JP4543519B2 - Manufacturing method of titanium cold rolled sheet - Google Patents

Manufacturing method of titanium cold rolled sheet Download PDF

Info

Publication number
JP4543519B2
JP4543519B2 JP2000248477A JP2000248477A JP4543519B2 JP 4543519 B2 JP4543519 B2 JP 4543519B2 JP 2000248477 A JP2000248477 A JP 2000248477A JP 2000248477 A JP2000248477 A JP 2000248477A JP 4543519 B2 JP4543519 B2 JP 4543519B2
Authority
JP
Japan
Prior art keywords
carbon
titanium
annealing
cold
pickling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000248477A
Other languages
Japanese (ja)
Other versions
JP2002060984A (en
Inventor
滋 木谷
信吾 岩崎
正憲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000248477A priority Critical patent/JP4543519B2/en
Publication of JP2002060984A publication Critical patent/JP2002060984A/en
Application granted granted Critical
Publication of JP4543519B2 publication Critical patent/JP4543519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光が照射される環境下での変色の少ないチタンまたはチタン合金板を効率的に製造する方法に関する。
【0002】
【従来の技術】
チタンは、鉄鋼に比べて軽くて耐食性に優れている金属であるため、近年、建築物の屋根材や外装材などとしてチタン板が屋外で使用されることが多くなった。このような用途に使用されるチタンまたはチタン合金(以下、これらをチタンと記す)板は、通常以下に示す方法により製造される。
【0003】
先ず、スポンジ状のチタンや破砕、精整したチタンスクラップを混合してプレス成形したブリケットを真空加熱炉を用いて溶解し、冷却してインゴットとする。その後、インゴットは加熱され、鍛造や熱間圧延によって板厚3〜4mm程度の帯板(ストリップ)にされ、さらにこれに焼きなまし処理(焼鈍)が施される。その後、熱間圧延や焼鈍によって生じた表面の酸化スケールを除去するためにショットブラスト処理された後、硝ふっ酸(硝酸とふっ化水素酸の混酸)等による酸洗処理が施される。次に、冷間圧延によって板厚0.4〜1mm程度に圧延された後、再び焼鈍が施される。この焼鈍は、光輝焼鈍と酸化性雰囲気中での焼鈍とがあり、光輝焼鈍の場合は焼鈍後各用途に使用される。また、酸化性雰囲気中で焼鈍された場合は、表面に酸化スケールが生成するので、溶融塩浴(ソルトバス)への浸漬等により脱スケール処理が施され、その後酸洗仕上げされて使用される。
【0004】
しかし、このようにして製造されたチタンが外装材として使用量が増すにつれて、これまで予想されなかった問題点が明らかになってきた。それは、使用期間が長くなるにつれて、表面の色調が変化するという問題点である。
【0005】
すなわち、屋外で使用を開始した当初はチタン特有の銀白色であったものが、数カ月間または数年間の使用によって、薄茶色や薄紫色に変色する事例が多くなった。また、最初から化学的に着色して使用されたチタン板においても、当初の色調から徐々に変化する例が見られる。このようなチタン板の変色の原因は現在のところ解明されておらず、対応策がないのが現状であり、屋外で長期間使用しても色調が変化しないチタン板の開発が望まれている。
【0006】
一方、チタン板の製造工程においても、冷間圧延後のチタン板を酸化性雰囲気中で焼鈍した場合に表面に生成する酸化スケールの除去が、ステンレス鋼などに比べて難しいということが従来より問題となっている。
【0007】
すなわち、ステンレス鋼の場合にもチタンと同様に、ソルトバスへの浸漬処理によって脱スケールがおこなわれているが、チタンに比べて酸化スケールの溶解がはるかに容易であるため、比較的低温のソルトバスにごく短時間浸漬するだけで脱スケールが可能である。これに比べて、チタンの酸化スケールはソルトバスによる溶解速度が遅いので、比較的高温のソルトバスに長時間浸漬しなければ脱スケールできないというのが一般的な認識であり、省エネルギーや生産性向上の観点から、より容易な脱スケール方法の開発が求められている。
【0008】
【発明が解決しようとする課題】
本発明が解決しょうとする第1の課題は、屋外のように、光が照射される環境で使用されても変色しにくいチタン板の製造方法を提供することにある。また、第2の課題は、チタン板の製造工程において、冷間圧延後に酸化性雰囲気中で焼鈍することによって生じる酸化スケールの除去が容易なチタン板の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、チタン冷延板を光輝焼鈍(非酸化性ガス中や真空中での焼鈍)したチタン板や、酸化性雰囲気中で焼鈍して酸洗仕上げしたチタン板の表面を分析してその化学組成を調べると同時に、それらのチタン板を用いて大気暴露試験や促進耐候性試験をおこない、変色との関係を調べた。一方、冷間圧延後のチタン板を酸化性雰囲気中で焼鈍し、その後の脱スケールの容易さと焼鈍前の表面組成の関係を詳細に調べた結果、以下のような知見を得るに至った。
【0010】
(a)従来の方法で製造された光輝焼鈍後のチタン板および酸化性雰囲気中で焼鈍して酸洗仕上げされたチタン板には、それらの表面に炭素が濃化した層があり、この炭素濃化層がチタン板表面の色調の変化に影響を及ぼしている。
【0011】
(b)従来の方法で製造されたチタン板表面に存在する炭素濃化層を適切な条件で酸洗または研磨することによって除去すれば、長期間光照射されても色調の変化は極めて小さくなる。
【0012】
(c)従来の方法で製造されたチタン冷延板の炭素濃化層には多量のチタン炭化物が含まれており、この炭素濃化層ができる主な原因は、冷間圧延の過程で潤滑油がチタン表面とメカノケミカル反応してチタン炭化物を生成し、表層中に分散するためと考えられる。
【0013】
(d)炭素を含まない潤滑剤を用いてチタンを冷延することにより炭素濃化層の生成が抑制される。また、炭素を含んだ通常の潤滑剤を用いて冷間圧延した場合でも、冷延板表面を酸洗または研磨することによって炭素濃化層を削減または除去することができる。
【0014】
(e)炭素農化層が十分に少ないチタンの冷延板を光輝焼鈍することによって製造したチタン板は表面の炭素濃化層が少なく、長期間光照射されても色調の変化は極めて小さい。逆に、表面に炭素濃化層を有する冷延板を光輝焼鈍することによって製造したチタン板は冷延板と同程度の炭素濃化層を有し、光照射による変色が大きい。
【0015】
(f)炭素濃化層が十分に少ないチタン冷延板を、酸化性雰囲気で焼鈍した後、ソルトバス浸漬処理による脱スケールおよび硝ふっ酸による酸洗仕上げすることによって製造したチタン板は表面の炭素濃化層が極めて少なく、長期間光照射されても色調の変化は極めて小さい。逆に、表面に炭素濃化層を有する冷延板を酸化性雰囲気で焼鈍した後、ソルトバス浸漬処理による脱スケールおよび硝ふっ酸による酸洗仕上げすることによって製造したチタン板の炭素濃化層の程度(層の厚さおよび炭素濃度)は焼鈍条件、脱スケール条件および酸洗条件によって異なり、光照射による変色の程度も炭素濃化層の残存程度によって異なる。
【0016】
(g)チタン冷延板を酸化性雰囲気で焼鈍した後、ソルトバス浸漬処理によって脱スケールする場合の脱スケールの容易さは、表面に炭素濃化層を有する冷延板に比べて、炭素濃化層が十分に少ない冷延板の方が容易であり、比較的低温のソルトバスに短時間浸漬することによって脱スケールが可能である。
【0017】
本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
【0018】
(1)冷間圧延後のチタン板表層の炭素濃化層の炭素量が、150mg/m2 以下となる潤滑剤を用いてチタン板を冷間圧延した後、酸化性雰囲気で焼鈍し、次いで溶融塩浸漬処理と硝ふっ酸水溶液による酸洗とにより脱スケールするチタン板の製造方法。
【0019】
(2)冷間圧延により生じた炭素濃化層を表層に有するチタン板に酸洗と研磨の一方または双方を施して表層の炭素濃化層の炭素量を150mg/m2 以下とし、酸化性雰囲気で焼鈍し、次いで溶融塩浸漬処理と硝ふっ酸水溶液による酸洗とにより脱スケールするチタン板の製造方法。
(3)チタン板を冷間圧延し、冷間圧延により生じた炭素濃化層を表層に有するチタン板に酸洗と研磨の一方または双方を施して表層の炭素濃化層の炭素量を150mg/m2 以下とし、非酸化性雰囲気で焼鈍するチタン板の製造方法。
【0020】
なお、本発明ではチタン板は純チタン板およびチタン合金板の両方をいう。また、炭素濃化層の炭素量Cは、下記の式で求めた量とする。
【0021】
C=TC−PC
TC:チタンまたはチタン合金の冷延板から切り出した分析試料の圧延面の面積を測定した後、燃焼法によって試料中の炭素量を分析し、その分析値に基づいて算出して求めた単位圧延面積(1m2)当たりの炭素量。 PC:チタンおよびチタン合金の冷延板から切り出した分析試料を、硝ふっ酸水溶液に浸漬して炭素濃化層を除去し、圧延面の面積を測定した後、燃焼法によって試料中の炭素量を分析し、その分析値に基づいて算出して求めた単位圧延面積(1m2)当たりの地金の炭素量。
【0022】
炭素量が、150mg/m2 以下というのは0を含むものとする。すなわち、チタン冷延板表面層の炭素濃度と地金の炭素濃度が同じであるチタン冷延板も含むものとする。
【0023】
また、冷間圧延とは一般的には常温でおこなわれる圧延であるが、最高数百度程度に加熱しながらおこなわれる、いわゆる温間圧延においても潤滑剤とチタンのメカノケミカル反応によるチタン炭化物の生成および表面炭素濃化層の生成は起こり得るので、メカノケミカル反応が生じるような温間圧延も含むものとする。
【0024】
本発明者は、通常の熱間圧延および冷間圧延によって製造したチタンの冷延板をアルカリ脱脂し、その面をグロー放電質量分析法(GDMS)により、炭素、水素、酸素、窒素およびチタン量を分析した。
【0025】
図1は、分析結果を示す図である。同図から明らかなように、チタン冷延板の表層は高濃度の炭素を含んだ層となっており、その層は表面から0.8〜1.2μmまでにも及んでいることが分かる。
【0026】
このチタン冷延板を、1%ふっ化水素酸(40℃)で30〜60秒間酸洗し、表面に付着した黒色のスマットを水洗しながらこすり落として乾燥し、X線回折法で調べた結果、炭素濃化層にはTiCが多量に含まれることを確認した。
【0027】
図1に示した表層の化学組成を有するチタン冷延板の炭素濃化層中の炭素量を調べるため、以下の方法で分析をおこなった。
【0028】
