JPH0568402B2 - - Google Patents

Info

Publication number
JPH0568402B2
JPH0568402B2 JP61035351A JP3535186A JPH0568402B2 JP H0568402 B2 JPH0568402 B2 JP H0568402B2 JP 61035351 A JP61035351 A JP 61035351A JP 3535186 A JP3535186 A JP 3535186A JP H0568402 B2 JPH0568402 B2 JP H0568402B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrogen chloride
gas
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61035351A
Other languages
Japanese (ja)
Other versions
JPS62197302A (en
Inventor
Masanobu Ajioka
Shinji Takenaka
Hiroyuki Ito
Masafumi Kataita
Yoshitsugu Jinno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61035351A priority Critical patent/JPS62197302A/en
Publication of JPS62197302A publication Critical patent/JPS62197302A/en
Publication of JPH0568402B2 publication Critical patent/JPH0568402B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩素の製造方法、より詳細には塩化水
素ガスを含酸素ガスで酸化し塩素を製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing chlorine, and more particularly to a method for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas.

〔発明の技術背景〕[Technical background of the invention]

塩素は食塩電解により大規模に製造されてお
り、塩素の需要は年々増大するにもかかわらず、
食塩電解の際に同時に生成する苛性ソーダの需要
は塩素のそれよりも少ないために、各々の不均衡
をうまく調整するのは困難な状況が生じている。
Chlorine is produced on a large scale by salt electrolysis, and the demand for chlorine increases year by year.
Since the demand for caustic soda, which is simultaneously produced during salt electrolysis, is less than that for chlorine, it is difficult to properly adjust the imbalance between them.

一方、有機化合物の塩素化反応またはホスゲン
化反応の際に、大量の塩化水素が副生しており、
副生塩化水素の量は、塩酸の需要量より大巾に多
いために、大量の塩化水素が未利用のままで無駄
に廃棄されている。また廃棄のための処理コスト
もかなりの額に達する。
On the other hand, large amounts of hydrogen chloride are produced as by-products during the chlorination or phosgenation reactions of organic compounds.
Since the amount of by-product hydrogen chloride is much larger than the amount of hydrochloric acid required, a large amount of hydrogen chloride remains unused and is wasted. Additionally, the processing costs for disposal can be considerable.

上記のように大量に廃棄されている塩化水素か
ら効率よく塩素を回収出来れば、苛性ソーダ生産
量とのアンバランスを生じることなく、塩素の需
要を満たすことが出来る。
If chlorine can be efficiently recovered from hydrogen chloride, which is discarded in large quantities as described above, the demand for chlorine can be met without creating an imbalance with the production of caustic soda.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

塩化水素を酸化して塩素を製造する反応は古く
からDeacon反応として知られている。1868年
Deaconの発明による銅系の触媒が、従来最も優
れた活性を示す触媒とされ、塩化銅と塩化カリに
第三成分として種々な化合物を添加した触媒が、
多数提案されている。しかしながら、これらの触
媒で工業的に充分な反応速度で塩化水素を酸化す
るためには、反応温度を400℃以上にする必要が
あり、触媒成分の飛散に伴う触媒寿命の低下等が
問題となる。
The reaction that produces chlorine by oxidizing hydrogen chloride has long been known as the Deacon reaction. 1868
The copper-based catalyst invented by Deacon is said to be the catalyst with the most excellent activity.Catalysts made by adding various compounds as third components to copper chloride and potassium chloride are
Many have been proposed. However, in order to oxidize hydrogen chloride at an industrially sufficient reaction rate with these catalysts, it is necessary to raise the reaction temperature to 400°C or higher, which poses problems such as shortened catalyst life due to scattering of catalyst components. .

以上の観点から、銅系以外の触媒として、酸化
クロムは銅等に比較すると高温に対する安定性、
耐久性があるので、酸化クロムを塩化水素の酸化
に触媒として用いる提案もあるが、未だ充分な活
性を示す結果は報告されていない。例えば、英国
特許第584790号、英国特許第676667号等が提案さ
れているが、断続運転を余儀なくされたり、又低
転化率で充分な活性を示すものはない。
From the above points of view, as a non-copper-based catalyst, chromium oxide has better stability at high temperatures than copper etc.
Because of its durability, there have been proposals to use chromium oxide as a catalyst for the oxidation of hydrogen chloride, but no results have yet been reported showing sufficient activity. For example, British Patent No. 584790 and British Patent No. 676667 have been proposed, but none of them requires intermittent operation or shows sufficient activity at a low conversion rate.

