JPH0568537B2 - - Google Patents

Info

Publication number
JPH0568537B2
JPH0568537B2 JP59094147A JP9414784A JPH0568537B2 JP H0568537 B2 JPH0568537 B2 JP H0568537B2 JP 59094147 A JP59094147 A JP 59094147A JP 9414784 A JP9414784 A JP 9414784A JP H0568537 B2 JPH0568537 B2 JP H0568537B2
Authority
JP
Japan
Prior art keywords
titanium
bright
vacuum
layer
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59094147A
Other languages
Japanese (ja)
Other versions
JPS60238465A (en
Inventor
Masaru Shiichi
Yukihisa Takahashi
Takafumi Kaneko
Masaki Nokoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9414784A priority Critical patent/JPS60238465A/en
Publication of JPS60238465A publication Critical patent/JPS60238465A/en
Publication of JPH0568537B2 publication Critical patent/JPH0568537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、成形加工性に優れたチタン及びチ
タン合金光輝焼鈍材の製造方法に関するものであ
る。 近年、製造技術の著しい進歩にともない、そし
てその優れた耐食性の故に、チタン及びチタン合
金材は、各種化学装置や熱交換器等、その適用分
野が極めて広範囲に及ぶようになつてきた。 ところで、通常、チタン及びチタン合金の使用
形態は大部分が0.3〜3.0mm厚程度の薄板材として
のものであり、この場合、該板材は冷間圧延の後
焼鈍された状態で用いられるのが普通である。 しかし、チタン及びチタン合金は極めて活性な
金属であり、冷間圧延後に大気中で焼鈍すると表
面に厚い酸化スケールが生成してしまうので、こ
の場合にはこれを除去するためのデスケーリング
工程が必須となり、従つて重量減少による歩留り
の低下を招くことから、チタン及びチタン合金板
材の製造は他の非鉄金属材のそれに比してコスト
が極めて高くなると言う問題があつた。 <従来の技術> このようなことから、最近では、冷間圧延後の
チタン及びチタン合金材の焼鈍には、酸化着色を
殆んど生ずることのない光輝焼鈍炉を用いること
が一般的に行われるようになつてきた。 しかしながら、このような光輝焼鈍炉で熱処理
されたチタン及びチタン合金材には、明瞭な酸化
着色が表面に観察されないにもかかわらず成形加
工性の劣化が認められ、例えばプレート型熱交換
器の製造時における如き苛酷なプレス成形に供さ
れると、成形加工に耐えきれずに割れが発生する
と言う不都合を免れることができなかつたのであ
る。 また、従来、無酸化焼鈍法と称されているとこ
ろの、炉内雰囲気等を様々に工夫したチタン及び
チタン合金材の光輝焼鈍法もいくつか提案された
が(例えば、特公昭48−25607号、実公昭52−
52006号、特公昭57−47751号及び特公昭57−2144
号)、これらの方法も結局は外観的な酸化着色の
防止にのみに着目したものであつたため、前記の
ような不都合を解消し得るものではなかつた。 <発明の目的> この発明が目的とするところは、上述のような
問題点を解消し、特殊な装置や焼鈍後のデスケー
リング工程を要することなく、優れた成形加工性
を備え、苛酷なプレス成形にも十分に耐え得るチ
タン及びチタン合金光輝焼鈍材をコスト安く製造
できる方法を提供することにある。 本発明者等は、このような観点から、まず従来
のチタン及びチタン合金光輝焼鈍材にみられる成
形加工性劣化の原因を究明し、その劣化原因を取
り除くことに着目して種々研究を重ねた結果、以
下に示される如き知見を得るに至つたのである。 <研究によつて得られた知見事項> (a) 従来方法によるチタン及びチタン合金の光輝
焼鈍材の表面には、例え酸化着色による変色が
認められなくても深さ:5〜20μmにわたつて
表面硬化層が生成されており、しかもこれは、
下地金属に比べて著しく硬く、かつ脆い。従つ
て、プレート型熱交換器の製造時における如き
苛酷なプレス加工等を施すと、この表面硬化層
に起因した割れが発生してしまうこと。 即ち、この場合、前記表面の硬化層にまず微
細クラツクが生じ、然る後該クラツクに応力集
中が起ると、切欠感受性の強い金属材料である
チタン及びチタン合金では、下地金属部にまで
急速に割れが進展し、破断に至ると言う機構が
確認されたのである。 さて、第1図は、従来法によつて製造したと
ころの、外観上は酸化着色が全く無い美麗な純
チタン光輝焼鈍至(JIS1種のチタンの0.6mm厚
材)における表面硬化層の生成状況を示したも
のである。 この表面硬化層の測定は、試料の片面だけを
電解研磨により数μmずつ除去しながら、その
都度、剥出しとなつた表面の硬さを測つて(マ
イクロビツカース硬さ計:荷重10g)実施した
ものであるが、第1図では、電解研磨により減
厚した分を表面からの距離に換算した上で、硬
さ分布として表面硬化層の形態を表わしてい
る。 第1図からも明らかなように、この例では約
15μmの深さにわたつて表面硬化層が存在して
おり、最表面部では下地金属に比べて約150も
硬さが上昇しているなど、著しく硬化した表面
層の存在することがわかる。 (b) 光輝焼鈍においてこのような表面硬化層が生
成するのは、次のような理由によるものである
こと。 即ち、一般に、活性金属であるチタン及びチ
タン合金は、周囲に不活性ガス元素以外の他元
素が存在する状態で高温に加熱されると容易に
これらの元素と反応して表面硬化層を形成する
ものであり、特に原子半径が小さくてチタンと
反応し易い酸素、炭素、窒素、水素等が存在す
ると、極めて簡単に硬化層を形成することが知
られている。従つて、表面硬化層を形成させな
いためには、高温加熱状態でこれら異種元素を
チタン及びチタン合金表面から十分に遮断する
必要がある。 このように、冷間圧延した後のチタン及びチ
タン合金を光輝焼鈍する際には、焼鈍炉内雰囲
気が前記異種元素で汚染されることを極力防止
する対策をとらなければならないほか、被焼鈍
材表面に付着した圧延油等の完全除去を図るこ
とも表面硬化層の生成阻止には重要なことであ