すなわち、冷延板試料を市販のアルカリ脱脂剤を用いて十分に脱脂した後、30℃の温度に調節した硝ふっ酸水溶液(組成:10%HNO3−0.5%HF)に浸漬し、浸漬時間を10秒から10秒間隔で60秒まで変化させた。浸漬後試料を水洗、乾燥した。これらの酸洗した試料とアルカリ脱脂後に酸洗をおこなわなかった試料から質量約0.5gの炭素分析用試料を切り出し、端面(切断面)以外の表面積、すなわち圧延面(2面)の面積を測定した後、燃焼法によって炭素量を分析し、その分析値に基づいて単位圧延面積(1m2) 当たりの炭素量を算出した。なお、燃焼法とは、分析試料を酸素気流中で高周波誘導加熱法で燃焼させ、試料中の炭素と雰囲気中の酸素が反応して生成した二酸化炭素ガスの濃度を赤外線吸収法で調べる方法であり、分析装置はLeco社製炭素硫黄同時定量装置(HF−400型)を用いた。
【0029】
図2は、酸洗時間と算出した1m2 当たりの表面炭素量との関係を示す図である。図2から明らかなように、酸洗をおこなわなかった試料の炭素量は263mg/m2で、酸洗した試料の炭素量は以下の通りであった。
【0030】
酸洗時間10秒 : 201mg/m2
〃 20秒 : 78 〃
〃 30秒 : 56 〃
〃 40秒 : 50 〃
〃 50秒 : 50 〃
〃 60秒 : 50 〃
酸洗時間が40〜60秒間ではほぼ一定の値、50mg/m2 を示したので、これが地金中の炭素量(PC)と考えられる。したがって、この値を酸洗をおこなわなかった試料の炭素量(TC)、263mg/m2 より差し引いた値、213mg/m2 がチタン冷延板の炭素濃化層の濃化炭素量(C)である。
【0031】
なお、濃化炭素量の少ない試料の場合は、片方の圧延面を機械的または/および化学的に研磨して板厚を0.05〜0.1mm程度に調製することによって地金中の炭素量を減らし、濃化炭素量の分析精度を高めることができる。すなわち、図1および図2で示した試料の板厚は約0.5mmなので、これを研磨して0.05mmの板厚とすれば、0.5gの分析試料の炭素の濃化した表面の面積は0.5mmの板厚の場合の5倍になり(1方の圧延面が研磨されているため)、濃化炭素量も5倍になるので分析精度が向上する。この場合、炭素濃化層を除去するための酸洗時には、あらかじめ研磨面を粘着テープ等でシーリングして、研磨面の溶解を防ぐ必要がある。図1および図2で示したチタン冷延板を酸化性雰囲気で焼鈍し、脱スケール後酸洗仕上げしたチタン板を試料とし、上記の濃化炭素量の少ない試料の場合の方法で炭素量を分析し、図2と同じ方法で算出した1m2 当たりの表面炭素量と酸洗時間との関係を図3に示す。図3から明らかなように、分析前に酸洗をおこなわなかった試料の炭素量は28mg/m2 で、酸洗した試料の炭素量は以下の通りであった。
【0032】
酸洗時間10秒 :12mg/m2
〃 20秒 : 10 〃
〃 30秒 : 10 〃
〃 40秒 : 10 〃
〃 50秒 : 10 〃
〃 60秒 : 10 〃
酸洗時間が40〜60秒間では一定の値、10mg/m2を示したので、これが地金中の炭素量(PC)と考えられる。また、この値が図2の場合の約5分の1になったのは、片方の圧延面を研磨して板厚を約10分の1にしたために地金の量が単位圧延面積当たり約5分の1になったためと考えられる。したがって、この値を酸洗をおこなわなかった試料の炭素量(TC)、28mg/m2 より差し引いた値、18mg/m2 がチタン冷延板を酸化性雰囲気で焼鈍し、脱スケール後酸洗仕上げしたチタン板の炭素濃化層の濃化炭素量(C)である。
【0033】
このような炭素の濃化層がなぜ生成するかについては十分に解明できていないが、冷間圧延の過程で圧延油がチタン表面とメカノケミカル反応してチタン炭化物を生成し、表面層中に分散するためと考えている。
【0034】
次に、チタン板を建築物の屋根材や外装板などとして屋外で使用した場合に着色または変色する現象についても、現在のところ原因が解明されていないが、チタン板表面の二酸化チタン(TiO2) 皮膜の光触媒作用による表面酸化現象であると考えている。
【0035】
すなわち、TiO2 に波長約380nm以下の光が照射されると環境中の水や酸素が化学的に変化して、強力な酸化力を有するヒドロキシラジカル(・OH)やスーパーオキサイドアニオン(O2 -)と呼ばれる酸化剤になることが知られているが、チタン板表面の炭素濃化層中に分散したTiCはTiO2 に比べて化学的に不安定であるため、これらの酸化剤が長期間にわたって作用すると(1)式のように徐々に分解してTiO2 に変化するものと推定される。
【0036】
TiC + 酸化剤 → TiO2 + CO2 ・・・・(1)
また、上記反応と同時にTiCの周囲のチタン金属自体も酸化剤によって(2)式のように酸化されてTiO2に変化するものと推定される。
【0037】
Ti + 酸化剤 → TiO2 ・・・・・・・・・・・・・(2)
チタン板表面の色調が、時間の経過と共に変化していくのは、TiCが分散した炭素濃化層は光の干渉作用を示さないが、(1)式および(2)式の反応によってTiO2 被膜の厚さが徐々に厚くなり、厚さに応じて光の干渉の仕方も変化するためと考えられる。
【0038】
一方、チタン冷延板を酸化性雰囲気で焼鈍した後のソルトバス浸漬処理による脱スケールが、表面炭素濃化層が十分に少ない冷延板に比べて、表面に炭素濃化層を有する冷延板の方が困難となる現象は、現在のところ、以下の理由によるものと推測している。
【0039】
すなわち、酸化性雰囲気中でチタン冷延板を焼鈍する際には表面が酸化されて酸化スケールが生成するが、炭素濃化層が無い場合には生成したスケールが緻密であり、これが地金内部へ酸素が拡散するのを妨げる作用をするため、薄いスケールとなる。これに対して、TiCが分散した炭素濃化層がある場合には生成したスケールは不均一で緻密さに欠けるものとなり、炭素濃化層中および地金内部への酸素の拡散が容易であるため、厚いスケールが形成されるものと推測される。従って、当然のことながら、ソルトバス浸漬処理によってスケールを溶解するのに要する時間は、炭素濃化層によって厚いスケールが生成した方が長くなる。
【0040】
【発明の実施の形態】
本発明の製造方法において、焼鈍前のチタン板の表層の炭素濃化層の炭素量を150mg/m2 以下にすると規定したのは下記の理由による。
【0041】
その一つの理由は、光照射によるチタン板の変色は、チタン板表面に生成した炭素濃化層中の炭素量が多いほど進行しやすく、冷延板の濃化炭素量を150mg/m2 以下としなければ変色の少ない光輝焼鈍したチタン板や酸化性雰囲気で焼鈍した後酸洗仕上げしたチタン板を得ることができないためである。
【0042】
他の一つの理由は、酸化性雰囲気中での焼鈍によって表面に生成する酸化スケールは、焼鈍前のチタン冷延板表面の濃化炭素量が多いほど厚くなる傾向があり、これを150mg/m2 以下としなければ焼鈍後の脱スケールが困難となるためである。いずれの理由においても、冷延板表面の濃化炭素量は少ない方がよく、好ましくは50mg/m2以下、さらに好ましくは10mg/m2以下である。
【0043】
焼鈍前のチタン板の炭素濃化層の炭素量を150mg/m2 以下にするには、下記の方法による。
【0044】
第1の方法は、従来の方法で製造した熱延チタン板を冷間圧延するに際し、使用する潤滑剤を選定して圧延する方法である。例えば、炭素を含まない潤滑剤を用いて冷間圧延する方法が確実である。炭素を含まない潤滑剤としては、りん酸塩(りん酸カリウム、りん酸ナトリウム等)を8〜15%含む水溶液を使用することができる。
【0045】
第2の方法は、従来のように炭素を含む通常の鉱油系の潤滑剤を用いて冷延した後、生成した炭素濃化層を酸洗や研磨によって除去する方法である。具体的には、酸洗の場合には、30〜50℃のふっ化水素酸(濃度0.5〜2%)あるいは硝ふっ酸(硝酸濃度8〜15%、ふっ化水素酸濃度0.5〜2%の水溶液)に30〜150秒間浸漬すればよい。また、研磨によって表面の炭素濃化層を除去する場合には、潤滑剤として鉱油などの炭素を含む研磨油を用いるとメカノケミカル反応によって表面に炭素濃化層が生成するので、冷間圧延の場合と同様に、りん酸塩(りん酸カリウム、りん酸ナトリウム等)を8〜15%含む水溶液を潤滑剤として用いるのがよい。
【0046】
本発明の製造方法では、上記のように焼鈍前のチタン板の表層の炭素濃化層の炭素量を150mg/m2 以下にした後、酸化性雰囲気で焼鈍し、溶融塩浸漬処理と硝ふっ酸水溶液とにより脱スケールしてチタン板にするか、非酸化性雰囲気で焼鈍してチタン板とする。
【0047】
酸化性雰囲気中での焼鈍は、チタンの帯板を加熱炉に連続的に通過させながら700〜830℃で1〜3分程度保持する通常の焼鈍条件でよい。酸化性雰囲気焼鈍する場合は、表面に酸化スケールが生成するので、溶融塩浸漬処理と硝ふっ酸水溶液による酸洗とにより脱スケールする。
【0048】
溶融塩浸漬処理は、通常おこなわれている処理でよく、450〜520℃の溶融アルカリ塩浴(例えば、水酸化ナトリウム90%と硝酸ナトリウム10%の溶融物)に5〜30秒間浸漬すればよい。また、酸洗は、30〜50℃の硝ふっ酸酸洗液(硝酸濃度8〜15%、ふっ化水素酸濃度2〜5%の水溶液)に60〜200秒間程度浸漬するのが好ましい。
一方、チタンの帯板をコイル状に巻いたまま焼鈍するには、バッチ式の加熱炉を用いて非酸化性雰囲気中で680〜720℃に12〜24時間保持する条件でおこなう。この場合は、焼鈍により酸化スケールがほとんど生成しないので、その後脱スケールを施す必要はない。
【0049】
【実施例】
(実施例1)
板厚3.5mmのチタン(JIS1種)の熱延帯板を連続焼鈍酸洗設備を用いて焼鈍、酸洗した後、120×200mmの大きさの供試材を切り出し、小型の4段圧延機を用いて板厚0.5mmまで冷間圧延した。
【0050】
このとき、冷間圧延の潤滑剤として、本発明例として10%りん酸カリウム水溶液を、比較例として鉱油系の圧延油を用いた。
【0051】
冷間圧延後、市販のアルカリ脱脂剤を用いて十分に脱脂した後、表面の濃化炭素量を分析した結果、10%りん酸カリウム水溶液を用いて冷延した供試材は8mg/m2、 鉱油系の圧延油を用いて冷延した供試材は241mg/m2であった。
【0052】
一方、冷間圧延した供試材より100×150mmの大きさの試験片を切り出し、市販のアルカリ脱脂剤を用いて十分に脱脂した後、以下の2種類の方法で光輝焼鈍仕上げまたは酸化性雰囲気焼鈍後酸洗仕上げした。
【0053】
(1)光輝焼鈍仕上げ:アルゴンガス雰囲気(露点−55℃)中で700℃で12時間焼鈍した。
【0054】
(2)酸化性雰囲気焼鈍後酸洗仕上げ:炭化水素ガス燃焼加熱炉と同じ雰囲気(容量%で、水蒸気12%、二酸化炭素11%、酸素3%、窒素74%)に調節できる実験炉を用い、730℃で2分間焼鈍した後、溶融アルカリ塩浸漬処理および硝ふっ酸酸洗とを組み合わせて脱スケール、酸洗仕上げした。
【0055】
なお、溶融アルカリ塩は水酸化ナトリウム90%、硝酸ナトリウム10%の組成とし、これを450℃または480℃に加熱して溶融したものを用いた。また、硝ふっ酸酸洗は40℃の硝ふっ酸 (10%HNO3−2%HF) に60秒間浸漬する方法でおこなった。
【0056】
次に、これらの試験片より100×100mmの大きさの試験片を切り出し、屋外で1年間大気暴露試験して変色の有無およびその程度を調べた。同時に別途切り出した大気暴露試験前の試験片および硝ふっ酸酸洗して炭素農化層を除去した試験片を燃焼法で分析し、試験片表面1m2 当たりの濃化炭素量を調べた。これらの結果を表1にまとめて示す。
【0057】
【表1】