又、英国特許846832号では反応系中のガス相に
クロミルクロライドを加えて高い転化率を得てい
る。
Also, in British Patent No. 846832, a high conversion rate is obtained by adding chromyl chloride to the gas phase in the reaction system.

このように、酸化クロムを触媒に用いても、上
記のように新たな反応試薬を加えない限り、従来
公知の方法は反応温度も高く、空間速度も低いた
めに工業的な操業に耐え得る状態にはなかつた。
As described above, even if chromium oxide is used as a catalyst, unless a new reaction reagent is added as described above, the conventionally known method has a high reaction temperature and a low space velocity, so it is not suitable for industrial operation. It wasn't there.

本発明者らは、種々検討の結果、水酸化クロム
を焼成して得られた酸化クロム触媒が高活性を有
し、この触媒を用いて塩化水素に対して過剰量の
酸素を用いて、300〜500℃の温度で反応させると
高い空間速度で、高い転化率で塩素を製造できる
ことを先に出願した。
As a result of various studies, the present inventors found that a chromium oxide catalyst obtained by calcining chromium hydroxide has high activity. It was previously submitted that chlorine can be produced at high space velocities and high conversion rates when reacted at temperatures of ~500°C.

しかしながら、酸化クロム触媒を長期間反応に
使用した場合、活性成分のクロムの一部が、反応
中に酸化塩化物として揮散する。その揮散速度は
温度が高い程大となる。その為に、反応温度の局
部的上昇を防止し、触媒層の温度を均一に管理す
る事が重要である事が判り、又揮散減量した触媒
を補給する必要がある。
However, when a chromium oxide catalyst is used in a reaction for a long period of time, part of the active ingredient chromium is volatilized as chloride oxide during the reaction. The rate of volatilization increases as the temperature increases. For this reason, it has been found that it is important to prevent local increases in the reaction temperature and to uniformly control the temperature of the catalyst layer, and it is also necessary to replenish the catalyst that has lost its volatilized amount.

本発明の目的は酸化クロム触媒を用いて塩化水
素を酸化する反応において揮散減量する触媒を補
給しながら、反応熱による触媒層の温度分布を均
一に保ちながら、塩化水素より塩素を工業的に製
造する方法を提供することを目的とする。
The purpose of the present invention is to industrially produce chlorine from hydrogen chloride while replenishing the catalyst that volatilizes in the reaction of oxidizing hydrogen chloride using a chromium oxide catalyst and while maintaining a uniform temperature distribution in the catalyst layer due to the reaction heat. The purpose is to provide a method for

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは鋭意検討の結果、塩化水素の酸化
反応を流動床反応器にて行なうことで、上記の問
題を解決できることを見出し、本発明を完成し
た。
As a result of extensive studies, the present inventors have discovered that the above problems can be solved by carrying out the oxidation reaction of hydrogen chloride in a fluidized bed reactor, and have completed the present invention.

即ち本発明は、塩化水素に対して過剰量の酸素
を用いて、300〜500℃の温度で反応させて塩素を
製造する方法において、平均粒径が40〜100μで、
200μ以下に粒度分布を持ち、粒子密度が0.6〜3.0
g/cm3である微粒状の酸化クロムを主成分とする
触媒の存在下、流動化しながら反応を行なうこと
を特徴とする塩素の製造方法である。
That is, the present invention provides a method for producing chlorine by reacting hydrogen chloride with an excess amount of oxygen at a temperature of 300 to 500°C, with an average particle size of 40 to 100μ,
Particle size distribution below 200μ, particle density 0.6 to 3.0
This is a method for producing chlorine, which is characterized by carrying out the reaction while fluidizing in the presence of a catalyst whose main component is finely divided chromium oxide.

次に本発明を詳しく説明する。 Next, the present invention will be explained in detail.

本発明では、酸化クロムを主成分とする触媒を
用い、塩化水素1モルに対して酸素を0.25〜10モ
ル加えて、反応温度を300〜500℃に維持して酸化
反応を行なう必要があり、通常は350〜450℃が好
ましい。
In the present invention, it is necessary to carry out the oxidation reaction using a catalyst containing chromium oxide as the main component, adding 0.25 to 10 moles of oxygen to 1 mole of hydrogen chloride, and maintaining the reaction temperature at 300 to 500 °C. Normally, the temperature is preferably 350 to 450°C.

