque gap, eliminating torque shock during switching operation and providing smooth torque characteristics from low speed range to high speed range.

(実施例) 以下、図面により本発明の実施例を説明する。
第1図はこの実施例の吸気装置を備えたエンジン
の断面正面図、第2図は概略平面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional front view of an engine equipped with an intake system of this embodiment, and FIG. 2 is a schematic plan view.

この実施例のエンジンは4気筒4サイクルエン
ジンであつて、シリンダブロツク2およびシリン
ダヘツド3からなるエンジン本体1に、4つの気
筒4a〜4dが形成されている。この各気筒4a
〜4dにはそれぞれピストン5の上方に燃焼室6
が形成され、この燃焼室6に吸気ポート7および
排気ポート8が開口し、これらのポート7,8に
動弁機構11によつて所定のタイミングで開閉す
る吸気弁9および排気弁10が装備されている。
The engine of this embodiment is a four-cylinder four-cycle engine, and an engine body 1 consisting of a cylinder block 2 and a cylinder head 3 has four cylinders 4a to 4d formed therein. Each cylinder 4a
~4d, each has a combustion chamber 6 above the piston 5.
An intake port 7 and an exhaust port 8 are opened in this combustion chamber 6, and these ports 7 and 8 are equipped with an intake valve 9 and an exhaust valve 10 that are opened and closed at predetermined timing by a valve mechanism 11. ing.

上記各気筒4a〜4dの各吸気ポート7には、
互いに独立した気筒別の独立吸気通路12a〜1
2dが連通している。これらの独立吸気通路12
a〜12dの上流端は、ある程度の容量を有する
第1容積室13に接続されており、また、各独立
吸気通路12a〜12dの途中箇所にはこれらの
独立吸気通路12a〜12dを相互に連通する第
2容積室14が接続されている。これによつて、
各気筒4a〜4dと容積室13,14を連通する
長短2つの吸気経路を形成している。
Each intake port 7 of each of the cylinders 4a to 4d has
Independent intake passages 12a to 1 for each cylinder that are independent from each other
2d are communicating. These independent intake passages 12
The upstream ends of the independent intake passages 12a to 12d are connected to a first volume chamber 13 having a certain amount of capacity, and the independent intake passages 12a to 12d are connected to each other in the middle of the independent intake passages 12a to 12d. A second volume chamber 14 is connected thereto. By this,
Two long and short intake paths are formed that communicate the cylinders 4a to 4d with the volume chambers 13 and 14.

この実施例では吸気系をコンパクトに構成する
ため、吸気系に介装したタンク15を仕切壁16
で分割することにより、このタンク15内に第1
容積室13と第2容積室14とを区画形成し、第
2容積室14の下端に各独立吸気通路12a〜1
2dの途中箇所からの分岐した連通孔17を開口
させるとともに、この連通孔17よりも上流側で
各独立吸気通路12a〜12dを湾曲させて、そ
の上流端を第1容積室13の側方に開口させてい
る。なお、上記各独立吸気通路12a〜12dの
上流側湾曲部分は、タンク15の第2容積室14
の壁部を利用して一体に形成されている。
In this embodiment, in order to make the intake system compact, the tank 15 installed in the intake system is connected to the partition wall 16.
By dividing the tank 15 into
A volume chamber 13 and a second volume chamber 14 are partitioned, and each independent intake passage 12a to 1 is provided at the lower end of the second volume chamber 14.
2d is opened, and each of the independent intake passages 12a to 12d is curved on the upstream side of the communication hole 17, so that the upstream end thereof is placed to the side of the first volume chamber 13. It is opened. Note that the upstream curved portions of each of the independent intake passages 12a to 12d are connected to the second volume chamber 14 of the tank 15.
It is integrally formed using the walls of the