Figure 0004543519
表1より明らかように、10%りん酸カリウム水溶液を潤滑剤として用いて冷間圧延した後、光輝焼鈍仕上げした本発明例の試験片は表面の濃化炭素量が8mg/m2 であり、1年間の大気暴露試験によって全く変色しなかった(試験No.3)。 また、焼鈍を炭化水素ガス燃焼雰囲気でおこなった場合には、450℃、10秒間または480℃、5秒間のソルトバス処理後に60秒間の硝ふっ酸酸洗を施すことによって完全に脱スケールされ、1年間の大気暴露試験によっても全く変色しなかった。また、表面の濃化炭素量も2〜3mg/m2 と、低い水準であった(試験No.1、2)。 これに対して、鉱油系の圧延油を用いて冷間圧延した
後、光輝焼鈍仕上げした比較例の試験片は表面の濃化炭素量が238mg/m2 と極めて高く、1年間の大気暴露試験によって茶色に変色した(試験No.8)。
【0058】
また、焼鈍を炭化水素ガス燃焼雰囲気でおこなった場合には、450℃、20〜30秒間または480℃、20秒間のソルトバス処理では脱スケールが極めて不完全(脱スケール率:35〜86%)であり(試験No.4、5、6)、480℃、30秒間のソルトバス処理によってはじめてほぼ完全に脱スケールできたが(脱スケール率:99%)、表面にはなお53mg/m2 の炭素が濃化しており、これを1年間の大気暴露試験したところ薄茶色に変色した(試験No.7)。なお、試験No.4、5および6の試験片は脱スケールが極めて不完全であったので、濃化炭素量の分析および大気暴露試験はおこなわなかった。
【0059】
(実施例2)
鉱油系の潤滑剤を用いて製造された通常の工業用純チタン(JIS1種)およびチタン合金(Ti−6%Al−4%V)の冷延帯板(板厚はいずれも0.6mm)より供試材を採取し、市販のアルカリ脱脂剤を用いて十分に脱脂した後、表層の濃化炭素量を分析した。
【0060】
その結果、純チタン板およびチタン合金板の濃化炭素量はそれぞれ255mg/m2および243mg/m2 であった。また、本発明例 として脱脂後に30℃の硝ふっ酸(硝酸濃度10%、ふっ化水素酸濃度1%の水溶液)に60秒間浸漬して表面の炭素濃化層を除去した。次いで、表層の濃化炭素量を分析した。その結果、純チタン板およびチタン合金板の濃化炭素量はそれぞれ12mg/m2 および11mg/m2であった。
【0061】
次に、これら本発明例の酸洗した供試材と、比較例の酸洗しなかった供試材より100×150mmの大きさの試験片を切り出し、水洗、乾燥した後、炭化水素ガス燃焼加熱炉と同じ酸化性雰囲気(容量%で、水蒸気12%、二酸化炭素11%、酸素3%、窒素74%)に調節できる実験炉を用い、800℃で3分間焼鈍した後、ソルトバス処理および硝ふっ酸水溶液による酸洗とを組み合わせて脱スケール、酸洗仕上げした。
【0062】
なお、ソルトバスは水酸化ナトリウム90%、硝酸ナトリウム10%の組成とし、これを480℃に加熱して溶融したものを用いた。また、硝ふっ酸酸洗は40℃の硝ふっ酸(10%HNO3−2%HF) に60秒間または120〜180秒間浸漬する方法でおこなった。
【0063】
次に、これらの試験片より切り出した100×120mmの大きさの試験片で促進耐候性試験、30×100mmの試験片で濃化炭素量の分析をおこなった。
なお、促進耐候性試験はサンシャインウエザーメーター(太陽光線と同じく、紫外線領域の波長の光を含む光線が照射できるもの)を用いて水濡れと光照射を交互に繰り返す方法で合計2000時間実施し、試験による変色の有無および程度を調べた。結果を表2に示す。
【0064】
【表2】
Figure 0004543519
表2から明らかなように、焼鈍前に酸洗した供試材から採取した試験片は炭化水素ガス燃焼雰囲気で焼鈍した後、480℃、10秒間のソルトバス処理および60秒間の硝ふっ酸酸洗で完全に脱スケールされ、2000時間の促進耐候性試験によって全く変色しなかった(試験No.1および6)。一方、酸洗せずに焼鈍した場合には、480℃、10〜30秒間のソルトバス処理および60秒間の硝ふっ酸酸洗では脱スケールが極めて不完全(脱スケール率:0〜63%)であり(試験No.2、3、4、7、8、9)、480℃、30秒間のソルトバス処理後に120〜180秒間の硝ふっ酸酸洗を行うことによってはじめてほぼ完全に脱スケールできた(脱スケール率:99%または100%)。しかし、表面にはなお52〜66mg/m2 の炭素が濃化しており、これを促進耐候性試験したところ薄茶色に変色した(試験No.5および10)。なお、試験No.2、3、4、7、8および9の試験片は脱スケールが極めて不完全であったので、濃化炭素量の分析および促進耐候性試験は行わなかった。
【0065】
【発明の効果】
本発明によれば、長期間屋外で使用しても色調の変化が小さいチタン板が容易に得られると同時に、チタン板またはチタン合金板の製造工程において、冷延板の酸化性雰囲気中焼鈍によって生じるスケールの除去が効率的に実施できるなど、工業的効果が大きい。
【図面の簡単な説明】
【図1】チタン冷延板表面のGDMS法による分析結果の1例を示す図である。
【図2】酸洗時間と算出した表面炭素量の関係を示す図である。
【図3】酸洗時間と算出した表面炭素量の関係を示す他の例である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently producing a titanium or titanium alloy plate with little discoloration in an environment irradiated with light.
[0002]
[Prior art]
Titanium is a metal that is lighter and more resistant to corrosion than steel, and in recent years, titanium plates are often used outdoors as roofing materials and exterior materials for buildings. Titanium or titanium alloy (hereinafter referred to as titanium) plates used for such applications are usually produced by the method described below.
[0003]
First, briquettes obtained by mixing sponge-formed titanium or crushed and refined titanium scrap and press-molding are melted using a vacuum heating furnace and cooled to form an ingot. Thereafter, the ingot is heated to be a strip (strip) having a thickness of about 3 to 4 mm by forging or hot rolling, and further subjected to annealing (annealing). Thereafter, the surface is subjected to shot blasting to remove oxidized scale on the surface caused by hot rolling or annealing, followed by pickling with nitric hydrofluoric acid (mixed acid of nitric acid and hydrofluoric acid). Next, after rolling to a plate thickness of about 0.4 to 1 mm by cold rolling, annealing is performed again. This annealing includes bright annealing and annealing in an oxidizing atmosphere. In the case of bright annealing, it is used for each application after annealing. Also, when annealed in an oxidizing atmosphere, an oxide scale is generated on the surface, so that it is descaled by immersion in a molten salt bath (salt bath), etc., and then pickled and used. .
[0004]
However, as the amount of titanium produced in this way increases as an exterior material, problems that have not been anticipated so far have become apparent. That is, the color tone of the surface changes as the period of use becomes longer.
[0005]
In other words, there were many cases where the silver-white color peculiar to titanium was initially changed to light brown or light purple after being used for several months or years. In addition, even in the case of a titanium plate that has been chemically colored from the beginning, there are examples in which it gradually changes from the original color tone. The cause of such discoloration of the titanium plate has not been elucidated at present, and currently there is no countermeasure, and it is desired to develop a titanium plate that does not change its color tone even when used outdoors for a long time. .
[0006]
On the other hand, in the titanium plate manufacturing process, it is more difficult than before to remove the oxide scale generated on the surface when the titanium plate after cold rolling is annealed in an oxidizing atmosphere compared to stainless steel. It has become.
[0007]
That is, in the case of stainless steel as well as titanium, descaling is performed by immersion treatment in a salt bath, but since oxide scale is much easier to dissolve than titanium, a relatively low temperature salt is used. Descaling is possible by immersing in a bath for a very short time. Compared with this, since the dissolution rate of titanium oxide scale is slow in the salt bath, it is generally recognized that it cannot be descaled unless it is immersed in a relatively hot salt bath for a long time, improving energy saving and productivity. From this point of view, development of an easier descaling method is demanded.
[0008]
[Problems to be solved by the invention]
The first problem to be solved by the present invention is to provide a method for producing a titanium plate that hardly changes color even when used in an environment where light is irradiated, such as outdoors. A second problem is to provide a method for manufacturing a titanium plate in which the oxide scale generated by annealing in an oxidizing atmosphere after cold rolling can be easily removed in the titanium plate manufacturing process.
[0009]
[Means for Solving the Problems]
The inventors analyzed the surface of a titanium plate obtained by bright annealing (annealing in a non-oxidizing gas or vacuum) of a cold-rolled titanium plate, or a titanium plate annealed in an oxidizing atmosphere and pickled. At the same time, the chemical composition was examined, and at the same time, an atmospheric exposure test and an accelerated weather resistance test were conducted using these titanium plates to investigate the relationship with discoloration. On the other hand, the titanium plate after cold rolling was annealed in an oxidizing atmosphere, and as a result of examining in detail the relationship between the ease of subsequent descaling and the surface composition before annealing, the following findings were obtained.
[0010]
(A) A titanium plate after bright annealing produced by a conventional method and a titanium plate annealed in an oxidizing atmosphere and pickled and finished have a carbon-concentrated layer on the surface thereof. The thickened layer affects the change in the color tone of the titanium plate surface.
[0011]
(B) If the carbon-concentrated layer existing on the surface of the titanium plate produced by the conventional method is removed by pickling or polishing under appropriate conditions, the change in color tone becomes extremely small even when irradiated for a long time. .
[0012]
(C) A large amount of titanium carbide is contained in the carbon enriched layer of the titanium cold-rolled sheet manufactured by the conventional method. The main cause of this carbon enriched layer is lubrication during the cold rolling process. This is probably because the oil mechanochemically reacts with the titanium surface to form titanium carbide and disperse in the surface layer.
[0013]
(D) Formation of a carbon-enriched layer is suppressed by cold rolling titanium using a lubricant that does not contain carbon. Further, even when cold rolling is performed using a normal lubricant containing carbon, the carbon concentrated layer can be reduced or removed by pickling or polishing the surface of the cold rolled sheet.
[0014]
(E) A titanium plate produced by bright annealing a cold-rolled titanium plate with a sufficiently small amount of carbon farming layer has few carbon-enriched layers on the surface, and changes in color tone are extremely small even when irradiated for a long period of time. Conversely, a titanium plate manufactured by bright annealing a cold-rolled plate having a carbon-concentrated layer on the surface has a carbon-concentrated layer similar to that of a cold-rolled plate, and has a large discoloration due to light irradiation.