温度が高いほど、塩化水素の転化速度は速くな
るが、本発明触媒のように水酸化物を焼成して得
られた酸化クロム触媒は、触媒からのクロム成分
の揮発速度が大きくなり、触媒を長期間使用する
上で問題となる。また、本発明触媒は300℃以下
では塩化水素の転化速度が小さく、工業上十分な
空間速度で塩化水素を給供することができない。
The higher the temperature, the faster the conversion rate of hydrogen chloride becomes. However, in the case of a chromium oxide catalyst obtained by calcining a hydroxide, such as the catalyst of the present invention, the rate of volatilization of the chromium component from the catalyst increases, and the rate of conversion of hydrogen chloride becomes faster. This becomes a problem when used for a long period of time. Further, the catalyst of the present invention has a low conversion rate of hydrogen chloride at temperatures below 300°C, and cannot supply hydrogen chloride at an industrially sufficient space velocity.

しかし、塩化水素と酸素から塩素を生じる反応
は比較的大きな発熱をともなうために、固定床反
応器を用いる場合には、反応熱による触媒層の局
部温度上昇を起こし易い。その温度は、工業的に
十分な空間速度で運転する場合には、450〜600℃
に達する。
However, since the reaction that produces chlorine from hydrogen chloride and oxygen is accompanied by a relatively large amount of heat generation, when a fixed bed reactor is used, the heat of reaction tends to cause a local temperature rise in the catalyst layer. Its temperature is 450-600℃ when operating at industrially sufficient space velocity.
reach.

このような温度では、触媒からクロム成分の揮
散量が増加するために、触媒の減量、活性の低下
が激しくなり、長期間の連続使用が困難になる。
At such temperatures, the amount of chromium components volatilized from the catalyst increases, resulting in significant catalyst weight loss and activity reduction, making long-term continuous use difficult.

さらに、この600℃の温度近くでは、反応器金
属材質の塩化水素及び塩化ガスに対する耐食性が
急激に低下するため好ましくない。
Further, a temperature close to 600° C. is not preferable because the corrosion resistance of the metal material of the reactor against hydrogen chloride and chloride gas rapidly decreases.

また比較的クロムの揮散が低い場合でも、長期
間連続的に塩素を製造する際には、減少した分の
触媒を追加補充したり、活性の低下した触媒を抜
き出すことが必要であるが、そのために連続運転
を止めることは効率的でなく、反応ガスの後処理
設備を含めたプロセス全体の停止、又再運転も大
変煩雑となる。
Furthermore, even if the volatilization of chromium is relatively low, when producing chlorine continuously for a long period of time, it is necessary to replenish the amount of catalyst that has decreased or to extract the catalyst whose activity has decreased. It is not efficient to stop continuous operation, and it is very complicated to stop and restart the entire process including the post-treatment equipment for the reaction gas.

これらの問題を解決するために、微粒状に造粒
した触媒を原料ガスで流動化する流動床反応器を
用いることが必要である。
In order to solve these problems, it is necessary to use a fluidized bed reactor in which finely granulated catalyst is fluidized with raw material gas.

また流動床反応器に用いられる触媒粒子は、平
均粒径が40〜100μで、200μ以下に粒径分布を持
ち、密度が0.6〜3.0g/cm3である高い流動性を示
す粒子であることが必要であることもわかつた。
In addition, the catalyst particles used in the fluidized bed reactor must be highly fluid particles with an average particle size of 40 to 100μ, a particle size distribution of 200μ or less, and a density of 0.6 to 3.0g/ cm3 . It was also found that it was necessary.

平均粒径が100μより大きいと流動性が悪くな
り、反応ガスと触媒の接触効率が低下し、塩化水
素の塩素への転化率が低くなる。
When the average particle size is larger than 100μ, fluidity deteriorates, the contact efficiency between the reaction gas and the catalyst decreases, and the conversion rate of hydrogen chloride to chlorine decreases.

また、粒径が大きいほど、反応器材質に対する
触媒粒子による摩耗が大きくなり、特に本発明に
用いられる酸化クロムは摩耗性が高いために問題
となる。逆に、平均粒径が40μより小さいとほと
んどの触媒粒子が、ガスに同伴して飛び去り、こ
れを補集再使用する設備まで含めた全体の反応器
が、非常に大きくなつてしまう。
Further, the larger the particle size, the greater the abrasion caused by the catalyst particles to the reactor material, which is particularly problematic because the chromium oxide used in the present invention has high abrasiveness. On the other hand, if the average particle size is smaller than 40μ, most of the catalyst particles will fly away along with the gas, and the entire reactor, including equipment for collecting and reusing them, will become very large.

そのため粒度分布は200μ以下で、広い方が流
動性が良く、通常、平均粒径より約50μ小さく、
100μ大きい分布を持つものが好ましい。
Therefore, the particle size distribution is less than 200μ, the wider the better the fluidity, and usually about 50μ smaller than the average particle size.
Preferably, the distribution is 100μ larger.