る。 ところで、金属材料を冷間で塑性変形させる
と内部摩擦による発熱現象を呈するが、その
際、該発熱によつて使用中の潤滑油の温度も上
昇する。特に、チタン及びチタン合金の冷間圧
延においては圧延油の温度上昇が極めて著し
く、更にチタン及びチタン合金は活性金属であ
ることもあつて、温度の上昇した高温圧延油が
圧延材表面に焼付き状態となつて堅固に付着し
易い。 ところが、光輝焼鈍に供する材料に対して、
従来は、濡れた状態で物理的に表面に載つてい
る状態の圧延油のみを想定し、アルカリ水溶液
や有機溶剤を用いてこれを単に洗い流すことで
汚染物質の除去が十分であると考えられてお
り、現にそのような対策だけが実施されている
が、このような手段では、化学的に表面に付着
した焼付油脂の除去が完全になされなかつたの
である。 このチタン及びチタン合金の表面を薄く覆つ
た焼付油脂は、その後光輝焼鈍炉内で加熱され
ると、蒸発することなく、油脂中の成分である
炭素、酸素、水素等を該チタン及びチタン合金
中へ内方拡散させて表面硬化層を形成すること
となる。 もちろん、上述のような残留油脂分を完全に
除去したとしても、光輝焼鈍炉内の雰囲気成分
に汚染があれば表面硬化層の生成が起きること
は言うまでもない。 (c) しかしながら、光輝焼鈍の前に、冷間圧延し
たチタン及びチタン合金の表面を特に硝弗酸で
酸洗するとともに、光輝焼鈍の際の雰囲気を特
定のものに規制すると、成形加工性劣化の原因
となる上記表面硬化層の生成が有効に防止でき
ること。 即ち、本発明者等は、焼付油脂の完全除去方
法を見出すためにJIS1種の0.5mm厚冷間圧延チ
タン板(冷間圧延のまま板)を対象として、各
種アルカリ水溶液や有機溶剤、或いは各種の酸
水溶液での化学的洗浄効果の実験室的検討、ス
チールシヨツトプラスト、ガラスビーズプラス
ト、液体ホーニング、超音波洗浄等の機械的・
物理的洗浄効果の実験室的検討等を繰り返した
ところ、硝弗酸水溶液での酸洗が最も有効かつ
短時間に所期の目的を達成するとの結論に至
り、実際操業によつても、そして他のチタン合
金においてもその効果が確認されたのである。 もつとも、前記機械的・物理的手段のある種
のものによつても焼付油脂の除去がなされると
の確認はなされたが、その場合には、著しく表
面肌を損うことになつたり、或いは凹凸を生じ
て平坦度が劣化されたりするので好ましい手段
であるとは言えないと結論された。 そして、硝弗酸以外の他の酸やアルカリの中
にも焼付油脂を除去し得るものがあつたが、こ
の場合には高温・高濃度を必要としたり、或い
は焼付油脂の除去に止まらず下地金属までもが
局部的に腐食されてピツトや凹凸を生じたりし
たので好ましくないと判断された。 なお、硝弗酸水溶液で酸洗することによる焼
付油脂除去効果は、例えはトリクロールエチレ
ン等で外観的には十分に脱脂した冷間圧延材で
も、これを更に硝弗酸水溶液で酸洗いすると圧
延材表面から微細な黒色物が遊離する現象によ
つても確認された。つまり、前記黒色物がチタ
ン表面に堅固に付着した焼付油脂と判断された
からである。 <発明の構成> この発明は、上記知見に基づいてなされたもの
であり、 チタン又はチタン合金材を硝弗酸水溶液にて酸
洗し、次いでこれを7×10-5Torr以下の真空相
当雰囲気中にて光輝焼鈍することにより、実質的
に表面硬化層がなく、成形加工性に優れたチタン
及びチタン合金光輝焼鈍材を、簡単に、かつ安定
して製造し得るようにした点、 に特徴を有するものである。 なお、この発明の方法において対象となる「チ
タン合金」は、その種類が格別に制限されるもの
ではなく、従来知られているチタン合金のいずれ
もがこれに該当することは言うまでもない。 また、前記「硝弗酸水溶液」の濃度や使用温度
も格別に制限されるものではなく、例えば弗酸:
1〜10重量%と硝酸:10〜20重量%の混合水溶液
を20〜40℃程度の温度に保持し、この水溶液中に
被処理材を数秒から数十秒間浸漬することで十分
に所期の目的を達成することができる。 もちろん、硝弗酸水溶液による上記「酸洗」を
光輝焼鈍の後で実施し、被処理材の表面硬化層
を、それが形成された後に除去することも理論上
は可能であるが、この場合は下地金属の多大な溶
損を伴い、製品歩留りを著しく低下させることに
加えて、美麗な光輝肌を失い、本来の光輝焼鈍材
の製品価値を損うこととなるので好ましくない。
これに対して、光輝焼鈍の前処理として上記「酸
洗」を実施すれば、下地金属に拡散反応層を形成
していない状態で、焼付油脂のみを軽度の酸洗に
て除去することとなるので、下地金属の溶損はな
く、製品の光輝肌を十分に維持されるのである。 さて、光輝焼鈍の際の雰囲気を「7×
10-5Torr以下の真空相当雰囲気」と定めたのは、
上記の如くに前処理した冷間圧延材を光輝焼鈍炉
内で焼鈍する場合に、炉内雰囲気からの汚染によ
る新たな表面硬化層の生成を防止しなければなら
ないからである。 第2図は、上記「酸洗」を施したJIS1種チタン
板(0.5mm厚の冷間圧延材)を用いて、真空容器
中、700℃で5時間の均熱保持を行つた光輝焼鈍
材の最表面硬さとエリクセン値とを、容器内真空
度との関係で表わした線図である。なお、最表面
硬さとエリクセン値の測定は、真空容器内を所定
の真空度に予備排気し、第2図の実線Aはその真
空度のまま加熱保持したものについて行い、破線
Bは所定の真空度に予備排気の後市販高純度Ar
ガス(99.99%純度)で置換して加熱保持したも
のについて行つたものであり、第2図の横軸には
その所定の真空度を示してある。 第2図からも明らかなように、Arガス置換の
有無にかかわらず容器真空度と表面硬化度とが相
関し、また成形加工性の評価法としてチタン及び
チタン合金に対し一般的に行われているエリクセ
ン試験値とも相関する。そして、チタン及びチタ
ン合金をプレート型熱交換板における如き厳しい
プレス加工等に供するに際し、エリクセン値が
11.5mm以上であれば、安定的に割れを生ずること
のないことは、従来経験的に知られていたことで
ある。 つまり、Arガス置換の有無にかかわらず、光
輝焼鈍炉容器内真空度を7×10-5Torr以下にま
で排気することが、表面硬化層の生成を抑止し、
良好な成形性を付与させる必要条件であることを
第2図は明瞭に示しているのである。これは、純
チタン材のみに限らず、各種チタン合金材にも同
様に当てはまる条件であることも確認された。 以上の説明からも明らかなように、前記「7×
10-5Torr以下の真空相当雰囲気中」とは、「7×
10-5Torr以下の真空中」又は「7×10-5Torr以
下の真空度に予備排後高純度不活性ガスで置換し
た雰囲気中」を意味するものであつて、このよう
な状況では炉内露点は−80℃以下となり、また
Ar等の高純度不活性ガスで置換した雰囲気であ
つても、該雰囲気中のO2が2ppm以下に保たれ、
光輝焼鈍材の表面に実質的な硬化層を形成するこ
とがない。なお、酸化着色を生じるのは1×