[0015]
(F) After annealing a titanium cold-rolled sheet with a sufficiently small carbon-concentrated layer in an oxidizing atmosphere, the titanium sheet produced by descaling with a salt bath immersion treatment and pickling with nitric hydrofluoric acid The carbon-concentrated layer is extremely small, and the change in color tone is extremely small even when irradiated with light for a long period of time. Conversely, after annealing a cold-rolled sheet with a carbon-enriched layer on the surface in an oxidizing atmosphere, the carbon-enriched layer of the titanium sheet produced by descaling by a salt bath immersion process and pickling with nitric hydrofluoric acid The thickness (layer thickness and carbon concentration) varies depending on annealing conditions, descaling conditions, and pickling conditions, and the degree of discoloration due to light irradiation also varies depending on the remaining carbon concentrated layer.
[0016]
(G) The ease of descaling when the titanium cold-rolled sheet is annealed in an oxidizing atmosphere and then descaled by a salt bath immersion treatment is greater than that of a cold-rolled sheet having a carbon-concentrated layer on the surface. A cold-rolled sheet with a sufficiently small formation layer is easier, and descaling is possible by dipping in a salt bath at a relatively low temperature for a short time.
[0017]
The present invention has been made based on such findings, and the gist thereof is as follows.
[0018]
(1) The carbon content of the carbon concentrated layer on the surface of the titanium plate after cold rolling is 150 mg / m.2 A method for producing a titanium plate, comprising: cold rolling a titanium plate using a lubricant as described below, annealing in an oxidizing atmosphere, and then descaling by molten salt immersion treatment and pickling with a nitric hydrofluoric acid aqueous solution.
[0019]
(2) Applying either or both of pickling and polishing to a titanium plate having a carbon-enriched layer formed by cold rolling as a surface layer, the carbon content of the surface carbon-enriched layer is 150 mg / m2   A method for producing a titanium plate, which is annealed in an oxidizing atmosphere and descaled by a molten salt immersion treatment and pickling with an aqueous nitric hydrofluoric acid solution.
(3) Cold rolling the titanium plate and subjecting the titanium plate having a carbon concentrated layer formed by cold rolling to the surface layer to either or both of pickling and polishing, the carbon content of the surface carbon concentrated layer is 150 mg / M2 A method for producing a titanium plate that is annealed in a non-oxidizing atmosphere as follows.
[0020]
In the present invention, the titanium plate refers to both a pure titanium plate and a titanium alloy plate. Further, the carbon content C of the carbon enriched layer is an amount obtained by the following formula.
[0021]
C = TC-PC
TC: Unit rolling obtained by measuring the area of the rolled surface of an analytical sample cut out from a cold-rolled sheet of titanium or titanium alloy, then analyzing the amount of carbon in the sample by a combustion method, and calculating based on the analytical value Area (1m2) Carbon amount per unit. PC: Analytical sample cut out from titanium and titanium alloy cold-rolled plate was immersed in nitrofluoric acid aqueous solution to remove the carbon enriched layer, the area of the rolled surface was measured, and the amount of carbon in the sample by the combustion method And the unit rolling area (1 m calculated from the analysis value)2) The amount of carbon per bullion.
[0022]
Carbon content is 150mg / m2 The following shall include zero. That is, a titanium cold-rolled sheet in which the carbon concentration of the titanium cold-rolled sheet surface layer and the carbon concentration of the base metal are the same is included.
[0023]
In addition, cold rolling is generally rolling at room temperature, but in the so-called warm rolling, which is performed while heating up to several hundred degrees, titanium carbide is generated by a mechanochemical reaction between the lubricant and titanium. In addition, since the formation of the surface carbon concentrated layer can occur, warm rolling that causes a mechanochemical reaction is also included.
[0024]
The inventor of the present invention alkali degreased a titanium cold-rolled sheet produced by normal hot rolling and cold rolling, and the surface thereof was subjected to glow discharge mass spectrometry (GDMS) to determine the amount of carbon, hydrogen, oxygen, nitrogen and titanium. Was analyzed.
[0025]
FIG. 1 is a diagram showing the analysis results. As can be seen from the figure, the surface layer of the titanium cold-rolled sheet is a layer containing a high concentration of carbon, and the layer extends from the surface to 0.8 to 1.2 μm.
[0026]
This titanium cold-rolled sheet was pickled with 1% hydrofluoric acid (40 ° C.) for 30 to 60 seconds, the black smut adhering to the surface was rubbed off with water and dried, and examined by X-ray diffraction method. As a result, it was confirmed that the carbon concentrated layer contained a large amount of TiC.
[0027]
In order to examine the amount of carbon in the carbon enriched layer of the titanium cold-rolled sheet having the chemical composition of the surface layer shown in FIG. 1, analysis was performed by the following method.
[0028]
That is, a cold-rolled sheet sample was sufficiently degreased using a commercially available alkaline degreasing agent, and then an aqueous nitric hydrofluoric acid solution (composition: 10% HNO) adjusted to a temperature of 30 ° C.Three-0.5% HF), and the immersion time was changed from 10 seconds to 60 seconds at intervals of 10 seconds. After immersion, the sample was washed with water and dried. A carbon analysis sample having a mass of about 0.5 g is cut out from these pickled samples and samples not pickled after alkaline degreasing, and the surface area other than the end face (cut face), that is, the area of the rolled face (two faces) is determined. After the measurement, the amount of carbon was analyzed by the combustion method, and the unit rolling area (1 m based on the analysis value)2) The amount of carbon per unit was calculated. The combustion method is a method in which an analysis sample is combusted by high-frequency induction heating in an oxygen stream, and the concentration of carbon dioxide gas generated by the reaction between carbon in the sample and oxygen in the atmosphere is examined by infrared absorption. Yes, Leco Co. carbon sulfur simultaneous quantification device (HF-400 type) was used.
[0029]
Figure 2 shows the pickling time and calculated 1m2 It is a figure which shows the relationship with the surface carbon amount per hit. As apparent from FIG. 2, the carbon content of the sample that was not pickled was 263 mg / m 2.2The carbon content of the pickled sample was as follows.
[0030]
Pickling time 10 seconds: 201 mg / m2
20 20 seconds: 78 〃
〃 30 seconds: 56 〃
40 40 seconds: 50 〃
〃 50 seconds: 50 〃
秒 60 seconds: 50 〃
When the pickling time is 40-60 seconds, the value is almost constant, 50 mg / m2  This is considered to be the carbon content (PC) in the bullion. Therefore, this value is the carbon content (TC) of the sample that was not pickled, 263 mg / m2 Subtracted value, 213 mg / m2 Is the amount of concentrated carbon (C) of the carbon concentrated layer of the titanium cold-rolled sheet.
[0031]
In the case of a sample with a small amount of concentrated carbon, the carbon in the bare metal is prepared by polishing one of the rolling surfaces mechanically and / or chemically to adjust the plate thickness to about 0.05 to 0.1 mm. The amount can be reduced and the analysis accuracy of the concentrated carbon amount can be increased. That is, since the plate thickness of the sample shown in FIGS. 1 and 2 is about 0.5 mm, if this is polished to a plate thickness of 0.05 mm, the carbon-concentrated surface of the 0.5 g analysis sample The area is 5 times that of a plate thickness of 0.5 mm (because one of the rolling surfaces is polished), and the amount of concentrated carbon is also 5 times, so that the analysis accuracy is improved. In this case, when pickling to remove the carbon concentrated layer, it is necessary to seal the polished surface with an adhesive tape or the like in advance to prevent dissolution of the polished surface. The titanium cold-rolled sheet shown in FIG. 1 and FIG. 2 is annealed in an oxidizing atmosphere, descaled and pickled and finished with a titanium plate as a sample, and the carbon content is determined by the method described above for a sample with a small amount of concentrated carbon. 1m analyzed and calculated in the same way as in FIG.2  The relationship between the surface carbon amount per hit and the pickling time is shown in FIG. As is apparent from FIG. 3, the carbon content of the sample that was not pickled before analysis was 28 mg / m 2.2   The carbon content of the pickled sample was as follows.