上記第2容積室14と各独立吸気通路12a〜
12dとの間の連通孔17には、吸気経路を切換
える開閉弁19(吸気切換機構)がそれぞれ設け
られている。この各開閉弁19は回動シヤフト1
9aに一体に連接され、該回動シヤフト19aの
端部に切換制御手段21の第1アクチユエータ2
0(第2図には図示省略)が接続されて各気筒の
ものが連係して開閉作動される。この開閉弁19
は基本的には、高負荷域においてエンジン回転数
が設定値未満の低速域では閉じられ、エンジン回
転数が設定値以上の高速域で開くように制御され
る。
The second volume chamber 14 and each independent intake passage 12a~
An on-off valve 19 (intake switching mechanism) for switching the intake path is provided in each of the communication holes 17 between the air intake valve 12d and the intake air passage 12d. Each opening/closing valve 19 is connected to the rotating shaft 1
9a, and a first actuator 2 of the switching control means 21 is connected to the end of the rotary shaft 19a.
0 (not shown in FIG. 2) is connected to open and close the cylinders in conjunction with each other. This on-off valve 19
is basically closed in a low speed range where the engine speed is less than a set value in a high load range, and is controlled to open in a high speed range where the engine speed is equal to or higher than the set value.

また、上記第1容積室13の一端部には上流側
の吸気導入通路26が接続されており、この吸気
導入通路26にはスロツトル弁27が配設され、
その上流端はターボ過給機22のブロア22aに
接続され、図示しないエアフローメータ等を介し
てエアクリーナに接続される。上記ターボ過給機
22のタービン22bに対しては排気ポート8に
連通された排気マニホールド23が接続され、排
気ガスの導入によつてタービン22bを介してブ
ロア22aを回転駆動するものである。
Further, an upstream intake air introduction passage 26 is connected to one end of the first volume chamber 13, and a throttle valve 27 is disposed in this intake air introduction passage 26.
The upstream end thereof is connected to the blower 22a of the turbocharger 22, and is connected to an air cleaner via an air flow meter (not shown) or the like. An exhaust manifold 23 communicating with the exhaust port 8 is connected to the turbine 22b of the turbocharger 22, and the blower 22a is rotationally driven through the turbine 22b by introducing exhaust gas.

さらに、上記ターボ過給機20には過給圧制御
手段24(第2図には図示省略)が設置され、こ
の過給圧制御手段24は排気バイパス通路23a
を開閉するウエストゲートバルブ30と、このウ
エストゲートバルブ30を作動する第2アクチユ
エータ31とによつて構成されている。なお、前
記各独立吸気通路12a〜12dの下流端近傍に
は、燃料通路28に接続された燃料噴射弁29が
配設されている。
Furthermore, a supercharging pressure control means 24 (not shown in FIG. 2) is installed in the turbocharger 20, and this supercharging pressure control means 24 is connected to the exhaust bypass passage 23a.
The waste gate valve 30 is configured by a waste gate valve 30 that opens and closes the waste gate valve 30, and a second actuator 31 that operates the waste gate valve 30. A fuel injection valve 29 connected to the fuel passage 28 is disposed near the downstream end of each of the independent intake passages 12a to 12d.

前記切換制御手段21における開閉弁19を作
動する第1アクチユエータ20にはエンジンコン
トロールユニツト37(ECU)からの制御制御
信号が出力されてその作動がエンジン回転数に応
じて制御される。また、過給圧制御手段24の第
2アクチユエータ31に対してもエンジンコント
ロールユニツト37からの制御信号が出力されて
その作動が制御され、過給圧が設定圧に調整され
る。上記エンジンコントロールユニツト37には
回転数センサー38、圧力センサー39によるエ
ンジン回転数および過給圧(吸気圧力)の検出信
号が入力される。
A control signal from an engine control unit 37 (ECU) is output to the first actuator 20 that operates the on-off valve 19 in the switching control means 21, and its operation is controlled in accordance with the engine speed. Further, a control signal from the engine control unit 37 is outputted to the second actuator 31 of the boost pressure control means 24 to control its operation, and the boost pressure is adjusted to the set pressure. The engine control unit 37 receives detection signals of the engine rotation speed and supercharging pressure (intake pressure) from a rotation speed sensor 38 and a pressure sensor 39.