粒径の大きなものばかり含む触媒を用いるなら
ば、流動性が悪く、塩化水素の高い転化率が得ら
れない。また粒径の小さいものばかり含む触媒を
用いると、平均粒径が40μより小さい時と同様、
ほとんどの粒子がガスに同伴して飛び去つてしま
う。
If a catalyst containing only large particles is used, fluidity will be poor and a high conversion rate of hydrogen chloride will not be obtained. In addition, if a catalyst containing only small particle sizes is used, similar to when the average particle size is smaller than 40μ,
Most of the particles fly away along with the gas.

粒子密度が3.0g/cm3より大きいと流動性が悪
く、ガスの吹抜け、スラツギング現象を起こし、
転化率が低くなる。逆に密度が0.6g/cm3より小
さいと、ガスに同伴する粒子量が増加して好まし
くない。
If the particle density is greater than 3.0g/ cm3 , fluidity will be poor, causing gas blow-through and slugging phenomena.
Conversion rate becomes low. On the other hand, if the density is less than 0.6 g/cm 3 , the amount of particles accompanying the gas will increase, which is undesirable.

流動床反応器にて触媒粒子を用いて反応を行な
う場合、揮散するクロム分を補充するために反応
を継続しながら反応器内に連続、又は断続的に新
らしい触媒粒子を送入することができ、又触媒入
替時の触媒抜出を行なうことができる。
When carrying out a reaction using catalyst particles in a fluidized bed reactor, it is possible to continuously or intermittently feed new catalyst particles into the reactor while the reaction continues in order to replenish the volatilized chromium content. It is also possible to remove the catalyst when replacing the catalyst.

流動床を通過する塩化水素と、酸素との混合ガ
スの線速度は0.1〜1m/秒の範囲である。
The linear velocity of the mixed gas of hydrogen chloride and oxygen passing through the fluidized bed is in the range of 0.1 to 1 m/sec.

線速度が1m/秒より大きいと触媒粒子がガス
に同伴して飛び去り、これを補集再使用する設備
まで含めた全体の反応器が非常に大きくなつてし
まう。
If the linear velocity is greater than 1 m/sec, the catalyst particles will fly away along with the gas, and the entire reactor, including equipment for collecting and reusing them, will become very large.

0.1m/秒より線速度が小さいと流動性が悪く
なり、部分的な反応熱の上昇が生じる。また、塩
化水素の塩素への転化率の経時変化が大きくな
る。
When the linear velocity is lower than 0.1 m/sec, fluidity deteriorates and the heat of reaction partially increases. Moreover, the change over time in the conversion rate of hydrogen chloride to chlorine increases.

本発明において用いる触媒は三価クロム塩と塩
基性化合物により、沈澱させて合成した水酸化ク
ロムを800℃に満たない温度で焼成した後の酸化
クロムを粉砕微粒化し、通常バインダーとして酸
化珪素を加えてスラリー状にして、スプレードラ
イヤー等で造粒乾燥して用いるか、又は三価クロ
ム塩に塩基性化合物を加えて沈澱生成した水酸化
クロムスラリーに酸化珪素を加えた後、造粒乾燥
焼成したものである。
The catalyst used in the present invention is prepared by precipitating chromium hydroxide using a trivalent chromium salt and a basic compound, sintering the chromium oxide at a temperature below 800°C, pulverizing the chromium oxide into fine particles, and adding silicon oxide as a binder. The slurry is made into a slurry and used by granulating and drying with a spray dryer, or silicon oxide is added to a chromium hydroxide slurry that is precipitated by adding a basic compound to a trivalent chromium salt, followed by granulating, drying, and firing. It is something.

また本発明において、反応に供する塩化水素と
含酸素ガス中の酸素のモル比は0.25〜10であるこ
とが必要である。理論量の0.25より酸素が少ない
と、塩化水素の転化率が低く、未反応の塩化水素
の分離操作が煩雑になることや、原料費の増加等
で不利となる。また触媒を長期使用した場合、し
だいに転化率が低下するため、触媒寿命の点で問
題となる。
Further, in the present invention, the molar ratio of hydrogen chloride used in the reaction to oxygen in the oxygen-containing gas needs to be 0.25 to 10. If the amount of oxygen is less than the theoretical amount of 0.25, the conversion rate of hydrogen chloride will be low, which will be disadvantageous because the separation operation of unreacted hydrogen chloride will be complicated and the cost of raw materials will increase. Furthermore, when a catalyst is used for a long period of time, the conversion rate gradually decreases, which poses a problem in terms of catalyst life.

このような長期的な活性の低下は、酸素のモル
比が低いほぼ大きくなるため、酸素の使用量は多
い方が好ましいが、10モル以上使用する場合に
は、反応ガス中の生成塩素濃度が低いため、反応
ガスからの塩素の分離が困難となる。
This kind of long-term decrease in activity is almost greater when the molar ratio of oxygen is low, so it is preferable to use a large amount of oxygen, but if you use more than 10 moles, the concentration of chlorine produced in the reaction gas will increase. This makes separation of chlorine from the reaction gas difficult.

触媒床に供給する塩化水素の量は、200〜
1800Nl/時間.Kg.catの範囲が適している。
The amount of hydrogen chloride fed to the catalyst bed is 200~
1800Nl/hour. Kg. The cat range is suitable.

本発明の方法に用いられる原料の塩化水素は、
通常有機化合物の塩素化反応の際に副生する塩化
水素またはホスゲン化反応の際に副生する塩化水
素等の副生塩酸が多用される。
The raw material hydrogen chloride used in the method of the present invention is
Typically, by-product hydrochloric acid such as hydrogen chloride, which is produced as a by-product during the chlorination reaction of organic compounds, or hydrogen chloride, which is produced as a by-product during the phosgenation reaction, is often used.

塩化水素の酸化剤は含酸素ガスであつて、酸素
ガスまたは空気が多用される。
The oxidizing agent for hydrogen chloride is an oxygen-containing gas, and oxygen gas or air is often used.

〔作用および発明の効果〕[Action and effect of the invention]

本発明によれば、特定の酸化クロム触媒粒子を
流動床反応器にて用いるため、固定床反応器使用
にみられる触媒層の反応熱による局部温度上昇も
なく揮散クロム分も少なく、更に揮散クロム分の
補給のための新触媒の補給、又活性低下時の新触
媒の補給等を連続運転中に行なう事ができ、高空
間速度、高転化率で長期間、塩化水素から連続的
に塩素を安定的に製造できる工業的にすぐれた製
造法である。
According to the present invention, since specific chromium oxide catalyst particles are used in a fluidized bed reactor, there is no local temperature rise due to the reaction heat of the catalyst layer that occurs when using a fixed bed reactor, and the volatile chromium content is small. It is possible to replenish new catalyst during continuous operation, such as replenishment of new catalyst to replenish the amount of carbon dioxide, or replenishment of new catalyst when activity decreases. It is an industrially excellent manufacturing method that allows stable production.

実施例 以下、実施例により本発明を説明する。Example The present invention will be explained below with reference to Examples.

実施例 1 硝酸クロム9水塩3.0Kgを脱イオン水30に溶
解させ、よく攪拌しながら28%のアンモニア水
2.9Kgを30分間を要して滴下注入した。
Example 1 Dissolve 3.0 kg of chromium nitrate nonahydrate in 30 kg of deionized water, and add 28% ammonia water while stirring well.
2.9Kg was injected dropwise over 30 minutes.

生じた沈澱スラリーに脱イオン水を加え200
に希釈し、一晩放置後デカンテーシヨンを繰返し
沈澱を洗浄した。焼成後の全重量の10%にあたる
コロイダルシリカを加えた。この混合スラリーを
スプレードライヤーで乾燥して得られた粒状粉末
を、空気雰囲気中600℃で3時間焼成した。
Add deionized water to the resulting precipitate slurry and
The solution was diluted to 100%, left overnight, and then repeatedly decanted to wash the precipitate. Colloidal silica was added in an amount of 10% of the total weight after firing. The granular powder obtained by drying this mixed slurry with a spray dryer was calcined at 600° C. for 3 hours in an air atmosphere.

その後、JIS標準ふるいを用いて微粒子状触媒
をふるい平均粒径(中位径)50〜60μで160μ以下
に粒度分布を有する触媒を得た。触媒の粒子密度
は1.5g/cm3であつた。本触媒375gを内径2イン
チのNi製流動床反応器に充填し、外部を砂動浴
により370℃に加熱した。塩化水素ガス3.13Nl/
mim、酸素ガス1.56Nl/minを触媒床に導入し触
媒を流動させながら反応させた。
Thereafter, a particulate catalyst was sieved using a JIS standard sieve to obtain a catalyst having an average particle diameter (median diameter) of 50 to 60 microns and a particle size distribution of 160 microns or less. The particle density of the catalyst was 1.5 g/cm 3 . 375 g of this catalyst was packed into a Ni fluidized bed reactor with an inner diameter of 2 inches, and the outside was heated to 370° C. using a sand moving bath. Hydrogen chloride gas 3.13Nl/
mim, oxygen gas at 1.56 Nl/min was introduced into the catalyst bed, and the reaction was carried out while the catalyst was fluidized.

触媒層の温度は発熱により400℃となつた。 The temperature of the catalyst layer reached 400°C due to heat generation.

この時のガスの線速度は0.1m/secであつた。 The linear velocity of the gas at this time was 0.1 m/sec.

反応器流出ガスをヨウ化カリ水溶液の吸収瓶
と、苛性ソーダ水溶液の吸収瓶を直列につないだ
トラツプで補集し、チオ硫酸ソーダおよび塩酸で
滴定し、未反応塩化水素と生成した塩素を定量し
た。
The reactor effluent gas was collected with a trap connected in series with an absorption bottle containing an aqueous potassium iodide solution and an absorption bottle containing an aqueous caustic soda solution, and titrated with sodium thiosulfate and hydrochloric acid to quantify unreacted hydrogen chloride and chlorine produced. .

反応開始直後の塩化水素の転化率は68%であ
り、1000時間後でも60%以上の転化率を保つてい
た。またこの時点での触媒重量は353gで、これ
は仕込触媒の94.2%にあたる。
The conversion rate of hydrogen chloride immediately after the start of the reaction was 68%, and the conversion rate remained above 60% even after 1000 hours. The weight of the catalyst at this point was 353g, which was 94.2% of the charged catalyst.

実施例 2 実施例1と同様に触媒を作つたが、コロイダル
シリカは25%になるように加えた。平均粒径は60
〜70μ、170μ以下に粒度分布を有し、粒子密度1.1
g/cm3の本触媒375gを実施例1と同じ流動床反
応器に充填し、同一条件で反応させ、同様に分析
した。
Example 2 A catalyst was prepared in the same manner as in Example 1, but colloidal silica was added to give a concentration of 25%. Average particle size is 60
~70μ, particle size distribution below 170μ, particle density 1.1
375 g of this catalyst (g/cm 3 ) was charged into the same fluidized bed reactor as in Example 1, reacted under the same conditions, and analyzed in the same manner.

反応開始時の塩化水素の転化率は67%、1000時
間後でも60%以上を保持した。この時点の触媒重
量は355gで、仕込み触媒の94.7%にあたる。
The conversion rate of hydrogen chloride at the start of the reaction was 67% and remained above 60% even after 1000 hours. The weight of the catalyst at this point was 355g, which was 94.7% of the charged catalyst.

実施例 3 コロイダルシリカ量を45%用いた以外は実施例
2と同様に行つた。尚、本触媒の平均粒径は60〜
70μ、170μ以下に粒度分布を有し、粒子密度0.7
g/cm3である。転化率は65%、1000時間後でも60
%以上であつた。残存触媒量は357gあり、仕込
みの95.2%に相当する。
Example 3 The same procedure as Example 2 was carried out except that the amount of colloidal silica was 45%. The average particle size of this catalyst is 60~
Particle size distribution below 70μ, 170μ, particle density 0.7
g/ cm3 . Conversion rate is 65%, 60 even after 1000 hours
% or more. The amount of remaining catalyst was 357g, corresponding to 95.2% of the charged amount.

実施例 4 実施例2と同様の触媒を用いた。ただし反応ガ
ス量として塩化水素ガス6.26Nl/minを導入し
た。この時のガスの線速度は0.2m/secであつ
た。
Example 4 The same catalyst as in Example 2 was used. However, 6.26 Nl/min of hydrogen chloride gas was introduced as the reaction gas amount. The linear velocity of the gas at this time was 0.2 m/sec.

反応直後の転化率は67%、1000時間後でも60%
以上の転化率を保つていた。触媒残存量は352g
で仕込みの93.9%であつた。
Conversion rate is 67% immediately after reaction, 60% even after 1000 hours
The conversion rate was maintained above. Remaining amount of catalyst is 352g
It was 93.9% of the preparation.

比較例 1 実施例1と同様の方法で硝酸クロムとアンモニ
ア水とから得た沈澱のスラリーをデカンテーシヨ
ンで洗浄後、沈澱を別し風乾燥後、100〜120℃
で8時間乾燥後電気炉で空気雰囲気中、100〜600
℃まで3時間を要して昇温し、550℃で4時間焼
成した。
Comparative Example 1 A slurry of precipitate obtained from chromium nitrate and aqueous ammonia was washed by decantation in the same manner as in Example 1, and the precipitate was separated and air-dried at 100 to 120°C.
After drying for 8 hours in an electric furnace in an air atmosphere,
It took 3 hours to raise the temperature to 550°C, and then baked at 550°C for 4 hours.

焼成後の触媒を粉砕し、コロイダルシリカ(酸
化珪素)を全量の10%となるように加え、混練後
3mmφ×5mmのペレツトに押出し成型し、550℃
で再び4時間焼成した。
The fired catalyst was pulverized, colloidal silica (silicon oxide) was added to it to make up 10% of the total amount, and after kneading it was extruded into pellets of 3 mmφ x 5 mm and heated at 550°C.
It was fired again for 4 hours.

この触媒を内径1インチのNi製反応器に175g
充填し、反応管外部より砂動浴により3370℃に加
熱した。
175g of this catalyst was placed in a Ni reactor with an inner diameter of 1 inch.
The reactor was filled and heated to 3370°C from the outside of the reaction tube using a sand moving bath.

塩化水素ガス2.33Nl/min、酸素ガス1.17Nl/
min(SV=1200Hr- 1)を370℃に予熱してから触
媒層に導入し反応させた。触媒床温度は、ガス入
口より触媒層全長の20%にあたる部分で反応によ
る反応熱のため450℃の最高温度を示した。
Hydrogen chloride gas 2.33Nl/min, oxygen gas 1.17Nl/min
min (SV = 1200Hr - 1 ) was preheated to 370°C, and then introduced into the catalyst layer and reacted. The temperature of the catalyst bed reached a maximum of 450°C at a portion corresponding to 20% of the total length of the catalyst bed from the gas inlet due to the reaction heat.

反応開始直後の転化率は、70%であつた。その
後、1000時間運転後の転化率は50%であつた。ま
たこの時の触媒重量は114gであり、仕込触媒の
65%にあたる。
The conversion rate immediately after the start of the reaction was 70%. Thereafter, the conversion rate after 1000 hours of operation was 50%. The weight of the catalyst at this time was 114g, and the weight of the charged catalyst was 114g.
That's 65%.

比較例 2 コロイダルシリカ量を70%用いて実施例1と同
様に触媒を作り、反応を行つた。触媒の平均粒径
20〜30μ、粒度分布は70μ以下、粒子密度は0.5
g/cm3であつた。
Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 using 70% colloidal silica, and a reaction was carried out. Average particle size of catalyst
20~30μ, particle size distribution is less than 70μ, particle density is 0.5
g/ cm3 .

反応開始時の転化率は65%、1000時間後では30
%と低い値を示した。反応終了後の残存触媒量は
180gしかなかつた、これは仕込みの48%である。
The conversion rate at the start of the reaction was 65%, and after 1000 hours it was 30%.
It showed a low value of %. The amount of catalyst remaining after the reaction is
There was only 180g, which is 48% of the preparation.

比較例 3 コロイダルシリカを全く用いず、実施例1と同
様に触媒を作り、反応を行つた。触媒の平均粒径
120〜140μ、粒度分布は220μ以下、粒子密度は3.2
g/cm3であつた。
Comparative Example 3 A catalyst was prepared in the same manner as in Example 1 without using any colloidal silica, and a reaction was carried out. Average particle size of catalyst
120~140μ, particle size distribution is less than 220μ, particle density is 3.2
g/ cm3 .

反応開始時の転化率は58%、1000時間後では51
%であつた。反応中の反応器内の圧変動が大きい
ことが認められたことより、ガスの吹き抜け等が
多かつたものと推測された。
The conversion rate at the start of the reaction was 58%, and after 1000 hours it was 51%.
It was %. Since it was observed that the pressure inside the reactor fluctuated greatly during the reaction, it was assumed that there was a lot of gas blow-through.

比較例 4 実施例2と同様の触媒を用いた。ただし、反応
ガス量として、塩素ガス0.626Nl/min、酸素ガ
ス0.312Nl/minを導入した。この時のガスの線
速度は0.02m/secであつた。
Comparative Example 4 The same catalyst as in Example 2 was used. However, chlorine gas 0.626 Nl/min and oxygen gas 0.312 Nl/min were introduced as reaction gas amounts. The linear velocity of the gas at this time was 0.02 m/sec.

触媒の流動性が悪くなり触媒床温度を均一に保
つことが困難となつた。部分的に450℃の高温部
が生じた。
The fluidity of the catalyst deteriorated, making it difficult to maintain a uniform catalyst bed temperature. A high temperature area of 450℃ occurred in some areas.

反応開始時の転化率は69%であつたが、1000時
間後は53%まで低下した。この時の触媒重量は
274gであり、仕込み触媒の73%にあたる。
The conversion rate at the start of the reaction was 69%, but it decreased to 53% after 1000 hours. The weight of the catalyst at this time is
The amount is 274g, which is 73% of the charged catalyst.

Claims (1)

【特許請求の範囲】 1 塩化水素に対して化学量論的に過剰量の酸素
を用いて、300〜500℃の温度で反応させて塩素を
製造する方法において、平均粒径が40〜100μで、
200μ以下に粒度分布を持ち、粒子密度が0.6〜3.0
g/cm3である微粒状の酸化クロムを主成分とする
触媒の存在下、流動化しながら反応を行なうこと
を特徴とする塩素の製造方法。 2 流動化するガスの線速度が0.1〜1m/秒で
ある特許請求の範囲第1項記載の塩素の製造方
法。 3 三価クロムの塩を塩基性化合物により、沈澱
させて得られた水酸化クロムを焼成して調整し
た、酸化クロムを主成分とした触媒を用いる特許
請求の範囲第1項記載の塩素の製造方法。
[Claims] 1. A method for producing chlorine by reacting hydrogen chloride with a stoichiometrically excessive amount of oxygen at a temperature of 300 to 500°C, wherein the average particle size is 40 to 100μ. ,
Particle size distribution below 200μ, particle density 0.6 to 3.0
A method for producing chlorine, which is characterized by carrying out the reaction while fluidizing it in the presence of a catalyst whose main component is finely divided chromium oxide. 2. The method for producing chlorine according to claim 1, wherein the linear velocity of the fluidized gas is 0.1 to 1 m/sec. 3. Production of chlorine according to claim 1 using a catalyst mainly composed of chromium oxide, which is prepared by calcining chromium hydroxide obtained by precipitating a salt of trivalent chromium with a basic compound. Method.
JP61035351A 1986-02-21 1986-02-21 Production of chlorine Granted JPS62197302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035351A JPS62197302A (en) 1986-02-21 1986-02-21 Production of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035351A JPS62197302A (en) 1986-02-21 1986-02-21 Production of chlorine

Publications (2)

Publication Number Publication Date
JPS62197302A JPS62197302A (en) 1987-09-01
JPH0568402B2 true JPH0568402B2 (en) 1993-09-28

Family

ID=12439441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035351A Granted JPS62197302A (en) 1986-02-21 1986-02-21 Production of chlorine

Country Status (1)

Country Link
JP (1) JPS62197302A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230504A (en) * 1987-03-18 1988-09-27 Mitsui Toatsu Chem Inc Production of chlorine
JP2595018B2 (en) * 1988-03-01 1997-03-26 三井東圧化学株式会社 Method for producing chlorine
KR960010775B1 (en) * 1993-12-01 1996-08-08 한국과학기술연구원 Cerium chloride-chromium oxide catalyst for producing chlorine by oxidation of hydrochloric acid and method for manufacture thereof
JP3570322B2 (en) * 2000-01-13 2004-09-29 住友化学工業株式会社 Method for producing chlorine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140038A (en) * 1974-10-01 1976-04-03 Nippon Telegraph & Telephone INJIJIKANHENDOSOKUTEISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140038A (en) * 1974-10-01 1976-04-03 Nippon Telegraph & Telephone INJIJIKANHENDOSOKUTEISOCHI

Also Published As

Publication number Publication date
JPS62197302A (en) 1987-09-01

Similar Documents

Publication Publication Date Title
KR890005057B1 (en) Production process of chlorine
JPS63107801A (en) Production of chlorine
CN1084643C (en) Catalysts for preparing chlorine from mydrogen chloride
JPH053406B2 (en)
KR960010775B1 (en) Cerium chloride-chromium oxide catalyst for producing chlorine by oxidation of hydrochloric acid and method for manufacture thereof
JPH0568402B2 (en)
JPH0366241B2 (en)
JPH053404B2 (en)
JPS62113701A (en) Production of chlorine
JPS62270405A (en) Production of chlorine
JPS61275104A (en) Production of chlorine
JPH053401B2 (en)
JP3031688B2 (en) Catalyst activity stabilization method
JP2988999B2 (en) Catalyst regeneration method
JP3270670B2 (en) Catalyst for the production of chlorine from hydrogen chloride
JPH0367961B2 (en)
JPH053403B2 (en)
JP3867305B2 (en) Carbon monoxide conversion catalyst
JPS62191403A (en) Production of chlorine
KR930002246B1 (en) Method of refreshing catalyst
JP2003164762A (en) Method for manufacturing composite oxide catalyst
JPS6311502A (en) Production of chlorine
JPS6345658B2 (en)
US3322687A (en) Catalyst and method for preparing acrylonitrile
JP2003170052A (en) Method for manufacturing compounding oxide catalyst

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term