[0032]
Pickling time 10 seconds: 12 mg / m2
20 20 seconds: 10 〃
30 30 seconds: 10 〃
40 40 seconds: 10 〃
50 50 seconds: 10 〃
〃 60 seconds: 10 〃
When the pickling time is 40 to 60 seconds, a constant value, 10 mg / m2This is considered to be the carbon content (PC) in the bullion. In addition, this value was reduced to about one-fifth of the case of FIG. 2 because the thickness of the metal was reduced to about one-tenth by polishing one of the rolled surfaces, so that the amount of the bare metal was about one unit rolled area. It is thought that it became 1/5. Therefore, this value is the carbon content (TC) of the sample not pickled, 28 mg / m2 Subtracted value, 18mg / m2 Is the amount of concentrated carbon (C) in the carbon-enriched layer of a titanium plate obtained by annealing a titanium cold-rolled sheet in an oxidizing atmosphere, and descaling after descaling.
[0033]
The reason why such a thickened layer of carbon is not fully elucidated, but during the cold rolling process, the rolling oil reacts with the titanium surface to form titanium carbide to form in the surface layer. I think to disperse.
[0034]
Next, as for the phenomenon of coloring or discoloration when the titanium plate is used outdoors as a roofing material or exterior plate of a building, the cause has not been elucidated at present.2) We believe that this is a surface oxidation phenomenon due to the photocatalytic action of the film.
[0035]
That is, TiO2 When light having a wavelength of about 380 nm or less is irradiated, water and oxygen in the environment are chemically changed, and hydroxy radicals (.OH) and superoxide anions (O2 -It is known that the TiC dispersed in the carbon enriched layer on the surface of the titanium plate is TiO.2  Since these oxidants act for a long period of time, they are gradually decomposed as shown in the formula (1).2 It is estimated that
[0036]
TiC + oxidizing agent → TiO2  + CO2  (1)
At the same time as the above reaction, the titanium metal itself around TiC is also oxidized by the oxidizing agent as shown in the formula (2) to form TiO.2It is estimated that
[0037]
Ti + oxidizing agent → TiO2        (2)
The color tone of the titanium plate surface changes with time. The carbon-enriched layer in which TiC is dispersed does not show the light interference effect, but the reaction of the formulas (1) and (2) causes TiO.2 This is probably because the thickness of the coating gradually increases, and the way of interference of light changes depending on the thickness.
[0038]
On the other hand, descaling by immersion in a salt bath after annealing a titanium cold-rolled sheet in an oxidizing atmosphere is a cold-rolled sheet having a carbon-enriched layer on the surface, compared to a cold-rolled sheet with a sufficiently small surface carbon-enriched layer The phenomenon that makes the board more difficult is presumed to be due to the following reasons.
[0039]
That is, when annealing a titanium cold-rolled sheet in an oxidizing atmosphere, the surface is oxidized and an oxidized scale is generated. However, when there is no carbon concentrated layer, the generated scale is dense, Since it acts to prevent oxygen from diffusing, it becomes a thin scale. On the other hand, when there is a carbon enriched layer in which TiC is dispersed, the generated scale is uneven and lacks in density, and oxygen can easily diffuse in the carbon enriched layer and inside the metal. Therefore, it is estimated that a thick scale is formed. Therefore, as a matter of course, the time required for dissolving the scale by the salt bath immersion treatment becomes longer when the thick scale is generated by the carbon concentrated layer.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, the carbon content of the carbon enriched layer on the surface of the titanium plate before annealing is 150 mg / m.2 The following is specified for the following reason.
[0041]
One reason is that the discoloration of the titanium plate due to light irradiation is more likely to proceed as the amount of carbon in the carbon enriched layer formed on the surface of the titanium plate increases, and the amount of concentrated carbon in the cold-rolled plate is 150 mg / m.2 This is because a brightly annealed titanium plate with little discoloration and a titanium plate that has been pickled and finished after annealing in an oxidizing atmosphere cannot be obtained.
[0042]
Another reason is that the oxide scale formed on the surface by annealing in an oxidizing atmosphere tends to be thicker as the amount of concentrated carbon on the surface of the titanium cold-rolled sheet before annealing increases, which is 150 mg / m.2 This is because the descaling after annealing becomes difficult unless the following is set. For any reason, it is better that the amount of concentrated carbon on the surface of the cold-rolled sheet is small, preferably 50 mg / m.2Or less, more preferably 10 mg / m2It is as follows.
[0043]
The carbon content of the carbon enriched layer of the titanium plate before annealing is 150 mg / m2 The following method is used for the following.
[0044]
The first method is a method of selecting and rolling a lubricant to be used when cold rolling a hot-rolled titanium plate manufactured by a conventional method. For example, a method of cold rolling using a lubricant containing no carbon is reliable. As the lubricant not containing carbon, an aqueous solution containing 8 to 15% of phosphate (potassium phosphate, sodium phosphate, etc.) can be used.
[0045]
The second method is a method of removing the formed carbon concentrated layer by pickling or polishing after cold rolling using a normal mineral oil-based lubricant containing carbon as in the prior art. Specifically, in pickling, hydrofluoric acid (concentration 0.5 to 2%) or nitric hydrofluoric acid (nitric acid concentration 8 to 15%, hydrofluoric acid concentration 0.5 to 30 to 50 ° C. (2% aqueous solution) for 30 to 150 seconds. In addition, when removing the carbon concentrated layer on the surface by polishing, if a polishing oil containing carbon such as mineral oil is used as a lubricant, a carbon concentrated layer is generated on the surface by a mechanochemical reaction. As in the case, an aqueous solution containing 8 to 15% of phosphate (potassium phosphate, sodium phosphate, etc.) is preferably used as the lubricant.
[0046]
In the production method of the present invention, the carbon content of the carbon enriched layer on the surface layer of the titanium plate before annealing is 150 mg / m as described above.2 After the following, annealing is performed in an oxidizing atmosphere, and descaling is performed using a molten salt immersion treatment and a nitric hydrofluoric acid aqueous solution to form a titanium plate, or annealing is performed in a non-oxidizing atmosphere to obtain a titanium plate.
[0047]
The annealing in an oxidizing atmosphere may be performed under normal annealing conditions in which a titanium strip is continuously passed through a heating furnace and held at 700 to 830 ° C. for about 1 to 3 minutes. In the case of annealing in an oxidizing atmosphere, an oxide scale is generated on the surface, and therefore descaling is performed by molten salt immersion treatment and pickling with a nitric hydrofluoric acid aqueous solution.
[0048]
The molten salt immersion treatment may be a conventional treatment, and may be immersed in a molten alkali salt bath (for example, a melt of 90% sodium hydroxide and 10% sodium nitrate) for 5 to 30 seconds. . In addition, the pickling is preferably immersed in a nitric hydrofluoric acid pickling solution (an aqueous solution having a nitric acid concentration of 8 to 15% and a hydrofluoric acid concentration of 2 to 5%) for about 60 to 200 seconds.
On the other hand, in order to anneal a titanium strip while being wound in a coil shape, it is performed in a non-oxidizing atmosphere at a temperature of 680 to 720 ° C. for 12 to 24 hours using a batch type heating furnace. In this case, almost no oxide scale is generated by annealing, so that it is not necessary to perform descaling thereafter.
[0049]
【Example】
Example 1
After annealing and pickling hot rolled strip of titanium (JIS type 1) with a thickness of 3.5 mm using a continuous annealing pickling facility, a test piece having a size of 120 × 200 mm is cut out and compact four-stage rolling Cold rolling was performed to a plate thickness of 0.5 mm using a machine.
[0050]