10-4Torr程度域の低真空度である。 また、焼鈍温度及び時間は、通常の光輝焼鈍に
て採用されている条件で十分である。 次に、この発明を実施例により比較例と対比し
ながら説明する。 <実施例> まず、JIS1種純チタン板(重量割合にて、0.04
%O−0.03%Fe−0.01%以下C−0.01%以下N−
Ti)及びTi−Pd合金板(重量割合にて、0.05%
O−0.02%Fe−0.01%以下C−0.01%以下N−
0.17%Pd−Ti)を0.5mm厚にまで冷間圧延したも
のを用意し、10-5Torrオーダーの真空度を保持
し得る加熱炉中にて、第1表に示される前処理条
件及び加熱条件で光輝焼鈍処理を施した。 次いで、このようにして得られた光輝焼鈍処理
材について、表面硬化層生成有無を判定するため
の最表面硬さと板厚中心部硬さ、及びエリクセン
試験値を測定した。 これらの結果も、第1表に併せて示した。 さて、比較法1〜3は、純チタンについて、加
熱炉雰囲気条件は本発明法の範囲を満たしてはい
<Industrial Application Field> The present invention relates to a method for manufacturing titanium and titanium alloy bright annealed materials having excellent formability. In recent years, with the remarkable progress in manufacturing technology and because of their excellent corrosion resistance, titanium and titanium alloy materials have come to be applied in an extremely wide range of fields, such as various chemical devices and heat exchangers. Incidentally, titanium and titanium alloys are usually used in the form of thin plates with a thickness of approximately 0.3 to 3.0 mm, and in this case, the plates are cold rolled and then annealed before being used. It's normal. However, titanium and titanium alloys are extremely active metals, and if annealed in the air after cold rolling, a thick oxide scale will form on the surface. In this case, a descaling process is required to remove this. As a result, the production yield of titanium and titanium alloy sheets is extremely high compared to that of other non-ferrous metal materials, which leads to a decrease in yield due to weight reduction. <Prior art> For these reasons, recently, it has become common practice to use a bright annealing furnace, which hardly causes oxidation coloring, to anneale titanium and titanium alloy materials after cold rolling. I've come to feel that way. However, in titanium and titanium alloy materials heat-treated in such a bright annealing furnace, deterioration in formability is observed even though clear oxidation coloration is not observed on the surface, and for example, it is difficult to manufacture plate-type heat exchangers. When subjected to such severe press forming as in the past, it was impossible to avoid the inconvenience of cracks occurring due to the inability to withstand the forming process. In addition, several bright annealing methods for titanium and titanium alloy materials have been proposed that have been conventionally referred to as non-oxidation annealing methods, but have variously modified the furnace atmosphere (for example, Japanese Patent Publication No. 25607/1983 , Jikko 52-
No. 52006, Special Publication No. 57-47751 and Special Publication No. 57-2144
In the end, these methods focused only on the prevention of oxidative coloration in appearance, and therefore were unable to eliminate the above-mentioned disadvantages. <Objective of the invention> The object of the invention is to solve the above-mentioned problems, provide excellent moldability without requiring special equipment or a descaling process after annealing, and eliminate the need for severe pressing. It is an object of the present invention to provide a method for manufacturing titanium and titanium alloy bright annealed materials that can sufficiently withstand forming at low cost. From this perspective, the present inventors first investigated the cause of deterioration in formability observed in conventional titanium and titanium alloy bright annealed materials, and conducted various studies with a focus on eliminating the cause of deterioration. As a result, we came to the knowledge shown below. <Findings obtained through research> (a) Even if no discoloration due to oxidation is observed on the surface of brightly annealed materials of titanium and titanium alloys produced by conventional methods, the surface of brightly annealed titanium and titanium alloys has a depth of 5 to 20 μm. A hardened surface layer is generated, and this
It is significantly harder and more brittle than the underlying metal. Therefore, if a severe press process such as that used in manufacturing a plate-type heat exchanger is applied, cracks will occur due to this hardened surface layer. That is, in this case, microcracks first occur in the hardened layer on the surface, and then, when stress concentration occurs in the cracks, in titanium and titanium alloys, which are metal materials with high notch sensitivity, the cracks rapidly reach the underlying metal part. A mechanism was confirmed in which cracks develop and lead to rupture. Now, Figure 1 shows the formation of a hardened surface layer on pure titanium bright annealed material (0.6 mm thick material of JIS 1 class titanium) manufactured by the conventional method and having a beautiful appearance with no oxidation coloration. This is what is shown. The hardened surface layer was measured by electrolytically polishing only one side of the sample to remove several micrometers at a time, and measuring the hardness of the exposed surface each time (micro-Vickers hardness tester: load 10 g). However, in FIG. 1, the thickness reduction due to electrolytic polishing is converted into a distance from the surface, and the form of the surface hardened layer is expressed as a hardness distribution. As is clear from Figure 1, in this example, approximately
A hardened surface layer exists over a depth of 15 μm, and the hardness of the outermost layer is about 150 higher than that of the underlying metal, indicating the presence of a significantly hardened surface layer. (b) The reason why such a surface hardening layer is generated during bright annealing is as follows. That is, in general, when titanium and titanium alloys, which are active metals, are heated to high temperatures in the presence of other elements other than inert gas elements around them, they easily react with these elements to form a hardened surface layer. It is known that a hardened layer can be formed extremely easily in the presence of oxygen, carbon, nitrogen, hydrogen, etc., which have a small atomic radius and easily react with