上記切換制御手段21による開閉弁19の開閉
は、エンジン回転数の設定値において行うもので
あつて、この設定値未満の低速域で開閉弁19を
閉じ、設定値以上の高速域で開閉弁19を開くも
のである。また、ウエストゲートバルブ30は、
そのリフト量を小さくすると排気バイパス量が低
減して過給圧が上昇するものであつて、過給圧が
所定の値となるようにそのリフト量が調整制御さ
れるものである。この過給圧制御は、基本的には
過給圧の上限を一定の値に規制するものである
が、前記開閉弁19の切換作動域近傍において
は、過給圧を上昇するように制御する。なお、上
記のようなエンジン回転数に応じた開閉弁19の
開閉作動は、少なくとも出力が要求される高負荷
時において行なわれるようにすればよく、低負荷
時にはエンジン回転数に関係なく開閉弁を閉状態
もしくは開状態に保つようにしてもよい。
The opening and closing of the on-off valve 19 by the switching control means 21 is performed at a set value of the engine rotational speed, and the on-off valve 19 is closed in a low speed range below this set value, and the on-off valve 19 is closed in a high speed range above the set value. It opens. Moreover, the waste gate valve 30 is
When the lift amount is decreased, the exhaust bypass amount is reduced and the supercharging pressure is increased, and the lift amount is adjusted and controlled so that the supercharging pressure becomes a predetermined value. This supercharging pressure control basically regulates the upper limit of the supercharging pressure to a constant value, but in the vicinity of the switching operation range of the on-off valve 19, the supercharging pressure is controlled to increase. . Note that the opening/closing operation of the on-off valve 19 according to the engine speed as described above may be performed at least during high loads where output is required, and the on-off valve 19 may be opened and closed at low loads regardless of the engine speed. It may be kept in the closed state or in the open state.

上記実施例の装置において、エンジン回転数が
設定値未満の低回転域にある時には、開閉弁19
は閉じて各独立吸気通路12a〜12dと第2容
積室14との連通が遮断されているため、各気筒
4a〜4dが各独立吸気通路12a〜12dの全
長にわたる比較的長い通路を介して第1容積室1
3に接続される。
In the device of the above embodiment, when the engine speed is in a low speed range below the set value, the on-off valve 19
is closed and the communication between each independent intake passage 12a-12d and the second volume chamber 14 is cut off. 1 volume chamber 1
Connected to 3.

従つて、各気筒4a〜4dの吸気行程で生じる
圧力波が各独立吸気通路12a〜12dを通して
第1容積室13に伝播され、第1容積室13で各
気筒4a〜4dに反射されて、各独立吸気通路1
2a〜12dに吸気圧力振動が生じる。このた
め、各気筒4a〜4dと第1容積室13との間の
独立吸気通路12a〜12d内に生じる吸気系の
固有振動の周期と吸気弁開閉周期とがマツチング
するような低速側の回転域で、各気筒4a〜4d
に作用する圧力が吸気行程終期に高められ、充填
効率が向上する。
Therefore, the pressure waves generated during the intake stroke of each cylinder 4a to 4d are propagated to the first volume chamber 13 through each independent intake passage 12a to 12d, are reflected to each cylinder 4a to 4d in the first volume chamber 13, and are transmitted to each cylinder 4a to 4d. Independent intake passage 1
Intake pressure oscillations occur at 2a to 12d. For this reason, a low speed rotation range in which the period of natural vibration of the intake system occurring in the independent intake passages 12a to 12d between each cylinder 4a to 4d and the first volume chamber 13 matches the intake valve opening/closing period. So, each cylinder 4a to 4d
The pressure acting on the fuel is increased at the end of the intake stroke, improving filling efficiency.

一方、前記エンジン回転数が設定値以上の高回
転域にあるときには、開閉弁19が開いて各独立
吸気通路12a〜12dと第2容積室14とが連
通孔17によつて連通され、各気筒4a〜4dが
第2容積室14との間の各独立吸気通路12a〜
12dによる比較的短い通路長さを介して第2容
積室14に接続される。このとき、吸気は第1容
積室13から独立吸気通路12a〜12dによつ
て供給されるとともに、他の気筒の独立吸気通路
12a〜12dからこれと連通する第2容積室1
4を介してその独立吸気通路12a〜12dによ
つて供給されるものである。
On the other hand, when the engine speed is in a high speed range equal to or higher than the set value, the on-off valve 19 is opened and each independent intake passage 12a to 12d and the second volume chamber 14 are communicated with each other through the communication hole 17, and each cylinder 4a to 4d are the independent intake passages 12a to 4d between the second volume chamber 14 and the second volume chamber 14;
It is connected to the second volume chamber 14 via a relatively short passage length by 12d. At this time, intake air is supplied from the first volume chamber 13 through the independent intake passages 12a to 12d, and is supplied from the independent intake passages 12a to 12d of the other cylinders to the second volume chamber 1 communicating therewith.
4 and its independent intake passages 12a to 12d.

この状態では、吸気行程で生じる圧力波が前記
第2容積室14で反射されて、この圧力波および
反射波の伝播に供される通路長さが短くなること
により、高速域で吸気慣性効果が高められるとと
もに、この運転域では他の気筒から伝播される圧
力波も有効に作用して充填効率が向上する。
In this state, the pressure waves generated during the intake stroke are reflected by the second volume chamber 14, and the length of the passage through which the pressure waves and reflected waves propagate becomes shorter, thereby reducing the intake inertia effect in the high-speed range. At the same time, in this operating range, pressure waves propagated from other cylinders also act effectively, improving charging efficiency.

第3図はエンジン回転数とトルクとの関係を示
すものであつて、曲線Aは開閉弁19を閉じた状
態における全開ラインであり、曲線Bは開閉弁1
9を開いた状態における全開ラインであり、この
両曲線AとBが交差する点に相当するエンジン回
転数N0が、前記第1アクチユエータ20を作動
して開閉弁19を開閉する設定値N0であり、第
6図に示すようにこの設定回転数N0より低速側
で開閉弁19を閉じて高速側で開くものであり、
全回転域の吸気充填効率を高めて出力の向上を図
るものである。
FIG. 3 shows the relationship between engine speed and torque, where curve A is the fully open line when on-off valve 19 is closed, and curve B is the full-open line when on-off valve 19 is closed.
The engine rotation speed N 0 corresponding to the point where both curves A and B intersect is the set value N 0 at which the first actuator 20 is actuated to open and close the on-off valve 19. As shown in FIG. 6, the on-off valve 19 is closed at a lower speed than the set rotational speed N 0 and opened at a higher speed.
This aims to improve output by increasing intake air filling efficiency over the entire rotation range.

第3図において、上記設定回転数N0の近傍に
おける両トルク曲線A,Bの交差部分において
は、低回転側の曲線Aのピーク点aから高回転側
の曲線Bのピーク点bに対して、トルク値が低下
しているものであつて、この部分に略3角形状の
谷間部分が形成されている。
In Fig. 3, at the intersection of both torque curves A and B in the vicinity of the set rotation speed N 0 , from peak point a of curve A on the low rotation side to peak point b of curve B on the high rotation side, , the torque value is decreasing, and a substantially triangular valley portion is formed in this portion.

そして、上記トルクの谷間部分を補うように
過給圧制御手段24によつて過給圧を第4図に示
すように、上限規制圧(破線)に対して上記a点
からb点にかけて山形特性に上昇させるもので
ある。すなわち、エンジンコントロールユニツト
37はエンジン回転数をみて、開閉弁19を切換
作動させる状態にあるときには、検出している過
給圧が上記第4図の特性に対して高いか低いかを
判定し、それに応じて過給圧制御手段24にウエ
ストゲートバルブ30のリフト量を増減する制御
信号を出力するものである。なお、過給圧を上昇
させる特性は、上記のような山形のほか、各種
特性で行うようにしてもよいが、急激な増減は避
けるようにする。
Then, as shown in FIG. 4, the supercharging pressure is controlled by the supercharging pressure control means 24 so as to compensate for the valley portion of the torque, and has a chevron-shaped characteristic from the point a to the point b with respect to the upper limit regulation pressure (broken line). It is intended to raise the That is, the engine control unit 37 monitors the engine speed and determines whether the detected supercharging pressure is high or low with respect to the characteristics shown in FIG. Accordingly, a control signal for increasing or decreasing the lift amount of the waste gate valve 30 is output to the boost pressure control means 24. In addition to the chevron shape described above, various characteristics may be used to increase the boost pressure, but sudden increases and decreases should be avoided.

そして、上記特性のように切換作動域近傍にお
いて、過給圧を上昇させるためのウエストゲート
バルブ30のリフト量は第5図に示すように、定
圧制御特性(破線)に対してリフト量を低減する
特性によつて排気バイパス量を減少させてブロ
ア22aの回転数を増大して過給圧を前記特性
のように高くするものである。
As shown in the above characteristics, near the switching operation range, the lift amount of the waste gate valve 30 to increase the boost pressure is reduced compared to the constant pressure control characteristic (broken line), as shown in FIG. According to the characteristics described above, the amount of exhaust bypass is reduced and the rotational speed of the blower 22a is increased to increase the supercharging pressure as shown in the characteristics described above.

なお、上記実施例においてはターボ過給機の例
を示しているが、その他の過給機も使用可能であ
る。また、過給機による過給と自然吸気とを併用
するようにしてもよい。
In addition, although the above-mentioned embodiment shows an example of a turbo supercharger, other superchargers can also be used. Further, supercharging by a supercharger and natural intake may be used together.

また、吸気の動的効果を得るための複数の吸気
経路としては、上記実施例のような吸気通路の長
さの変更と他気筒の吸気通路との連通の切換えを
行うようにしたもののほか、吸気通路面積の変更
もしくは吸気容積室の容積変更等の種々の吸気動
的特性の変更構造もしくはそれらの組合せ構造に
よる複数の吸気経路が採用可能であり、これに対
応して開閉弁等の吸気切換機構を設置し、切換制
御手段によつてエンジン回転数に応じて切換作動
するものである。また、吸気の動的効果を得るた
めの吸気経路の上流端は、吸気容積室もしくは大
気開口部に連通するものである。
In addition to the plurality of intake passages for obtaining the dynamic effect of intake air, in addition to the one in which the length of the intake passage is changed and the communication with the intake passages of other cylinders is switched as in the above embodiment, It is possible to adopt a plurality of intake paths by changing various intake dynamic characteristics such as changing the intake passage area or changing the volume of the intake volume chamber, or a combination structure thereof. A mechanism is installed, and a switching control means switches the engine according to the engine speed. Further, the upstream end of the intake path for obtaining the dynamic effect of intake air communicates with the intake volume chamber or the atmospheric opening.

さらに、過給圧制御手段24としては、上記の
ようなターボ過給機22に対するウエストゲート
バルブ30によるもののほか、吸気をリリーフす
るもの等が使用でき、他の形式の過給機において
は吸気リリーフ、回転数コントロール等のそれぞ
れの形式に対応した過給圧制御手段が適宜採用可
能である。
Furthermore, as the supercharging pressure control means 24, in addition to the waste gate valve 30 for the turbo supercharger 22 as described above, a means for relieving intake air can be used. , rotational speed control, etc. can be appropriately employed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における吸気装置を
備えたエンジンの断面正面図、第2図はその概略
平面図、第3図は開閉弁の開閉状態に対応するエ
ンジン回転数とトルクとの関係を示す特性図、第
4図はエンジン回転数に対する過給圧の制御特性
を示す特性図、第5図はエンジン回転数に対する
ウエストゲートバルブのリフト量の制御特性を示
す特性図、第6図はエンジン回転数に対する開閉
弁の開閉動作を示す説明図である。 1……エンジン本体、4a〜4d……気筒、1
2a〜12d……独立吸気通路、13……第1容
積室、14……第2容積室、19……開閉弁(吸
気切換機構)、20……第1アクチユエータ、2
1……切換制御手段、22……ターボ過給機、2
4……過給圧制御手段、30……ウエストゲート
バルブ、31……第2アクチユエータ、37……
エンジンコントロールユニツト。
FIG. 1 is a cross-sectional front view of an engine equipped with an intake system according to an embodiment of the present invention, FIG. 2 is a schematic plan view thereof, and FIG. Figure 4 is a characteristic diagram showing the control characteristics of supercharging pressure with respect to engine speed, Figure 5 is a characteristic diagram showing the control characteristics of wastegate valve lift amount with respect to engine speed, and Figure 6 is a characteristic diagram showing the relationship. FIG. 2 is an explanatory diagram showing the opening/closing operation of the on-off valve with respect to the engine speed. 1...Engine body, 4a to 4d...Cylinder, 1
2a to 12d...Independent intake passage, 13...First volume chamber, 14...Second volume chamber, 19...Opening/closing valve (intake switching mechanism), 20...First actuator, 2
1... Switching control means, 22... Turbo supercharger, 2
4...Supercharging pressure control means, 30...Waste gate valve, 31...Second actuator, 37...
Engine control unit.

Claims (1)

【特許請求の範囲】[Claims] 1 過給機を備えるとともに過給圧制御手段を備
え、1気筒と吸気容積室もしくは大気開口部とを
連通する吸気経路を複数設け、これら複数の吸気
経路をエンジン回転数に応じて選択する吸気切換
機構を設けた過給機付エンジンの吸気装置におい
て、上記吸気切換機構の作動時に、前記過給圧制
御手段を過給圧が上昇するように作動させる切換
制御手段を設けたことを特徴とする過給機付エン
ジンの吸気装置。
1. An intake system that is equipped with a supercharger and a boost pressure control means, has a plurality of intake paths communicating between one cylinder and an intake volume chamber or an atmospheric opening, and selects these plurality of intake paths depending on the engine speed. An intake system for a supercharged engine provided with a switching mechanism, characterized in that a switching control means is provided for operating the supercharging pressure control means so that the supercharging pressure increases when the intake switching mechanism is activated. Intake system for supercharged engines.
JP60059998A 1985-03-25 1985-03-25 Intake device of engine with supercharger Granted JPS61218720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059998A JPS61218720A (en) 1985-03-25 1985-03-25 Intake device of engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059998A JPS61218720A (en) 1985-03-25 1985-03-25 Intake device of engine with supercharger

Publications (2)

Publication Number Publication Date
JPS61218720A JPS61218720A (en) 1986-09-29
JPH0568612B2 true JPH0568612B2 (en) 1993-09-29

Family

ID=13129342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059998A Granted JPS61218720A (en) 1985-03-25 1985-03-25 Intake device of engine with supercharger

Country Status (1)

Country Link
JP (1) JPS61218720A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344455B2 (en) 1999-09-03 2009-10-14 本田技研工業株式会社 Engine intake and exhaust control system
DE102011005941A1 (en) * 2011-03-23 2012-09-27 Mahle International Gmbh Internal combustion engine, fresh air system and associated operating method

Also Published As

Publication number Publication date
JPS61218720A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
JPS61116021A (en) Engine intake-air device
JPS6263127A (en) Suction device for engine
JPS6211169B2 (en)
JPH0568612B2 (en)
JPH0452377B2 (en)
JPS6291623A (en) Intake-air device of engine
JPS61201819A (en) Air intake device for engine
JPH0364688B2 (en)
JPS61218721A (en) Intake device of engine
JP2673426B2 (en) Engine with mechanical supercharger
JPH0128209B2 (en)
JPH044442B2 (en)
JP3427396B2 (en) Intake device for engine with mechanical supercharger
JPH0340214B2 (en)
JPS61116019A (en) Engine intake-air device
JPS61157716A (en) Air intake device of multicylinder engine
JPH0517378B2 (en)
JPH0577845B2 (en)
Matsuda et al. New technology employed for the latest 13B-rotary engine
JPS61252830A (en) Intake device of multicylinder engine
JPS61200328A (en) Suction device for internal-combustion engine
JPH0517377B2 (en)
JPH0214527B2 (en)
JPH0380967B2 (en)
JPS6220626A (en) Suction device for diesel engine