At this time, as a cold rolling lubricant, a 10% potassium phosphate aqueous solution was used as an example of the present invention, and a mineral oil-based rolling oil was used as a comparative example.
[0051]
After cold rolling, after thoroughly degreasing using a commercially available alkaline degreasing agent, the amount of concentrated carbon on the surface was analyzed, and as a result, the test material cold-rolled using a 10% aqueous potassium phosphate solution was 8 mg / m2Sample material cold-rolled using mineral oil-based rolling oil is 241 mg / m2Met.
[0052]
On the other hand, after cutting out a test piece having a size of 100 × 150 mm from the cold-rolled specimen and sufficiently degreasing using a commercially available alkaline degreasing agent, bright annealing finish or oxidizing atmosphere by the following two methods It was pickled after annealing.
[0053]
(1) Bright annealing finish: Annealing was performed at 700 ° C. for 12 hours in an argon gas atmosphere (dew point −55 ° C.).
[0054]
(2) Pickling finish after annealing in an oxidizing atmosphere: Using an experimental furnace that can be adjusted to the same atmosphere as a hydrocarbon gas combustion heating furnace (volume%, water vapor 12%, carbon dioxide 11%, oxygen 3%, nitrogen 74%) Then, after annealing at 730 ° C. for 2 minutes, descaling and pickling finish were performed by a combination of a molten alkali salt immersion treatment and nitric hydrofluoric acid pickling.
[0055]
The molten alkali salt had a composition of 90% sodium hydroxide and 10% sodium nitrate and was melted by heating to 450 ° C. or 480 ° C. In addition, nitric hydrofluoric acid pickling is nitric hydrofluoric acid at 40 ° C (10% HNOThree-2% HF) for 60 seconds.
[0056]
Next, a test piece having a size of 100 × 100 mm was cut out from these test pieces, and was subjected to an atmospheric exposure test outdoors for one year to check for the presence and degree of discoloration. At the same time, the test piece before the atmospheric exposure test cut out separately and the test piece from which the carbon farming layer was removed by pickling with fluoric acid were analyzed by the combustion method, and the surface of the test piece 1 m2 The amount of concentrated carbon per hit was examined. These results are summarized in Table 1.
[0057]
[Table 1]
Figure 0004543519
As is apparent from Table 1, the test piece of the present invention example, which was cold-rolled using a 10% aqueous potassium phosphate solution as a lubricant and then finished with bright annealing, had a surface concentrated carbon content of 8 mg / m 2.2 No discoloration was observed in the one year atmospheric exposure test (Test No. 3). In addition, when annealing is performed in a hydrocarbon gas combustion atmosphere, it is completely descaled by performing a nitric hydrofluoric acid pickling for 60 seconds after a salt bath treatment at 450 ° C., 10 seconds or 480 ° C., 5 seconds, Even after one year of atmospheric exposure test, no color change was observed. Also, the amount of concentrated carbon on the surface is 2 to 3 mg / m.2 It was a low level (Test Nos. 1 and 2). On the other hand, it was cold-rolled using mineral oil-based rolling oil.
After that, the brightly annealed test piece of the comparative example has a surface concentrated carbon amount of 238 mg / m 2.2 The color turned brown in a one-year atmospheric exposure test (Test No. 8).
[0058]
In addition, when annealing is performed in a hydrocarbon gas combustion atmosphere, descaling is extremely incomplete in a salt bath treatment at 450 ° C., 20 to 30 seconds or 480 ° C. for 20 seconds (descaling rate: 35 to 86%). (Test Nos. 4, 5 and 6) Although it was almost completely descalable by a salt bath treatment at 480 ° C. for 30 seconds (descaling rate: 99%), the surface still had 53 mg / m2 The carbon was concentrated, and when this was subjected to an atmospheric exposure test for one year, it turned a light brown color (Test No. 7). In addition, since the descaling of the test pieces of Test Nos. 4, 5, and 6 was extremely incomplete, the analysis of the concentrated carbon amount and the air exposure test were not performed.
[0059]
(Example 2)
Normal industrial pure titanium (JIS type 1) and titanium alloy (Ti-6% Al-4% V) cold-rolled strip manufactured using mineral oil-based lubricant (thickness is 0.6 mm) Samples were collected from the sample and thoroughly degreased using a commercially available alkaline degreasing agent, and then the amount of concentrated carbon on the surface layer was analyzed.
[0060]
As a result, the concentration of concentrated carbon in the pure titanium plate and the titanium alloy plate was 255 mg / m, respectively.2And 243 mg / m2 Met. Further, as an example of the present invention, after degreasing, the carbon concentrated layer on the surface was removed by immersing in 30 ° C. nitric hydrofluoric acid (aqueous solution having a nitric acid concentration of 10% and a hydrofluoric acid concentration of 1%) for 60 seconds. Next, the amount of concentrated carbon on the surface layer was analyzed. As a result, the amount of concentrated carbon in the pure titanium plate and the titanium alloy plate was 12 mg / m, respectively.2 And 11 mg / m2Met.
[0061]
Next, a test piece having a size of 100 × 150 mm was cut out from these pickled specimens of the present invention and the comparative specimen not pickled, washed with water, dried, and then burned with hydrocarbon gas. Using an experimental furnace that can be adjusted to the same oxidizing atmosphere as the heating furnace (volume%, water vapor 12%, carbon dioxide 11%, oxygen 3%, nitrogen 74%), after annealing at 800 ° C. for 3 minutes, a salt bath treatment and A descaling and pickling finish was performed in combination with pickling with a nitric hydrofluoric acid solution.
[0062]
The salt bath was composed of 90% sodium hydroxide and 10% sodium nitrate, and was melted by heating to 480 ° C. Moreover, nitric hydrofluoric acid pickling is nitric hydrofluoric acid (10% HNO at 40 ° C).Three-2% HF) for 60 seconds or 120 to 180 seconds.
[0063]
Next, the accelerated weather resistance test was performed on a test piece having a size of 100 × 120 mm cut out from these test pieces, and the concentration of concentrated carbon was analyzed on a test piece having a size of 30 × 100 mm.
In addition, the accelerated weather resistance test was carried out for a total of 2000 hours by a method of alternately repeating water wetting and light irradiation using a sunshine weather meter (those that can irradiate light containing light having a wavelength in the ultraviolet region as with sunlight) The presence and extent of discoloration by the test was examined. The results are shown in Table 2.
[0064]
[Table 2]
Figure 0004543519
As is apparent from Table 2, specimens taken from the specimens pickled before annealing were annealed in a hydrocarbon gas combustion atmosphere, and then subjected to a salt bath treatment at 480 ° C. for 10 seconds and nitric hydrofluoric acid for 60 seconds. It was completely descaled by washing and did not discolor at all in the 2000 hour accelerated weathering test (Test Nos. 1 and 6). On the other hand, when annealing is performed without pickling, descaling is extremely incomplete in a salt bath treatment at 480 ° C. for 10 to 30 seconds and nitric hydrofluoric acid pickling for 60 seconds (descaling rate: 0 to 63%). (Test Nos. 2, 3, 4, 7, 8, 9) Almost completely descaling can be achieved only by performing a hydrofluoric acid pickling for 120 to 180 seconds after a salt bath treatment at 480 ° C. for 30 seconds. (Descaling rate: 99% or 100%). However, the surface still has 52-66 mg / m2 As a result of the accelerated weather resistance test, it turned light brown (Test Nos. 5 and 10). Since the test pieces of Test Nos. 2, 3, 4, 7, 8, and 9 were extremely incompletely descaled, the analysis of the concentrated carbon amount and the accelerated weather resistance test were not performed.
[0065]
【The invention's effect】
According to the present invention, a titanium plate having a small change in color tone can be easily obtained even when used outdoors for a long time, and at the same time, in the manufacturing process of a titanium plate or a titanium alloy plate, the cold rolled plate is annealed in an oxidizing atmosphere. The industrial effect is great, for example, the removal of the generated scale can be carried out efficiently.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an analysis result of a titanium cold-rolled plate surface by a GDMS method.
FIG. 2 is a graph showing the relationship between pickling time and calculated surface carbon content.
FIG. 3 is another example showing the relationship between the pickling time and the calculated surface carbon content.