titanium. Therefore, in order to prevent the formation of a hardened surface layer, it is necessary to sufficiently block these different elements from the titanium and titanium alloy surfaces under high temperature heating conditions. In this way, when bright annealing titanium and titanium alloys after cold rolling, it is necessary to take measures to prevent the atmosphere inside the annealing furnace from being contaminated with the above-mentioned dissimilar elements as much as possible. It is also important to completely remove rolling oil etc. adhering to the surface in order to prevent the formation of a hardened surface layer. By the way, when a metal material is plastically deformed in a cold state, heat generation occurs due to internal friction, and at that time, the temperature of the lubricating oil in use also rises due to the heat generation. In particular, during cold rolling of titanium and titanium alloys, the temperature of the rolling oil increases significantly, and since titanium and titanium alloys are active metals, the elevated temperature of the hot rolling oil seizes on the surface of the rolled material. It becomes easy to adhere firmly. However, for materials subjected to bright annealing,
Conventionally, it was assumed that only the rolling oil was wet and physically on the surface, and that it was sufficient to remove contaminants by simply washing it away using an alkaline aqueous solution or organic solvent. Currently, such measures are the only ones being implemented, but these measures do not completely remove the baked-on oils and fats that have chemically adhered to the surface. When the baking oil that thinly covers the surface of titanium and titanium alloys is heated in a bright annealing furnace, it does not evaporate and transfers carbon, oxygen, hydrogen, etc., which are the components of the oil, into the titanium and titanium alloys. The hardened surface layer is formed by inward diffusion. Of course, even if the residual oils and fats as described above are completely removed, it goes without saying that if there is contamination in the atmospheric components within the bright annealing furnace, a surface hardening layer will occur. (c) However, if the surface of cold-rolled titanium and titanium alloys is pickled with nitric-fluoric acid before bright annealing, and if the atmosphere during bright annealing is regulated to a specific one, the formability deteriorates. It is possible to effectively prevent the formation of the above-mentioned surface hardening layer that causes the above. That is, in order to find a method for completely removing baked-on oils and fats, the present inventors targeted JIS 1 class 0.5 mm thick cold-rolled titanium plates (plates as cold-rolled) and treated them with various alkaline aqueous solutions, organic solvents, and various Laboratory study of chemical cleaning effect with acid aqueous solution, mechanical cleaning such as steel shot blasting, glass bead blasting, liquid honing, ultrasonic cleaning, etc.
After repeated laboratory studies of the physical cleaning effect, we came to the conclusion that pickling with nitric-fluoric acid aqueous solution is the most effective way to achieve the desired purpose in the shortest time. This effect was also confirmed in other titanium alloys. Although it has been confirmed that baking oils and fats can be removed by some of the above-mentioned mechanical and physical means, in that case, the surface skin may be significantly damaged or It was concluded that this is not a preferable method because it causes unevenness and deteriorates the flatness. In addition to nitric-fluoric acid, there are other acids and alkalis that can remove baked-on oils and fats, but in this case, high temperatures and high concentrations are required, or they do not only remove baked-on oils but also remove the base. It was judged to be undesirable because even the metal was locally corroded, causing pits and unevenness. Note that the effect of pickling with a nitric-fluoric acid aqueous solution on removing baked-on oils and fats can be obtained even if the appearance of a cold-rolled material has been sufficiently degreased with trichlorethylene or the like. This was also confirmed by the phenomenon of fine black particles being released from the surface of the rolled material. In other words, it was determined that the black substance was baked-on oil and fat firmly adhered to the titanium surface. <Structure of the Invention> This invention has been made based on the above findings, and involves pickling titanium or titanium alloy material with an aqueous nitric-fluoric acid solution, and then placing it in a vacuum-equivalent atmosphere of 7×10 -5 Torr or less. By bright annealing inside, titanium and titanium alloy bright annealed materials with virtually no surface hardening layer and excellent formability can be easily and stably produced. It has the following. Note that the type of "titanium alloy" to be used in the method of the present invention is not particularly limited, and it goes without saying that any conventionally known titanium alloy falls under this category. Furthermore, the concentration and usage temperature of the above-mentioned "nitric-fluoric acid aqueous solution" are not particularly limited. For example, hydrofluoric acid:
By maintaining a mixed aqueous solution of 1 to 10% by weight and 10 to 20% by weight of nitric acid at a temperature of about 20 to 40°C, and immersing the material to be treated in this aqueous solution for a few seconds to several tens of seconds, the desired treatment can be achieved. Able to achieve purpose. Of course, it is theoretically possible to perform the above-mentioned "pickling" with a nitric-fluoric acid aqueous solution after bright annealing and remove the hardened surface layer of the treated material after it has been formed, but in this case This is not preferable because it is accompanied by a large amount of melting loss of the underlying metal, which significantly reduces the product yield, and also causes loss of beautiful bright skin, which impairs the original product value of the bright annealed material.
On the other hand, if the above-mentioned "pickling" is carried out as a pretreatment for bright annealing, only the baking oil will be removed by mild pickling without forming a diffusion reaction layer on the underlying metal. Therefore, there is no melting loss of the underlying metal, and the shiny skin of the product is maintained. Now, the atmosphere during bright annealing is set to 7×
``A vacuum-equivalent atmosphere of 10 -5 Torr or less'' is defined as:
This is because, when a cold rolled material pretreated as described above is annealed in a bright annealing furnace, it is necessary to prevent the formation of a new hardened surface layer due to contamination from the atmosphere inside the furnace. Figure 2 shows a bright annealed JIS type 1 titanium plate (0.5 mm thick cold-rolled material) that has been subjected to the above-mentioned "pickling" and soaked for 5 hours at 700℃ in a vacuum container. FIG. 2 is a diagram showing the outermost surface hardness and Erichsen value in relation to the degree of vacuum inside the container. The outermost surface hardness and Erichsen value were measured after the vacuum chamber was pre-evacuated to a predetermined degree of vacuum, and the solid line A in Figure 2 was heated and maintained at that degree of vacuum. Commercially available high-purity Ar after preliminary evacuation
The experiment was carried out using gas (99.99% purity) which was replaced with heat and maintained, and the horizontal axis in FIG. 2 shows the predetermined degree of vacuum. As is clear from Figure 2, there is a correlation between the degree of vacuum in the container and the degree of surface hardening, regardless of the presence or absence of Ar gas replacement. It also correlates with Erichsen test values. When subjecting titanium and titanium alloys to severe press processing, such as in plate-type heat exchange plates, the Erichsen value is
It has been known empirically that cracks do not stably occur if the thickness is 11.5 mm or more. In other words, regardless of the presence or absence of Ar gas replacement, evacuation of the vacuum inside the bright annealing furnace vessel to 7 × 10 -5 Torr or less suppresses the formation of a hardened surface layer.
FIG. 2 clearly shows that this is a necessary condition for imparting good moldability. It was also confirmed that this condition applies not only to pure titanium materials but also to various titanium alloy materials. As is clear from the above explanation, the “7×
"In an atmosphere equivalent to a vacuum of 10 -5 Torr or less" means "7×
This means "in a vacuum of 10 -5 Torr or less" or "in an atmosphere that has been pre-evacuated to a vacuum level of 7 × 10 -5 Torr or less and replaced with high-purity inert gas." The internal dew point will be below -80℃, and
Even if the atmosphere is replaced with a high-purity inert gas such as Ar, O 2 in the atmosphere is maintained at 2 ppm or less,
No substantial hardened layer is formed on the surface of the bright annealed material. In addition, 1× causes oxidation coloring.
The degree of vacuum is low, around 10 -4 Torr. In addition, the annealing temperature and time used in normal bright annealing are sufficient. Next, the present invention will be explained using examples and comparing with comparative examples. <Example> First, JIS Class 1 pure titanium plate (weight ratio: 0.04
%O-0.03%Fe-0.01% or lessC-0.01% or lessN-
Ti) and Ti-Pd alloy plate (0.05% by weight)
O-0.02%Fe-0.01% or lessC-0.01% or lessN-
0.17% Pd-Ti) was cold-rolled to a thickness of 0.5 mm and heated under the pretreatment conditions shown in Table 1 in a heating furnace that can maintain a degree of vacuum on the order of 10 -5 Torr. Bright annealing treatment was performed under the following conditions. Next, for the brightly annealed material thus obtained, the outermost surface hardness, hardness at the center of the plate thickness, and Erichsen test value were measured to determine whether or not a surface hardened layer was formed. These results are also shown in Table 1. Now, in Comparative Methods 1 to 3, for pure titanium, the heating furnace atmosphere conditions do not satisfy the range of the present invention method.

【表】【table】

【表】 るが前処理条件の外れているもの、また比較法4
は、同じく純チタンについて前処理条件及び加熱
雰囲気条件のいずれもが本発明法の範囲を外れる
もの、更に比較法5は、Ti−Pd合金について前
処理条件が本発明法の範囲から外れるものである
が、これらはいずれも、下地金属に比べて表面部
の硬さが著しく高く、つまり表面硬化層が生成し
ているためにエリクセン値が10.5mm以下となつて
おり、成形加工性の劣化していることがわかる。 同様に、純チタンにおける比較法6について
も、硝弗酸水溶液酸洗と言う前処理は実施してい
るものの加熱雰囲気条件が本発明方法の条件から
外れているために、表面硬化層が生成し、成形加
工性が不良となつていることが明らかである。 これに対して、本発明法によれば、表面硬化層
もほとんど無視できるほどに小さく、エリクセン
値の優れた光輝焼鈍材が得られることは明らかで
ある。 <総括的な効果> 以上述べたように、この発明によれば、付加的
な格別の設備を要することなく、しかも焼鈍後の
デスケーリング工程を必要ともせずに、表面硬化
層のない成形加工性に優れたチタン又はチタン合
金光輝焼鈍材を、能率良く、低コストにて製造す
ることができるなど、工業上極めて有用な効果が
もたらされるのである。
[Table] Methods with different pretreatment conditions, and comparative method 4
In Comparative Method 5, both the pretreatment conditions and heating atmosphere conditions for pure titanium are outside the scope of the present invention method, and in Comparative Method 5, the pretreatment conditions for Ti-Pd alloy are outside the scope of the present invention method. However, in all of these, the surface hardness is significantly higher than that of the base metal, in other words, a hardened surface layer is formed, resulting in an Erichsen value of 10.5 mm or less, resulting in poor formability. It can be seen that Similarly, in Comparative Method 6 for pure titanium, although a pretreatment called nitric-fluoric acid aqueous pickling was carried out, the heating atmosphere conditions were outside the conditions of the method of the present invention, so a hardened surface layer was not formed. It is clear that the moldability is poor. On the other hand, according to the method of the present invention, it is clear that the surface hardened layer is so small as to be almost negligible and a bright annealed material with an excellent Erichsen value can be obtained. <Overall Effects> As described above, according to the present invention, it is possible to perform forming processing without a surface hardening layer without requiring additional special equipment and without requiring a descaling process after annealing. This brings about industrially extremely useful effects, such as the ability to efficiently produce bright annealed titanium or titanium alloy materials with excellent properties at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法によつて製造された光輝焼鈍
チタン板における、断面硬さ分布によつて表わし
た表面硬化層の状態を示す線図、第2図は、焼鈍
容器内を真空に保持したまま、及び予備排気後
Arガス置換した状態で光輝焼鈍した際の、保持
真空度(=予備排気真空度)と純チタン板の最表
面硬さ及びエリクセン値との関係を示した線図で
ある。
Figure 1 is a diagram showing the state of the surface hardening layer expressed by cross-sectional hardness distribution in a bright annealed titanium plate manufactured by the conventional method, and Figure 2 is a diagram showing the state of the surface hardening layer expressed by the cross-sectional hardness distribution. While the air is running, and after pre-evacuation.
FIG. 2 is a diagram showing the relationship between the holding vacuum degree (=preliminary evacuation vacuum degree) and the outermost surface hardness and Erichsen value of a pure titanium plate when bright annealing is performed in a state where Ar gas is replaced.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン又はチタン合金材を硝弗酸水溶液にて
酸洗し、次いでこれを7×10-5Torr以下の真空
相当雰囲気中にて光輝焼鈍することを特徴とす
る、成形加工性に優れたチタン及びチタン合金光
輝焼鈍材の製造方法。
1 Titanium with excellent moldability, which is characterized by pickling titanium or titanium alloy material with a nitric-fluoric acid aqueous solution and then brightly annealing it in an atmosphere equivalent to vacuum at 7×10 -5 Torr or less. and a method for producing a bright annealed titanium alloy material.
JP9414784A 1984-05-11 1984-05-11 Manufacture of bright-annealed titanium and titanium alloy material with superior formability Granted JPS60238465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9414784A JPS60238465A (en) 1984-05-11 1984-05-11 Manufacture of bright-annealed titanium and titanium alloy material with superior formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9414784A JPS60238465A (en) 1984-05-11 1984-05-11 Manufacture of bright-annealed titanium and titanium alloy material with superior formability

Publications (2)

Publication Number Publication Date
JPS60238465A JPS60238465A (en) 1985-11-27
JPH0568537B2 true JPH0568537B2 (en) 1993-09-29

Family

ID=14102265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9414784A Granted JPS60238465A (en) 1984-05-11 1984-05-11 Manufacture of bright-annealed titanium and titanium alloy material with superior formability

Country Status (1)

Country Link
JP (1) JPS60238465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054072A1 (en) * 2018-09-14 2020-03-19 日本製鉄株式会社 Titanium foil and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723525B2 (en) * 1988-02-08 1995-03-15 株式会社神戸製鋼所 Method for manufacturing Ti thin plate
JPH01234551A (en) * 1988-03-15 1989-09-19 Nippon Mining Co Ltd Manufacture of titanium stock excellent in workability
JPH02307622A (en) * 1989-05-19 1990-12-20 Teigu:Kk Manufacture of titanium flexible tube and heat exchanger
JP2616181B2 (en) * 1990-08-31 1997-06-04 住友金属工業株式会社 Method for producing high-gloss titanium foil with excellent moldability
JP3566930B2 (en) * 2000-02-23 2004-09-15 新日本製鐵株式会社 Titanium hardly causing discoloration in atmospheric environment and method for producing the same
JP3406898B2 (en) 2000-07-28 2003-05-19 新日本製鐵株式会社 Titanium material that does not easily cause discoloration and method for producing the same
JP4543519B2 (en) * 2000-08-18 2010-09-15 住友金属工業株式会社 Manufacturing method of titanium cold rolled sheet
EP3406361B1 (en) * 2016-01-18 2020-03-04 Nippon Steel Corporation Titanium plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158335A (en) * 1978-06-05 1979-12-14 Nippon Steel Corp Descaling method of ti

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158335A (en) * 1978-06-05 1979-12-14 Nippon Steel Corp Descaling method of ti

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054072A1 (en) * 2018-09-14 2020-03-19 日本製鉄株式会社 Titanium foil and method for producing same

Also Published As

Publication number Publication date
JPS60238465A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
JPH0568537B2 (en)
JPS6013061A (en) Chromium-containing alloy
JPH08333665A (en) Method for melt-coating chromium-containing steel
KR910006642B1 (en) Process for producing a titanium material with excellent corrosion resistance
US3646946A (en) Copper alloy cleaning process
EP3406361B1 (en) Titanium plate
JP4306411B2 (en) Steel plate for heat treatment and its manufacturing method
JP2007131889A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET
JP2001140021A (en) Method of manufacturing high strength galvanized steel sheet and galvanized steel sheet excellent in coating stickiness
JPH0558080B2 (en)
JP3228134B2 (en) Method for producing pure titanium plate excellent in formability and seizure resistance
KR20200073378A (en) Method for manufacturing of titanium plate having excellent quality of surface
JP3303344B2 (en) Method for producing cold-rolled sheet of titanium or titanium alloy with few surface defects
NO115793B (en)
JPH06145937A (en) Hot dip metal coating method for hot rolled steel sheet stuck with oxide scale
JP2005307283A (en) Method for producing cold rolled steel sheet comprising easily oxidizable component
FR2622210A1 (en) IMPROVED PROCESS FOR FORMING SOLDER-FREE TUBES AND OTHER TITANIUM ALLOY PRODUCTS
JP2004244671A (en) Titanium sheet with excellent formability and lubricity, and its manufacturing method
JPH01234551A (en) Manufacture of titanium stock excellent in workability
JPH10204609A (en) Titanium thin sheet for forming and its production
JPH0328506B2 (en)
JP2004115876A (en) Titanium material superior in formability and lubricity, and manufacturing method therefor
US4349393A (en) Continuous heat treatment for metal sheet
JPS6120613B2 (en)
JP3572800B2 (en) Method for producing austenitic stainless steel hot-rolled steel sheet and cold-rolled steel sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term