Claims (3)

冷間圧延後のチタン板表層の炭素濃化層の炭素量が、150mg/m2 以下となる潤滑剤を用いてチタン板を冷間圧延した後、酸化性雰囲気で焼鈍し、次いで溶融塩浸漬処理と硝ふっ酸水溶液による酸洗とにより脱スケールすることを特徴とするチタン板の製造方法。After cold rolling the titanium plate using a lubricant with a carbon concentration on the surface of the titanium plate after cold rolling of 150 mg / m 2 or less, annealing in an oxidizing atmosphere, then immersion in molten salt A method for producing a titanium plate, characterized in that descaling is performed by treatment and pickling with an aqueous nitric hydrofluoric acid solution. 冷間圧延により生じた炭素濃化層を表層に有するチタン板に酸洗と研磨の一方または双方を施して表層の炭素濃化層の炭素量を150mg/m2 以下とし、酸化性雰囲気で焼鈍し、次いで溶融塩浸漬処理と硝ふっ酸水溶液による酸洗とにより脱スケールすることを特徴とするチタン板の製造方法。A titanium plate having a carbon-enriched layer formed by cold rolling is subjected to one or both of pickling and polishing to make the carbon content of the surface carbon-enriched layer 150 mg / m 2 or less, and annealed in an oxidizing atmosphere And then descaling by a molten salt immersion treatment and pickling with a nitric hydrofluoric acid aqueous solution. チタン板を冷間圧延し、冷間圧延により生じた炭素濃化層を表層に有するチタン板に酸洗と研磨の一方または双方を施して表層の炭素濃化層の炭素量を150mg/m2 以下とし、非酸化性雰囲気で焼鈍することを特徴とするチタン板の製造方法。A titanium plate is cold-rolled, and one or both of pickling and polishing is performed on a titanium plate having a carbon-concentrated layer formed by cold rolling as a surface layer, so that the carbon content of the carbon-concentrated layer of the surface layer is 150 mg / m 2. A method for producing a titanium plate, characterized by annealing in a non-oxidizing atmosphere.
JP2000248477A 2000-08-18 2000-08-18 Manufacturing method of titanium cold rolled sheet Expired - Fee Related JP4543519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248477A JP4543519B2 (en) 2000-08-18 2000-08-18 Manufacturing method of titanium cold rolled sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248477A JP4543519B2 (en) 2000-08-18 2000-08-18 Manufacturing method of titanium cold rolled sheet

Publications (2)

Publication Number Publication Date
JP2002060984A JP2002060984A (en) 2002-02-28
JP4543519B2 true JP4543519B2 (en) 2010-09-15

Family

ID=18738377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248477A Expired - Fee Related JP4543519B2 (en) 2000-08-18 2000-08-18 Manufacturing method of titanium cold rolled sheet

Country Status (1)

Country Link
JP (1) JP4543519B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721113B2 (en) * 2006-03-15 2011-07-13 三菱マテリアル株式会社 Method for producing sponge-like titanium sintered body with excellent corrosion resistance
CA2646189C (en) 2006-04-14 2011-07-26 Toyota Jidosha Kabushiki Kaisha Noble metal plating of titanium components
KR101258729B1 (en) * 2009-08-24 2013-04-26 주식회사 포스코 Method for pickling titanium plate having excellent surface quality
KR101230081B1 (en) * 2010-12-01 2013-02-05 주식회사 포스코 Pickling method of titanium slab and titanium slab manufactured using the same
KR101228806B1 (en) * 2010-12-27 2013-01-31 주식회사 포스코 Method for pickling titanium cold rolled steel sheet
JP6057501B2 (en) * 2011-06-29 2017-01-11 新日鐵住金株式会社 Titanium plate for barrel polishing and manufacturing method thereof
KR101400526B1 (en) * 2012-03-09 2014-05-28 주식회사 포스코 Method for heat treatment and pickling titanium plate having excellent surface quality
DK3467139T3 (en) * 2016-07-08 2020-09-21 Nippon Steel Corp Titanium plate and process for its manufacture
CN108918226B (en) * 2018-07-23 2020-07-24 江苏隆达超合金航材有限公司 Preparation method of titanium sponge and titanium crystal grain sample for GDMS (gas chromatography mass spectrometry) detection
CN115369411B (en) * 2021-10-25 2023-08-18 塞尔纳新材料(武汉)有限公司 Environment-friendly surface cleaning process for cold-rolled titanium and titanium alloy plates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001729A (en) * 1998-06-18 2000-01-07 Kobe Steel Ltd Titanium material or titanium alloy material excellent in discoloration resistance, its production and exterior material for building

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238465A (en) * 1984-05-11 1985-11-27 Nippon Stainless Steel Co Ltd Manufacture of bright-annealed titanium and titanium alloy material with superior formability
JP3397927B2 (en) * 1995-03-01 2003-04-21 新日本製鐵株式会社 Method for producing titanium material with excellent anti-glare properties
JP3320642B2 (en) * 1997-09-16 2002-09-03 協同油脂株式会社 Hot rolling oil and hot rolling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001729A (en) * 1998-06-18 2000-01-07 Kobe Steel Ltd Titanium material or titanium alloy material excellent in discoloration resistance, its production and exterior material for building

Also Published As

Publication number Publication date
JP2002060984A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP4543519B2 (en) Manufacturing method of titanium cold rolled sheet
JP2002012962A (en) Titanium hardly generating color change in atmospheric environment and manufacturing method therefor
KR890001379B1 (en) Method of controlling oxide scale formation and descaling thereof from method articles
JP3829731B2 (en) Manufacturing method and lubricant for titanium material
US11208727B2 (en) Scale conditioning process for advanced high strength carbon steel alloys
JP3216571B2 (en) Alkali molten salt bath for descaling high Cr stainless steel
JP3255610B2 (en) Titanium material or titanium alloy material excellent in discoloration resistance, method for producing the same, and exterior material for building
US2942954A (en) Non-hazardous etching solutions
JP3801037B2 (en) Quantitative analysis method of surface concentrated carbon content of titanium plate and quality control method of titanium product
JP2001348634A (en) Titanium sheet small in discoloration
Azzerri et al. Potentiostatic pickling: a new technique for improving stainless steel processing
JP3397927B2 (en) Method for producing titanium material with excellent anti-glare properties
JP3221303B2 (en) Titanium or titanium alloy member with beautiful surface and method of manufacturing the same
JPH0776766A (en) Improvement in abrasion resistance and corrosion resistance of ferrous metal part
TWI789013B (en) Titanium material and manufacturing method of titanium material
KR100394946B1 (en) Manufacturing method of stainless cold rolled steel sheet
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP3111853B2 (en) Method of manufacturing cold rolled stainless steel sheet
JP2000144462A (en) METHOD OF SURFACE FINISH FOR HIGH Cr STAINLESS STEEL SHEET
JPS58199880A (en) Molten salt bath for pickling
JP4322726B2 (en) Manufacturing method of stainless steel sheet with excellent surface gloss
JP2004115876A (en) Titanium material superior in formability and lubricity, and manufacturing method therefor
JPH0447011B2 (en)
JPH10265936A (en) Black stainless steel sheet excellent in corrosion resistance, and its production
JPS6025506B2 (en) Ti descaling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees