JP3270670B2 - Catalyst for the production of chlorine from hydrogen chloride - Google Patents

Catalyst for the production of chlorine from hydrogen chloride

Info

Publication number
JP3270670B2
JP3270670B2 JP29235295A JP29235295A JP3270670B2 JP 3270670 B2 JP3270670 B2 JP 3270670B2 JP 29235295 A JP29235295 A JP 29235295A JP 29235295 A JP29235295 A JP 29235295A JP 3270670 B2 JP3270670 B2 JP 3270670B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen chloride
reaction
copper
chromium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29235295A
Other languages
Japanese (ja)
Other versions
JPH09141104A (en
Inventor
勝治 宮田
譲治 森崎
照夫 平山
宏典 蒲地
国博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP29235295A priority Critical patent/JP3270670B2/en
Publication of JPH09141104A publication Critical patent/JPH09141104A/en
Application granted granted Critical
Publication of JP3270670B2 publication Critical patent/JP3270670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は塩化水素の接触酸化
により塩素を製造するために使用する改良された触媒、
その製造方法、及び該触媒を使用した塩化水素からの塩
素の製造方法に関する。塩素は食塩の電解により大規模
に製造されているが、併産する苛性ソーダとの需要バラ
ンスを調整するのが困難な状況になっている。一方、塩
化水素は有機化合物の塩素化反応、叉はホスゲンとの反
応の際に大量に副生しているが、その副生量は需要より
大幅に多いため、大量の塩化水素がかなりの処理コスト
をかけて無駄に廃棄されている。従って、塩化水素から
塩素を効率良く回収出来れば、苛性ソーダとの不均衡を
生じる事なく、塩素の需要を満たすことが出来る。
The present invention relates to an improved catalyst for use in the production of chlorine by the catalytic oxidation of hydrogen chloride.
The present invention relates to a method for producing the same, and a method for producing chlorine from hydrogen chloride using the catalyst. Chlorine is produced on a large scale by electrolysis of salt, but it is difficult to balance demand with co-produced caustic soda. On the other hand, hydrogen chloride is produced in large quantities during the chlorination reaction of organic compounds or in the reaction with phosgene, but the amount of by-products is much larger than demand, so a large amount of hydrogen chloride is treated considerably. They are wasted at high cost. Therefore, if chlorine can be efficiently recovered from hydrogen chloride, the demand for chlorine can be satisfied without causing imbalance with caustic soda.

【0002】[0002]

【従来の技術】酸化クロムを塩化水素の酸化触媒として
用いる提案はあるが、工業的使用に耐えうる十分な性能
を示す結果は報告されていない。例えば、無水クロム酸
または硝酸クロム水溶液を適当な担体に含浸、熱分解し
て調製した触媒上に塩化水素を400℃前後で流通させ
て塩素を発生させ、触媒が失活した後、塩化水素の供給
を停止し、空気を流通させて触媒を再生後、空気の供給
を停止して再び塩化水素を流通させる方法が提案されて
いる(英国特許第584,790号)。
2. Description of the Related Art Although there is a proposal to use chromium oxide as an oxidation catalyst for hydrogen chloride, no results have been reported that show sufficient performance for industrial use. For example, a suitable carrier is impregnated with an aqueous solution of chromic anhydride or chromium nitrate, hydrogen chloride is passed over a catalyst prepared by pyrolysis at about 400 ° C. to generate chlorine, and after the catalyst is deactivated, hydrogen chloride is removed. A method has been proposed in which the supply is stopped, the air is circulated to regenerate the catalyst, and then the air supply is stopped and the hydrogen chloride is circulated again (UK Patent No. 584,790).

【0003】また、重クロム酸塩叉は暗黒緑色の酸化ク
ロムを担体上に担持した触媒を用いることにより塩化水
素と含酸素ガスを反応温度420〜430℃、空間速度
380Hr-1で反応させ、平衡値67.4%の塩化水素
転化率が得られている(英国特許第676,667
号)。この際、空間速度680Hr-1では転化率63%
である。反応は340℃でも認められるが、この場合に
は空間速度を65Hr-1という低い値にして転化率52
%を得ているにすぎない。これらの方法は反応温度も高
く、空間速度も低い為、工業的な実施には無理がある。
Further, hydrogen chloride and oxygen-containing gas are reacted at a reaction temperature of 420 to 430 ° C. and a space velocity of 380 Hr −1 by using a catalyst in which dichromate or dark green chromium oxide is supported on a carrier, A hydrogen chloride conversion of 67.4% equilibrium has been obtained (GB 676,667).
issue). At this time, at a space velocity of 680 Hr -1 , the conversion rate is 63%.
It is. The reaction is observed even at 340 ° C., but in this case, the space velocity is reduced to 65 Hr −1 and the conversion is 52
You just get a percentage. These methods have high reaction temperatures and low space velocities, and are not practical for industrial implementation.

【0004】一方、クロム酸の水溶液とアンモニアとを
反応させて得られる化合物を800℃以下の温度で焼成
することにより得られる酸化クロム触媒が塩化水素の酸
化反応に高活性を示す事が見いだされ(特開昭61−2
75104号公報)、当該触媒を用いることにより、従
来既知の触媒より低温且つ高い空時収率で塩素を製造出
来るようになった。
On the other hand, it has been found that a chromium oxide catalyst obtained by calcining a compound obtained by reacting an aqueous solution of chromic acid with ammonia at a temperature of 800 ° C. or less has high activity in the oxidation reaction of hydrogen chloride. (JP-A-61-2
No. 75104), the use of the catalyst makes it possible to produce chlorine at a lower temperature and a higher space-time yield than conventionally known catalysts.

【0005】しかしながら、当該触媒の問題点として、
塩化水素ガスの酸化反応に使用すると、反応開始後数ケ
月の後には活性が低下してくる点と、高転化率を維持す
る為には、酸化に必要な酸素量が理論量より2.5〜3
倍量(過剰率150〜200%)必要である点とが挙げ
られる。活性低下時の賦活方法として高温気相で塩化水
素ガス及び/または含酸素ガスと接触させる方法が提案
されているが(特開昭62−254846号公報)、こ
の方法により賦活した触媒を塩化水素ガスの酸化反応に
使用すると、反応開始後数日間は新触媒並の活性に戻る
が、一週間以上の後には活性が低下し始め、長期的使用
には耐え得ないという問題がある。
However, the problem of the catalyst is as follows.
When used for the oxidation reaction of hydrogen chloride gas, the activity decreases several months after the start of the reaction, and in order to maintain a high conversion rate, the amount of oxygen necessary for oxidation is 2.5 times the theoretical amount. ~ 3
Double amount (excess rate: 150 to 200%) is required. As a method of activating when the activity is reduced, a method of contacting with a hydrogen chloride gas and / or an oxygen-containing gas in a high-temperature gas phase has been proposed (Japanese Patent Application Laid-Open No. 62-254846). When used for a gas oxidation reaction, the activity returns to the level of a new catalyst for a few days after the start of the reaction, but after one week or more, the activity starts to decrease and there is a problem that it cannot withstand long-term use.

【0006】また、別の賦活方法として当該触媒にクロ
ム塩または酸化クロムの水溶液を含浸させ、800℃以
下の温度で焼成する方法も提案されているが(特開平3
−221145公報)、この方法により賦活した触媒も
また塩化水素ガスの酸化反応に使用すると、反応開始後
数日間は新触媒並の活性に戻るが、一ヵ月以上の後には
活性が低下し始め、長期的使用には耐え得ないという問
題がある。
As another activation method, a method has been proposed in which the catalyst is impregnated with an aqueous solution of a chromium salt or chromium oxide and calcined at a temperature of 800 ° C. or less (Japanese Patent Application Laid-Open No. HEI 3 (1993) -313).
If the catalyst activated by this method is also used in the oxidation reaction of hydrogen chloride gas, the activity returns to the level of a new catalyst for several days after the reaction starts, but after one month or more, the activity starts to decrease, There is a problem that it cannot withstand long-term use.

【0007】また、銅系の触媒を用いた塩化水素の酸化
による塩素の製造法は古くからDeacon反応としてしられ
ており、1868年のDeaconの発明による銅系の触媒に
ついては、その後塩化銅と塩化カリウムに第3成分とし
て種々の化合物を添加した触媒が多数提案されている。
しかしながら、この触媒を工業的に使用するには、反応
温度を高くしなければ十分な反応速度が得られず、この
為、触媒成分の揮散が起こり、短期間で活性の低下を生
じ触媒寿命に致命的な問題点があると共に、触媒が固結
し特に、流動床触媒として使用した場合流動化が困難と
なり触媒として用をなさなくなるという大きな問題点が
ある事も知られている。
[0007] Further, a method for producing chlorine by oxidizing hydrogen chloride using a copper-based catalyst has been used as the Deacon reaction for a long time. The copper-based catalyst according to the invention of Deacon in 1868 was subsequently replaced with copper chloride. Many catalysts have been proposed in which various compounds are added as a third component to potassium chloride.
However, in order to use this catalyst industrially, a sufficient reaction rate cannot be obtained unless the reaction temperature is raised, so that the catalyst components are volatilized, the activity is reduced in a short time, and the catalyst life is shortened. It is also known that there is a fatal problem and that there is a serious problem that the catalyst solidifies, and particularly when used as a fluidized bed catalyst, fluidization becomes difficult and the catalyst cannot be used.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、塩化
水素の酸化により塩素を製造するに際して、上述した公
知の触媒が有する問題点を解決することであり、本発明
の目的は低酸素濃度条件で長期使用に耐え、活性の低下
の極めて小さい改良された酸化クロムを主成分とする触
媒、その製造方法、及び該触媒を使用した塩化水素から
の塩素の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the above-mentioned known catalysts when producing chlorine by oxidizing hydrogen chloride. An object of the present invention is to provide an improved chromium oxide-based catalyst which withstands long-term use under conditions and has a very small decrease in activity, a method for producing the same, and a method for producing chlorine from hydrogen chloride using the catalyst.

【0009】[0009]

【課題を解決するための手段】本発明の課題解決のた
め、本発明者らは塩化水素の酸化による塩素の製造に用
いる改良された高活性の酸化クロムを主成分とする触媒
の調製方法について鋭意検討した。
In order to solve the problems of the present invention, the present inventors have developed an improved method for preparing a highly active chromium oxide-based catalyst for producing chlorine by oxidizing hydrogen chloride. We studied diligently.

【0010】その結果、我々は、酸化クロムを主成分と
する触媒に銅、アルカリ金属、及び希土類金属、叉はク
ロム、銅、アルカリ金属、及び希土類金属の成分を加え
て得られる、塩化水素を含酸素ガスで酸化し塩素を製造
するための触媒が、従来公知の酸化クロムを主成分とす
る触媒に比べ高活性であり、活性の経時低下が殆どな
く、さらに低酸素濃度条件下での活性維持に極めて有効
である事を見出し、しかも従来の銅系のDeacon触媒が有
する触媒成分の揮散、反応中の固結等の前述の問題点を
生じず長期間、工業的使用に耐え得る事を見出した。
As a result, we have obtained hydrogen chloride, which is obtained by adding copper, an alkali metal and a rare earth metal or a component of chromium, copper, an alkali metal and a rare earth metal to a chromium oxide-based catalyst. A catalyst for oxidizing with an oxygen-containing gas to produce chlorine has higher activity than a conventionally known catalyst containing chromium oxide as a main component, has almost no decrease in activity over time, and has an activity under a low oxygen concentration condition. It has been found that it is extremely effective for maintenance, and that it can withstand industrial use for a long period of time without causing the above-mentioned problems such as volatilization of the catalyst component of the conventional copper-based Deacon catalyst and solidification during the reaction. I found it.

【0011】また、従来の酸化クロムを主成分とする触
媒を塩化水素より塩素を製造する反応に使用し活性の低
下した触媒に銅、アルカリ金属、及び希土類金属、叉は
クロム、銅、アルカリ金属、及び希土類金属の成分を加
えることにより活性の低下した酸化クロム触媒を賦活、
再生でき、しかも従来の酸化クロム触媒の再生方法が有
する前述の問題点を生じず、長時間、工業的使用に耐え
得る酸化クロム触媒の再生方法を見出し本発明を完成し
た。
Further, a conventional catalyst containing chromium oxide as a main component is used in a reaction for producing chlorine from hydrogen chloride, and copper, an alkali metal and a rare earth metal, or chromium, copper, and an alkali metal are used as catalysts having reduced activity. , And activate the chromium oxide catalyst whose activity has been reduced by adding a rare earth metal component,
The present inventors have found a method of regenerating a chromium oxide catalyst which can be regenerated and which can withstand industrial use for a long time without the above-mentioned problems of the conventional method of regenerating a chromium oxide catalyst.

【0012】即ち、本発明は、以下のものである。 (1)酸化クロムを主成分とする触媒に銅、アルカリ金
属、及び希土類金属、叉はクロム、銅、アルカリ金属、
及び希土類金属の成分を加えて得られる、塩化水素を含
酸素ガスで酸化し塩素を製造するための触媒。 (2)酸化クロムを主成分とする触媒がクロム塩とアン
モニアあるいはアンモニアを放出する化合物との反応物
とケイ素化合物とからなる混合物を800℃以下の温度
で焼成して得られる触媒である(1)の触媒。 (3)酸化クロムを主成分とする触媒が塩化水素を酸化
して塩素を製造する触媒として一度反応に使用され、活
性が低下した触媒である(1)の触媒。 (4)アルカリ金属がカリウムである(1)の触媒。 (5)希土類金属がランタンである(1)の触媒。 (6)酸化クロムを成分とする触媒中のクロムに対して
原子比で銅が0.01〜0.3、カリウムが0.005
〜0.2、ランタンが0.01〜0.3の割合で存在す
る(1)の触媒。 (7)焼成後の形態でケイ素化合物が二酸化ケイ素であ
り、酸化クロムと二酸化ケイ素が重量比で5/95〜9
5/5の範囲である(2)の触媒。 (8)銅、アルカリ金属、及び希土類金属、叉はクロ
ム、銅、アルカリ金属、及び希土類金属の成分を含む溶
液に酸化クロムを主成分とする触媒を含浸する工程、及
び含浸された該触媒を800℃以下の温度で焼成する工
程よりなる塩化水素から塩素を製造するための触媒の製
造方法。 (9)酸化クロムを主成分とする触媒に 銅、アルカリ
金属、及び希土類金属、叉はクロム、銅、アルカリ金
属、及び希土類金属の成分を加えて得られる触媒を用い
ることを特徴とする塩化水素を含酸素ガスで酸化するこ
とによる塩素の製造方法。 (10)塩化水素1モルに対して含酸素ガス中の酸素を
1/4モル〜1モル比の範囲で反応させることを特徴と
する(9)の方法。
That is, the present invention is as follows. (1) Copper, alkali metal and rare earth metal, or chromium, copper, alkali metal,
And a catalyst for producing chlorine by oxidizing hydrogen chloride with an oxygen-containing gas obtained by adding a rare earth metal component. (2) A catalyst obtained by calcining a mixture of a silicon compound and a reaction product of a chromium salt and ammonia or a compound which releases ammonia at a temperature of 800 ° C. or lower, wherein the catalyst mainly containing chromium oxide is (1) ) Catalyst. (3) The catalyst according to (1), wherein the catalyst containing chromium oxide as a main component is used once in the reaction as a catalyst for oxidizing hydrogen chloride to produce chlorine, and has a reduced activity. (4) The catalyst according to (1), wherein the alkali metal is potassium. (5) The catalyst according to (1), wherein the rare earth metal is lanthanum. (6) Copper in an atomic ratio of 0.01 to 0.3 and potassium in an amount of 0.005 to chromium in a catalyst containing chromium oxide as a component.
(1) The catalyst according to (1), wherein lanthanum is present in a proportion of 0.01 to 0.3. (7) In the form after firing, the silicon compound is silicon dioxide, and the weight ratio of chromium oxide and silicon dioxide is 5 / 95-9.
The catalyst of (2), which is in the range of 5/5. (8) a step of impregnating a solution containing components of copper, alkali metal and rare earth metal, or chromium, copper, alkali metal and rare earth metal with a catalyst mainly composed of chromium oxide, and A method for producing a catalyst for producing chlorine from hydrogen chloride, comprising a step of calcining at a temperature of 800 ° C. or lower. (9) Hydrogen chloride characterized by using a catalyst obtained by adding a copper, alkali metal and rare earth metal, or a component of chromium, copper, alkali metal and rare earth metal to a catalyst mainly composed of chromium oxide. Of chlorine by oxidizing oxygen with an oxygen-containing gas. (10) The method according to (9), wherein oxygen in the oxygen-containing gas is reacted with 1 mol of hydrogen chloride in a range of 1/4 mol to 1 mol.

【0013】[0013]

【発明の実施の形態】本発明の方法にベース触媒として
用いられる酸化クロムを主成分とする触媒は、例えば硝
酸クロム、塩化クロム叉は有機酸のクロム塩等のクロム
塩とアンモニアあるいは尿素のようなアンモニアを放出
する化合物との反応物と、ケイ素の化合物とから成る混
合物を800℃以下の温度で焼成する事により調製する
ことができる。クロムとシリカとの混合比は通常、特に
制限はないが、触媒を最終的に焼成して得た後の形態で
あるCr23とSiO2の重量比で、Cr23/SiO2
=5/95〜95/5の範囲が多用される。
DETAILED DESCRIPTION OF THE INVENTION The chromium oxide-based catalyst used as the base catalyst in the process of the present invention is, for example, a chromium salt such as chromium nitrate, chromium chloride or a chromium salt of an organic acid and ammonia or urea. It can be prepared by calcining a mixture of a reactant with a compound that releases a strong ammonia and a compound of silicon at a temperature of 800 ° C. or less. Although the mixing ratio of chromium and silica is not particularly limited, the weight ratio of Cr 2 O 3 to SiO 2 , which is a form obtained by finally firing the catalyst, is expressed as Cr 2 O 3 / SiO 2.
= 5/95 to 95/5 is frequently used.

【0014】本発明においてクロム、銅、アルカリ金
属、及び希土類金属の成分を酸化クロムを主成分とする
触媒に加える方法としては、含浸法、共沈法、蒸着法等
の従来公知の触媒調製法を採用できるが、含浸法がより
有効であり、また操作的にも簡便である。
In the present invention, as a method for adding components of chromium, copper, an alkali metal and a rare earth metal to a catalyst containing chromium oxide as a main component, a conventionally known catalyst preparation method such as an impregnation method, a coprecipitation method, and a vapor deposition method is used. However, the impregnation method is more effective and the operation is simple.

【0015】含浸法の一例としては上述の酸化クロムに
銅、アルカリ金属、および希土類金属、叉はクロム、
銅、アルカリ金属、および希土類金属を含む溶液を含浸
し、800℃以下の温度で焼成する方法が挙げられる。
本発明方法において銅、アルカリ金属、及び希土類金属
の3成分の使用は必須であり、このうちのどの成分が欠
けても触媒の活性は充分には向上せず本発明の目的を達
しない。
As an example of the impregnation method, copper, an alkali metal, and a rare earth metal, or chromium,
A method of impregnating with a solution containing copper, an alkali metal, and a rare earth metal and firing at a temperature of 800 ° C. or less can be given.
In the method of the present invention, the use of three components of copper, an alkali metal and a rare earth metal is essential. If any of these components is missing, the activity of the catalyst is not sufficiently improved and the object of the present invention is not achieved.

【0016】本発明において使用されるクロム成分とし
ては、具体的には例えば硝酸クロム、塩化クロムなどの
水溶性クロム塩があり、また無水クロム酸などの水溶性
酸化クロムも使用できる。クロム塩または酸化クロムの
濃度は5〜45wt%の範囲が好ましい。触媒を最終的
に焼成して得た後の形態でCr23/SiO2=5/9
5〜95/5の範囲となるようにすることが好ましい。
Specific examples of the chromium component used in the present invention include water-soluble chromium salts such as chromium nitrate and chromium chloride, and also water-soluble chromium oxide such as chromic anhydride. The concentration of the chromium salt or chromium oxide is preferably in the range of 5 to 45% by weight. Cr 2 O 3 / SiO 2 = 5/9 in the form obtained after final calcination of the catalyst
It is preferable to set the range of 5 to 95/5.

【0017】銅成分としては、具体的には例えば硝酸
銅、硫酸銅、塩化銅及び酸化銅が使用でき、アルカリ金
属、及び希土類金属も同様に、それらの金属の硝酸塩、
硫酸塩、塩化物、及び酸化物などが使用でき、具体的
に、アルカリ金属成分としては、硝酸カリウム、硫酸カ
リウム、塩化カリウム、硝酸ナトリウム、硫酸ナトリウ
ム、塩化ナトリウム、酸化ナトリウム等が挙げられる。
希土類金属塩としては、ランタン、セリウム、プラセオ
ジム、ネオジム、プロメチウム、サマリウム、ユウロピ
ウム等の硝酸塩、硫酸塩、ハロゲン化塩、酸化物等が挙
げられ、なかでもランタンの塩が好ましい。
As the copper component, specifically, for example, copper nitrate, copper sulfate, copper chloride and copper oxide can be used. Similarly, alkali metals and rare earth metals can be used as well as nitrates of these metals,
Sulfates, chlorides, oxides, and the like can be used. Specific examples of the alkali metal component include potassium nitrate, potassium sulfate, potassium chloride, sodium nitrate, sodium sulfate, sodium chloride, and sodium oxide.
Examples of the rare earth metal salts include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, and other nitrates, sulfates, halides, and oxides. Of these, lanthanum salts are preferable.

【0018】銅、アルカリ金属、及び希土類金属の濃度
は、高い程効果が得られるが、酸化クロムを主成分とす
る触媒のクロムに対して原子比率で銅=0.01〜0.
3、カリウム=0.005〜0.2、ランタン=0.0
1〜0.3の範囲が好ましい。
The higher the concentrations of copper, alkali metal and rare earth metal, the more the effect is obtained. However, the atomic ratio of copper to the chromium of the catalyst containing chromium oxide as the main component is 0.01 to 0.1.
3, potassium = 0.005-0.2, lanthanum = 0.0
A range of 1 to 0.3 is preferred.

【0019】本発明方法においてクロム、銅、アルカリ
金属、及び希土類金属を含浸する場合、クロム成分を溶
解した溶液を銅、アルカリ金属、及び希土類金属を含む
溶液の含浸を行う前、同時、及び後に行う、先付け含浸
法、同時含浸法、および後付け含浸法のいずれも可能で
あり含浸方法に特に制限はないが、先付け含浸法により
クロム成分を他の成分より前に含浸することが好ましい
場合が多い。
In the method of the present invention, when impregnating with chromium, copper, an alkali metal and a rare earth metal, the solution in which the chromium component is dissolved is before, simultaneously with and after the impregnation of the solution containing copper, alkali metal and the rare earth metal. Any of the pre-impregnation method, the simultaneous impregnation method, and the post-impregnation method is possible, and there is no particular limitation on the impregnation method.However, it is often preferable to impregnate the chromium component before the other components by the pre-impregnation method. .

【0020】上述の成分を溶解した溶液を含浸させる方
法において、溶液の温度は通常25〜70℃であり、2
5〜35℃の温度範囲が好ましい。溶液の量は均一含浸
の為に触媒比表面積に応じて変更するのが好ましい。具
体的には、比表面積270〜320m2/gの触媒で
は、触媒1gに対し0.5〜2mlが好ましく、200
〜270m2/gでは触媒1gに対し0.3〜0.5m
lが好ましい。更に200m2/g以下の触媒であれ
ば、触媒1gに対し0.2ml以下の容量で湿潤した方
が均一含浸に最適である。
In the above method of impregnating a solution in which the components are dissolved, the temperature of the solution is usually 25 to 70 ° C.
A temperature range of 5-35 ° C is preferred. The amount of the solution is preferably changed according to the specific surface area of the catalyst for uniform impregnation. Specifically, for a catalyst having a specific surface area of 270 to 320 m 2 / g, 0.5 to 2 ml is preferable for 1 g of the catalyst,
270 m 2 / g, 0.3 to 0.5 m per 1 g of catalyst
l is preferred. Further, in the case of a catalyst of 200 m 2 / g or less, it is best to wet with a volume of 0.2 ml or less per 1 g of the catalyst for uniform impregnation.

【0021】含浸処理の回数に関しては、必要により数
回に分割して含浸しても性能上問題はないが、分割して
実施する場合は、含浸と予備焼成150〜300℃を数
回繰り返す必要があり、1回で所定量を含浸させる方が
好ましい。含浸後の混合操作は、触媒全体が混合する様
に触媒と水溶液あるいは有機溶媒溶液の入った容器を一
時間程度振とうすれば充分であるが、触媒の湿潤状態が
低い場合には、この振とう混合時間を数倍延長する必要
がある。この後に、混合処理が終了した触媒を800℃
以下の温度で焼成する。含浸金属成分の揮散を防ぐ点か
ら好ましい焼成温度は300〜650℃であるが、特に
好ましくは350〜550℃である。
Regarding the number of times of the impregnation treatment, there is no problem in terms of performance even if the impregnation is divided into several times as necessary, but if the impregnation is performed in a divided manner, the impregnation and the pre-firing at 150 to 300 ° C. need to be repeated several times. It is preferable to impregnate a predetermined amount at one time. For the mixing operation after the impregnation, it is sufficient to shake the container containing the catalyst and the aqueous solution or the organic solvent solution for about one hour so that the entire catalyst is mixed. However, when the wet state of the catalyst is low, this shaking is performed. It is necessary to extend the mixing time several times. Thereafter, the catalyst after the completion of the mixing process is heated to 800 ° C.
It is fired at the following temperature. From the viewpoint of preventing volatilization of the impregnated metal component, a preferable firing temperature is 300 to 650 ° C, and particularly preferably 350 to 550 ° C.

【0022】本発明方法の触媒を用い塩素を製造する際
に使用される原料の塩化水素は通常、化学工業界では有
機化合物の塩素化またはホスゲンとの反応に際して副生
する塩化水素を使用するのが経済的であるがそれに限定
されるものではない。
The raw material hydrogen chloride used in the production of chlorine using the catalyst of the present invention is generally used in the chemical industry as hydrogen chloride which is a by-product of chlorinating organic compounds or reacting with phosgene. Is economical, but not limited thereto.

【0023】塩化水素の酸化剤としては含酸素ガスが使
用され、通常、酸素ガスまたは空気が多用される。反応
器の形式は固定床でも流動床でも実施可能であるが、塩
化水素の酸化反応のように発熱が大きい反応の場合には
除熱が容易である流動床が多用される。流動床式の場合
には、酸素ガスを、固定床式の場合には空気を使用する
場合が多い。
As the oxidizing agent for hydrogen chloride, oxygen-containing gas is used, and usually oxygen gas or air is frequently used. The type of the reactor can be either a fixed bed or a fluidized bed. However, in the case of a reaction that generates a large amount of heat, such as an oxidation reaction of hydrogen chloride, a fluidized bed that can easily remove heat is often used. In the case of a fluidized bed type, oxygen gas is often used, and in the case of a fixed bed type, air is often used.

【0024】反応に使用する塩化水素と含酸素ガス中の
酸素のモル比は、塩化水素1モルに対して酸素1/4〜
1モルが好ましい。これらの原料ガスは窒素等の本反応
に不活性なガスで希釈されてもよい。
The molar ratio of hydrogen chloride used in the reaction to oxygen in the oxygen-containing gas is 1/4 to 1 mol of hydrogen chloride.
One mole is preferred. These source gases may be diluted with a gas inert to the reaction, such as nitrogen.

【0025】触媒床に供給する塩化水素の供給量は、流
動床式の場合は200〜1800(Nl/Hr.)/K
-cat.の範囲が適している。反応温度は通常30
0〜450℃、特に360〜420℃で多用される。本
反応は常圧、加圧のいずれでも実施可能であるが、通常
1〜10atgの加圧下で行うのが好ましい場合が多
い。
The supply amount of hydrogen chloride supplied to the catalyst bed is 200 to 1800 (Nl / Hr.) / K in the case of a fluidized bed type.
g - cat. The range is suitable. The reaction temperature is usually 30
It is frequently used at 0 to 450 ° C, particularly 360 to 420 ° C. This reaction can be carried out at normal pressure or under pressure, but it is often preferable to carry out the reaction under a pressure of 1 to 10 atg.

【0026】従来公知の酸化クロムを主成分とする触媒
は上記の反応条件で数ケ月ないし半年間反応に使用した
場合は活性が低下し、初期に塩化水素の転化率が70〜
80%を示したものが50〜60%になる。
The conventionally known catalyst containing chromium oxide as a main component, when used in the reaction under the above reaction conditions for several months to half a year, loses its activity, and the conversion of hydrogen chloride is initially 70 to 70%.
What shows 80% becomes 50-60%.

【0027】本発明方法において、ベースの酸化クロム
を主成分とする触媒として上述のように従来公知の酸化
クロムを主成分とする触媒を使用して反応した結果、活
性が低下した廃触媒を用いることも可能である。そのよ
うな廃触媒に銅、アルカリ金属、及び希土類金属、叉は
クロム、銅、アルカリ金属、及び希土類金属を含む溶液
を含浸し、含浸させることにより低下した活性を回復さ
せることができる。
In the method of the present invention, a waste catalyst whose activity has been reduced as a result of the reaction using a conventionally known catalyst mainly composed of chromium oxide as described above is used as the base catalyst mainly composed of chromium oxide. It is also possible. Such a spent catalyst can be impregnated with a solution containing copper, an alkali metal, and a rare earth metal, or a solution containing chromium, copper, an alkali metal, and a rare earth metal, so that the reduced activity can be restored.

【0028】[0028]

【発明の効果】本発明方法によれば、塩化水素の酸化に
より塩素を製造する反応において簡便な方法により従来
公知の触媒よりも高活性で活性の経時低下の少ない長寿
命の触媒を提供することができる。また、従来の酸化ク
ロム触媒では、酸化反応維持の為に大過剰の酸素を必要
とした。然るに、本発明の方法によれば、酸化クロム触
媒の1/3〜1/2の酸素量条件下で、塩化水素の酸化
反応に長期間使用しても、活性低下が小さい触媒を得る
事ができる。このようにして得られた触媒はたとえば、
酸素過剰率50%という低酸素濃度条件下でも活性が高
く長期寿命の性能を有する。
According to the method of the present invention, it is possible to provide a long-lived catalyst having higher activity and less time-dependent decrease in activity than a conventionally known catalyst by a simple method in a reaction for producing chlorine by oxidizing hydrogen chloride. Can be. In addition, the conventional chromium oxide catalyst required a large excess of oxygen to maintain the oxidation reaction. However, according to the method of the present invention, it is possible to obtain a catalyst with a small decrease in activity even if it is used for a long period of time in the oxidation reaction of hydrogen chloride under the condition of 1/3 to 1/2 oxygen amount of the chromium oxide catalyst. it can. The catalyst thus obtained is, for example,
It has a high activity even under a low oxygen concentration condition of an oxygen excess rate of 50%, and has a long-life performance.

【0029】また、本発明の方法によれば、塩化水素の
酸化反応に長期間使用し、活性が低下した従来公知の酸
化クロムを主成分とする触媒を賦活再生する事ができ
る。このようにして得られた再生触媒は活性が高く、長
期間の寿命試験においても新触媒と同程度の性能を有す
る。
Further, according to the method of the present invention, it is possible to activate and regenerate a conventionally known catalyst containing chromium oxide as a main component, which has been used for a long time in the oxidation reaction of hydrogen chloride and whose activity has been reduced. The regenerated catalyst thus obtained has a high activity, and has the same performance as the new catalyst in a long-term life test.

【0030】[0030]

【実施例】次に、本発明の方法を実施例でさらに具体的
に説明する。なお、ベースの酸化クロムを主成分とする
触媒(以下、酸化クロム触媒という)は特開昭61−2
75104に記載の方法によって調製した。
Next, the method of the present invention will be described more specifically with reference to examples. A catalyst containing chromium oxide as a main component (hereinafter referred to as a chromium oxide catalyst) is disclosed in JP-A-61-2.
Prepared by the method described in 75104.

【0031】実施例1 クロミア75重量%、シリカ25重量%からなる平均粒
径61μの微小球状流動床用酸化クロム触媒50gをC
uCl2・2H2O 6.71g、KCl 2.85g、
La(NO33・6H2O 7.79gを溶解した水溶
液25mlに含浸後、510℃で5時間焼成した。この
処理後の触媒40gを内径1インチのガラス製流動床反
応器に充填し、塩化水素ガスを334ml/min、酸
素を125ml/minで流動床に流入させ反応管外部
を電気炉で内温380℃に加熱する条件で反応を行っ
た。反応開始2日目の塩化水素の転化率は78%であっ
た。反応開始30日目では転化率76%を示し、60日
目でも74%の高活性を維持した。
Example 1 50 g of a chromium oxide catalyst for fine spherical fluidized beds composed of 75% by weight of chromia and 25% by weight of silica and having an average particle diameter of 61 μm was mixed with C
6.71 g of uCl 2 .2H 2 O, 2.85 g of KCl,
After impregnating 25 ml of an aqueous solution in which 7.79 g of La (NO 3 ) 3 .6H 2 O was dissolved, it was baked at 510 ° C. for 5 hours. 40 g of the catalyst after this treatment was filled in a glass fluidized bed reactor having an inner diameter of 1 inch, hydrogen chloride gas was introduced into the fluidized bed at 334 ml / min and oxygen at 125 ml / min. The reaction was carried out under the condition of heating to ° C. The conversion of hydrogen chloride on the second day from the start of the reaction was 78%. On the 30th day from the start of the reaction, the conversion was 76%, and the high activity of 74% was maintained on the 60th day.

【0032】実施例2 実施例1と全く同様にクロミア75重量%、シリカ25
重量%からなる平均粒径50μの微小球状流動用酸化ク
ロム触媒50gをCu(NO32・3H2O12.72
g、KNO3 5.19g、La(NO33・6H2
10.42gを溶解した水溶液55mlを含浸後、55
0℃で5時間焼成した。この処理後の触媒40gを実施
例1と全く同様にして塩化水素の酸化反応に用いた。反
応開始3日目の塩化水素の転化率は80%、10日目の
転化率は80%であった。反応開始30日目では転化率
77%を示し、65日目には転化率76%であり、実施
例1とほぼ同等の活性及び寿命を示した。
Example 2 Chromia 75% by weight, silica 25
The average particle size 50μ of microspheroidal fluidizing chromium oxide catalyst 50g consisting wt% Cu (NO 3) 2 · 3H 2 O12.72
g, KNO 3 5.19 g, La (NO 3 ) 3 .6H 2 O
After impregnation with 55 ml of an aqueous solution in which 10.42 g was dissolved, 55
It was baked at 0 ° C. for 5 hours. After the treatment, 40 g of the catalyst was used in the oxidation reaction of hydrogen chloride in exactly the same manner as in Example 1. The conversion of hydrogen chloride on the third day after the start of the reaction was 80%, and the conversion on the tenth day was 80%. The conversion was 77% on the 30th day from the start of the reaction, and the conversion was 76% on the 65th day. The activity and the life were almost the same as those in Example 1.

【0033】実施例3 クロミア70重量%、シリカ30重量%から成る平均粒
径73μの微小球状流動用酸化クロム触媒4kgをCu
(NO32・3H2O 1825.7g、KCl 54
8.8g、La(NO33・6H2O 1496.3g
を溶解した水溶液5.5リットルを含浸後、550℃で
5時間焼成した。この処理後の触媒4kgを4インチの
ニッケル製流動床反応器に充填し、外部を砂流動浴で4
00℃に加熱した。塩化水素ガス1400Nl/Hr、
酸素ガス525Nl/Hr(酸素過剰率50%)を触媒
床に流入し、反応を実施した。反応開始3日目の塩化水
素の転化率は81%、30日目の転化率は78%であっ
た。反応開始67日後では転化率77%で、活性低下は
極めて小さいものであった。
Example 3 4 kg of a chromium oxide catalyst for flowing micro-spheres composed of 70% by weight of chromia and 30% by weight of silica and having an average particle diameter of 73 μm was charged with Cu.
(NO 3) 2 · 3H 2 O 1825.7g, KCl 54
8.8g, La (NO 3) 3 · 6H 2 O 1496.3g
Was impregnated with 5.5 liters of an aqueous solution in which was dissolved, and calcined at 550 ° C. for 5 hours. 4 kg of this treated catalyst was charged into a 4 inch nickel fluidized bed reactor, and the outside was filled with a sand fluidized bath.
Heated to 00 ° C. Hydrogen chloride gas 1400Nl / Hr,
525 Nl / Hr of oxygen gas (oxygen excess rate 50%) was introduced into the catalyst bed to carry out the reaction. The conversion of hydrogen chloride on the third day after the start of the reaction was 81%, and the conversion on the 30th day was 78%. 67 days after the start of the reaction, the conversion was 77%, and the decrease in activity was extremely small.

【0034】比較例1〜3 銅、アルカリ金属及び希土類金属の3成分の使用は必須
であり、いずかの一つの成分が欠けても触媒の活性は低
いものであった。結果を表1に示す。
Comparative Examples 1 to 3 The use of three components of copper, an alkali metal and a rare earth metal was essential, and the activity of the catalyst was low even if any one of the components was missing. Table 1 shows the results.

【表1】 《反応条件》 ・反応に使用した装置:内径1インチのガラス製流動床
反応器 ・反応使用触媒量 :40g ・廃塩化水素ガス量 :334ml/min ・酸素量 :167ml/min ・反応温度 :電気炉で内温380℃に加熱。 ・含浸処理に使用したベース触媒:実施例1で使用した
ものと同じ酸化クロム触媒
[Table 1] << Reaction conditions >> ・ Equipment used for the reaction: fluidized bed reactor made of glass with an inner diameter of 1 inch ・ Amount of catalyst used for the reaction: 40 g ・ Amount of waste hydrogen chloride gas: 334 ml / min ・ Amount of oxygen: 167 ml / min ・ Reaction temperature: Electricity Heated to 380 ° C in furnace. The base catalyst used in the impregnation treatment: the same chromium oxide catalyst as used in Example 1

【0035】比較例4、5 Deacon触媒の活性低下と固結する問題点とがある事の確
認した結果を表2に示す。
Comparative Examples 4 and 5 Table 2 shows the results of confirming that there is a problem that the activity of the Deacon catalyst is lowered and solidified.

【表2】 《反応条件》 ・反応に使用した装置:内径1インチのガラス製流動床
反応器 ・反応使用触媒量 :20g ・廃塩化水素ガス量 :167ml/min ・酸素量 :84ml/min ・反応温度 :電気炉で内温380℃に加熱。 ・含浸処理した媒体 :シリカゲル CARiACT=
富士シリシアケミカル(株)品
[Table 2] << Reaction conditions >> ・ Equipment used for the reaction: fluidized bed reactor made of glass with an inner diameter of 1 inch ・ Amount of catalyst used for the reaction: 20 g ・ Amount of waste hydrogen chloride gas: 167 ml / min ・ Amount of oxygen: 84 ml / min ・ Reaction temperature: Electricity Heated to 380 ° C in furnace.・ Impregnated medium: Silica gel CARiACT =
Fuji Silysia Chemical Co., Ltd.

【0036】実施例4 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用酸化クロム触媒40gを内
径1インチのガラス製流動床反応器に充填した。廃塩化
水素ガスを334ml/min、酸素を167ml/m
inで流動床に流入させ反応管外部を電気炉で内温38
0℃に加熱し反応させた。反応開始3日目の塩化水素の
転化率は73%であった。反応開始30日目では転化率
67%を示し、65日目には55%まで低下した。この
時点で触媒を抜き出し、CuCl2・2H2O 10.7
2g,KCl 4.72g、La(NO32・3H2
(NO33・6H2O 12.48g溶解した水溶液5
0mlに含浸後、510℃で5時間焼成した。この再生
触媒40gを上記と同様にして反応させた。反応開始3
日目の塩化水素の転化率は77%、10日目の転化率は
72%であった。反応開始後30日目では転化率68%
を示し、65日目には転化率58%であり、新触媒と同
じ活性及び寿命を示した。
EXAMPLE 4 40 g of a chromium oxide catalyst for a microspherical fluidized bed composed of 75% by weight of chromia and 25% by weight of silica and having an average particle diameter of 60 μm was charged into a glass fluidized bed reactor having an inner diameter of 1 inch. 334 ml / min of waste hydrogen chloride gas and 167 ml / m of oxygen
in the fluidized bed and the outside of the reaction tube was heated to an internal temperature of 38 with an electric furnace.
The mixture was heated to 0 ° C. and reacted. The conversion of hydrogen chloride on the third day from the start of the reaction was 73%. The conversion was 67% on the 30th day from the start of the reaction, and decreased to 55% on the 65th day. At this point, the catalyst was withdrawn and CuCl 2 .2H 2 O 10.7
2 g, KCl 4.72 g, La (NO 3 ) 2 .3H 2 O
(NO 3) 3 · 6H 2 O 12.48g aqueous solution was dissolved 5
After impregnation in 0 ml, it was baked at 510 ° C. for 5 hours. 40 g of this regenerated catalyst was reacted in the same manner as described above. Reaction start 3
The conversion of hydrogen chloride on the day was 77%, and the conversion on the 10th day was 72%. On the 30th day after the start of the reaction, the conversion was 68%.
The conversion was 58% on the 65th day, showing the same activity and life as the new catalyst.

【0037】実施例5 実施例4と全く同様に65日間使用して活性が低下した
触媒に、La23 3.14gを溶解した25%硝酸水
溶液15mlに更に、CuCl2・2H2O 7.2g、
KNO3 4.27gを添加し、溶解した溶液40ml
を含浸後、550℃で5時間焼成した。この再生触媒4
0gを実施例4と全く同様にして塩化水素の酸化反応に
用いた。反応開始3日目の塩化水素の転化率は74%、
10日目の転化率は71%であった。反応開始30日目
では転化率65%を示し、65日目には転化率57%で
あり、実施例4とほぼ同等の活性及び寿命を示した
Example 5 In the same manner as in Example 4, the catalyst whose activity was reduced for 65 days was added to 15 ml of a 25% nitric acid aqueous solution in which 3.14 g of La 2 O 3 was dissolved, and further, CuCl 2 .2H 2 O 7 was added. .2g,
4.27 g of KNO 3 was added and dissolved 40 ml
And then calcined at 550 ° C. for 5 hours. This regenerated catalyst 4
0 g was used in the oxidation reaction of hydrogen chloride in exactly the same manner as in Example 4. On the third day from the start of the reaction, the conversion of hydrogen chloride was 74%,
The conversion on day 10 was 71%. On the 30th day from the start of the reaction, the conversion was 65%, and on the 65th day, the conversion was 57%, showing almost the same activity and life as in Example 4.

【0038】実施例6 実施例4と全く同様に65日間使用して活性が低下した
触媒に、Cu(NO32・3H2O 9.51g、KN
3 3.87g、La2(NO33・6H2O7.79
gを溶解した水溶液40mlを含浸後、550℃で5時
間焼成した。この再生触媒40gを実施例4と全く同様
にして塩化水素の酸化反応に用いた。反応開始5日目の
塩化水素の転化率は74%、10日目の転化率は72%
であった。反応開始30日目では転化率64%を示し、
66日目には転化率59%であり、実施例4とほぼ同等
の活性及び寿命を示した。
Example 6 In the same manner as in Example 4, the catalyst whose activity was reduced after use for 65 days was added with 9.51 g of Cu (NO 3 ) 2 .3H 2 O and KN
3.87 g of O 3 , La 2 (NO 3 ) 3 .6H 2 O 7.79
After impregnating with 40 ml of an aqueous solution in which g was dissolved, baking was performed at 550 ° C. for 5 hours. 40 g of this regenerated catalyst was used for the oxidation reaction of hydrogen chloride in exactly the same manner as in Example 4. The conversion of hydrogen chloride on the 5th day from the start of the reaction was 74%, and the conversion on the 10th day was 72%.
Met. On the 30th day from the start of the reaction, the conversion was 64%,
On the 66th day, the conversion was 59%, and the activity and the life were almost the same as those in Example 4.

【0039】実施例7 クロミア70重量%、シリカ30重量%から成る平均粒
径63μの微小球状流動床用酸化クロム触媒4kgを4
インチのニッケル製流動床反応器に充填し、外部を砂流
動浴で400℃に加熱した。廃塩化水素ガス1400N
l/Hr、酸素ガス1000Nl/Hrを触媒床に流入
し、反応を実施した。反応開始3日目の塩化水素の転化
率は78%、30日目の転化率は75%であった。反応
開始67日後では転化率63%まで低下した。この時点
で触媒を抜き出し、CuCl2・2H2O 1.072k
g、KCl 0.472kg、La(NO23・6H2
O 1.248kgを溶解した水溶液5リットルを含浸
後、510℃で5時間焼成した。この再生触媒4kgを
上記と同様にして反応させた。反応開始3日目の塩化水
素の転化率は79%、30日目の転化率は74%であっ
た。反応開始後66日目では転化率63%であり、新触
媒と同じ活性及び寿命を示した。
Example 7 4 kg of a chromium oxide catalyst for fine spherical fluidized beds composed of 70% by weight of chromia and 30% by weight of silica and having an average particle diameter of 63 μm was mixed with 4 kg of
An inch nickel fluidized bed reactor was charged and the exterior was heated to 400 ° C. in a sand fluidized bath. Waste hydrogen chloride gas 1400N
1 / Hr and 1000 Nl / Hr of oxygen gas were introduced into the catalyst bed to carry out the reaction. The conversion of hydrogen chloride on the third day from the start of the reaction was 78%, and the conversion on the 30th day was 75%. 67 days after the start of the reaction, the conversion decreased to 63%. At this point, the catalyst was extracted and CuCl 2 .2H 2 O 1.072 k
g, KCl 0.472 kg, La (NO 2 ) 3 .6H 2
After impregnating with 5 liters of an aqueous solution in which 1.248 kg of O was dissolved, it was baked at 510 ° C. for 5 hours. 4 kg of this regenerated catalyst was reacted in the same manner as described above. The conversion of hydrogen chloride on the third day after the start of the reaction was 79%, and the conversion on the 30th day was 74%. On the 66th day after the start of the reaction, the conversion was 63%, showing the same activity and life as the new catalyst.

【0040】比較例6〜8 銅、アルカリ金属及び希土類金属の3成分の使用は必須
であり、いずかの一つの成分が欠けても触媒の再生が不
可能であった。結果を表3に示す。
Comparative Examples 6 to 8 The use of three components of copper, an alkali metal and a rare earth metal was essential, and the regeneration of the catalyst was impossible even if any one of the components was missing. Table 3 shows the results.

【表3】 《反応条件》 ・反応に使用した装置:内径1インチのガラス製流動床
反応器 ・反応使用触媒量 :40g ・廃塩化水素ガス量 :334ml/min ・酸素量 :167ml/min ・反応温度 :電気炉で内温380℃に加熱。 ・含浸処理した触媒 :実施例4において反応開始後6
5日目で転化率が58%に低下した酸化クロム触媒
[Table 3] << Reaction conditions >> ・ Equipment used for the reaction: fluidized bed reactor made of glass with an inner diameter of 1 inch ・ Amount of catalyst used for the reaction: 40 g ・ Amount of waste hydrogen chloride gas: 334 ml / min ・ Amount of oxygen: 167 ml / min ・ Reaction temperature: Electricity Heated to 380 ° C in furnace. -Impregnated catalyst: 6 after the start of the reaction in Example 4.
Chromium oxide catalyst with conversion reduced to 58% on day 5

【0041】実施例8 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用酸化クロム触媒40gを内
径1インチのガラス製流動床反応器に充填した。廃塩化
水素ガスを334ml/min、酸素を167ml/m
inで流動床に流入させ反応管外部を電気炉で内温38
0℃に加熱し反応させた。酸素/塩化水素モル比=1/
2、酸素過剰率100%である。反応開始3日目の塩化
水素の転化率は73%であった。反応開始30日目では
転化率67%を示し、65日目には55%まで低下し
た。この廃触媒にCr(NO33・9H2O 15.3
gを溶解した水溶液8.3mlを含浸後、520℃で6
時間焼成した。その後CuCl2・2H2O 10.72
g、KCl 4.72g、La(NO33・6H2
12.48gを溶解した水溶液50mlを含浸後、51
0℃で5時間焼成した。この再生触媒40gを上記と同
様にして反応させた。反応開始3日目の塩化水素の転化
率は77%、10日目の転化率は72%であった。反応
開始後30日目では転化率68%を示し、65日目には
転化率65%であり、新触媒と同等以上の活性及び寿命
を示した。
Example 8 40 g of a chromium oxide catalyst for fine spherical fluidized beds composed of 75% by weight of chromia and 25% by weight of silica and having an average particle size of 60 μm was charged into a 1-inch inner diameter glass fluidized bed reactor. 334 ml / min of waste hydrogen chloride gas and 167 ml / m of oxygen
in the fluidized bed and the outside of the reaction tube was heated to an internal temperature of 38 with an electric furnace.
The mixture was heated to 0 ° C. and reacted. Oxygen / hydrogen chloride molar ratio = 1 /
2. The excess oxygen ratio is 100%. The conversion of hydrogen chloride on the third day from the start of the reaction was 73%. The conversion was 67% on the 30th day from the start of the reaction, and decreased to 55% on the 65th day. Cr (NO 3 ) 3 .9H 2 O 15.3 was added to this waste catalyst.
g at 520 ° C.
Fired for hours. Then CuCl 2 · 2H 2 O 10.72
g, KCl 4.72 g, La (NO 3 ) 3 .6H 2 O
After impregnation with 50 ml of an aqueous solution in which 12.48 g was dissolved, 51
It was baked at 0 ° C. for 5 hours. 40 g of this regenerated catalyst was reacted in the same manner as described above. The conversion of hydrogen chloride on the third day from the start of the reaction was 77%, and the conversion on the tenth day was 72%. On the 30th day after the start of the reaction, the conversion was 68%, and on the 65th day, the conversion was 65%, indicating an activity and life equivalent to or higher than that of the new catalyst.

【0042】比較例9 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用酸化クロム触媒40gを内
径1インチのガラス製流動床反応器に充填した。廃塩化
水素ガスを334ml/min、酸素を125ml/m
inで流動床に流入させ反応管外部を電気炉で内温38
0Cに加熱し反応させた。酸素/塩化水素モル比=3/
8、酸素過剰率50%である。反応開始3日目の塩化水
素の転化率は63%であった。反応開始30日目では転
化率57%を示し、65日目には45%まで低下した。
Comparative Example 9 40 g of a chromium oxide catalyst for fine spherical fluidized beds composed of 75% by weight of chromia and 25% by weight of silica and having an average particle diameter of 60 μm was charged into a 1 inch inner diameter glass fluidized bed reactor. 334 ml / min of waste hydrogen chloride gas and 125 ml / m of oxygen
in the fluidized bed and the outside of the reaction tube was heated to an internal temperature of 38 with an electric furnace.
The reaction was heated to 0C. Oxygen / hydrogen chloride molar ratio = 3 /
8. The oxygen excess rate is 50%. The conversion of hydrogen chloride on the third day from the start of the reaction was 63%. The conversion was 57% on the 30th day from the start of the reaction, and dropped to 45% on the 65th day.

【0043】実施例9 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用酸化クロム触媒40gを内
径1インチのガラス製流動床反応器に充填した。廃塩化
水素ガスを334ml/min、酸素を125ml/m
inで流動床に流入させ反応管外部を電気炉で内温38
0℃に加熱し反応させた。酸素/塩化水素モル比=3/
8、酸素過剰率50%である。反応開始3日目の塩化水
素の転化率は63%であった。反応開始30日目では転
化率57%を示し、65日目には45%まで低下した。
この時点で触媒を抜き出し、Cr(NO33・9H2
15.3gを溶解した水溶液8.3mlを含浸後、5
20℃で6時間焼成した。その後CuCl2・2H2
10.72g、KCl 4.72g、La(NO33
6H2O 12.48gを溶解した水溶液50mlに含
浸後、510℃で5時間焼成した。この再生触媒40g
を上記と同様にして反応させた。反応開始3日目の塩化
水素の転化率は77%、10日目の転化率は72%であ
った。反応開始後30日目では転化率68%を示し、6
5日目には転化率65%であり、新触媒と同等以上の活
性及び寿命を示した。
Example 9 40 g of a chromium oxide catalyst for microspherical fluidized beds composed of 75% by weight of chromia and 25% by weight of silica and having an average particle diameter of 60 μm was charged into a 1-inch inner diameter glass fluidized bed reactor. 334 ml / min of waste hydrogen chloride gas and 125 ml / m of oxygen
in the fluidized bed and the outside of the reaction tube was heated to an internal temperature of 38 with an electric furnace.
The mixture was heated to 0 ° C. and reacted. Oxygen / hydrogen chloride molar ratio = 3 /
8. The oxygen excess rate is 50%. The conversion of hydrogen chloride on the third day from the start of the reaction was 63%. The conversion was 57% on the 30th day from the start of the reaction, and dropped to 45% on the 65th day.
At this point, the catalyst was extracted, and Cr (NO 3 ) 3 .9H 2 O
After impregnating with 8.3 ml of an aqueous solution in which 15.3 g was dissolved, 5
It was baked at 20 ° C. for 6 hours. Then CuCl 2 · 2H 2 O
10.72 g, 4.72 g of KCl, La (NO 3 ) 3.
It was impregnated with 50 ml of an aqueous solution in which 12.48 g of 6H 2 O was dissolved, and then fired at 510 ° C. for 5 hours. 40 g of this regenerated catalyst
Was reacted in the same manner as described above. The conversion of hydrogen chloride on the third day from the start of the reaction was 77%, and the conversion on the tenth day was 72%. On the 30th day after the start of the reaction, the conversion was 68%.
On the fifth day, the conversion was 65%, and the activity and life were equal to or higher than that of the new catalyst.

【0044】実施例10 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用酸化クロム触媒40gを内
径1インチのガラス製流動床反応器に充填した。実施例
7と同様に反応して得られた廃触媒を抜き出し、この廃
触媒にCr(NO3)3・9H2O 15.3gを溶解し
た水溶液8.3mlおよびCuCl2・2H2O 10.
72g、KCl 4.72g、La(NO33・6H2
O 12.48gを溶解した水溶液50mlを同時に含
浸後、510℃で5時間焼成した。この再生触媒40g
を上記と同様にして反応させた。反応開始3日目の塩化
水素の転化率は77%、10日目の転化率は72%であ
った。反応開始後30日目では転化率68%を示し、6
5日目には転化率65%であり、新触媒と同等以上の活
性及び寿命を示した。
Example 10 40 g of a chromium oxide catalyst for microspherical fluidized beds composed of 75% by weight of chromia and 25% by weight of silica and having an average particle size of 60 μm was charged into a glass fluidized bed reactor having an inner diameter of 1 inch. The spent catalyst obtained by the reaction in the same manner as in Example 7 was extracted, and 8.3 ml of an aqueous solution in which 15.3 g of Cr (NO 3 ) 3.9H 2 O was dissolved, and CuCl 2 .2H 2 O 10.
72g, KCl 4.72g, La (NO 3) 3 · 6H 2
After simultaneously impregnating 50 ml of an aqueous solution in which 12.48 g of O was dissolved, the mixture was baked at 510 ° C. for 5 hours. 40 g of this regenerated catalyst
Was reacted in the same manner as described above. The conversion of hydrogen chloride on the third day from the start of the reaction was 77%, and the conversion on the tenth day was 72%. On the 30th day after the start of the reaction, the conversion was 68%.
On the fifth day, the conversion was 65%, and the activity and life were equal to or higher than that of the new catalyst.

【0045】実施例11 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用酸化クロム触媒40gを内
径1インチのガラス製流動床反応器に充填した。実施例
7と同様に反応して得られた廃触媒を抜き出し、この廃
触媒にCr(NO33・9H2O 20.3gを溶解し
た水溶液8.3mlを含浸後、500℃で7時間焼成し
た。その後CuCl2・2H2O 13.72g、KCl
5.72g、La(NO33・6H2O 14.28
gを溶解した水溶液50mlを含浸後、510Cで5時
間焼成した。この再生触媒40gを上記と同様にして反
応させた。反応開始3日目の塩化水素の転化率は77
%、10日目の転化率は72%であった。反応開始後3
0日目では転化率69%を示し、65日目には転化率6
6%であり、新触媒と同等以上の活性及び寿命を示し
た。
Example 11 40 g of a chromium oxide catalyst for a microspherical fluidized bed composed of 75% by weight of chromia and 25% by weight of silica and having an average particle diameter of 60 μm was charged into a 1 inch inner diameter glass fluidized bed reactor. Extracting the waste catalyst obtained by the same reaction as in Example 7, after impregnated with an aqueous solution 8.3ml obtained by dissolving Cr (NO 3) 3 · 9H 2 O 20.3g on the waste catalyst, 7 hours at 500 ° C. Fired. Then 13.72 g of CuCl 2 .2H 2 O, KCl
5.72g, La (NO 3) 3 · 6H 2 O 14.28
After impregnation with 50 ml of an aqueous solution in which g was dissolved, the mixture was baked at 510C for 5 hours. 40 g of this regenerated catalyst was reacted in the same manner as described above. On the third day of the reaction, the conversion of hydrogen chloride was 77.
%, Conversion on day 10 was 72%. 3 after the start of the reaction
On day 0, the conversion was 69%, and on day 65, the conversion was 6%.
6%, showing an activity and life equivalent to or higher than that of the new catalyst.

【0046】実施例12 KCl 2.85gの代わりにNaCl 2.23gを
用いた他は実施例1と同様にして酸化クロム触媒に銅、
アルカリ金属および希土類金属の成分を含浸させて調整
した触媒を用い、実施例1と同様な条件で塩化水素と酸
素反応させた。反応開始2日目の塩化水素の転化率は7
5%、30日目で転化率は72%、60日目で70%で
あった。
Example 12 Copper was used as a chromium oxide catalyst in the same manner as in Example 1 except that 2.23 g of NaCl was used instead of 2.85 g of KCl.
Using a catalyst prepared by impregnating components of an alkali metal and a rare earth metal, an oxygen reaction was performed with hydrogen chloride under the same conditions as in Example 1. On the second day of the reaction, the conversion of hydrogen chloride was 7
The conversion was 5%, on day 30, the conversion was 72% and on day 60, 70%.

【0047】実施例13 La(NO33・6H2O 7.79gの代わりにNd
(NO33・6H2O7.89gを用いた他は実施例1
と同様にして酸化クロム触媒に銅、アルカリ金属および
希土類金属の成分を含浸させて調整した触媒を用い、実
施例1と同様な条件で塩化水素と酸素を反応させた。反
応開始2日目の塩化水素の転化率は77%、30日目で
転化率75%、60日目で74%であった。
Example 13 Nd was used instead of 7.79 g of La (NO 3 ) 3 .6H 2 O
(NO 3) except for using 3 · 6H 2 O7.89g Example 1
Using a catalyst prepared by impregnating a chromium oxide catalyst with components of copper, an alkali metal and a rare earth metal in the same manner as in Example 1, hydrogen chloride and oxygen were reacted under the same conditions as in Example 1. The conversion of hydrogen chloride was 77% on the second day of the reaction, 75% on the 30th day, and 74% on the 60th day.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平7−239688 (32)優先日 平成7年9月19日(1995.9.19) (33)優先権主張国 日本(JP) (72)発明者 山田 国博 福岡県大牟田市浅牟田町30番地 三井東 圧化学株式会社内 審査官 瀬良 聡機 (56)参考文献 特開 昭61−275104(JP,A) 特開 平3−221145(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 B01D 53/94 C01B 7/04 ──────────────────────────────────────────────────の Continued on the front page (31) Priority claim number Japanese Patent Application No. 7-239688 (32) Priority date September 19, 1995 (Sep. 19, 1995) (33) Priority claim country Japan (JP) (72) Inventor Kunihiro Yamada 30 Asamuta-cho, Omuta-shi, Fukuoka Prefecture Examiner, Mitsui East Pressure Chemical Co., Ltd.Satoshi Sera (56) References JP-A-61-275104 (JP, A) JP-A-3-3- 221145 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86 B01D 53/94 C01B 7/04

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化クロムを主成分とする触媒に銅、ア
ルカリ金属、及び希土類金属、叉はクロム、銅、アルカ
リ金属、及び希土類金属の成分を加えて得られる、塩化
水素を含酸素ガスで酸化し塩素を製造するための触媒。
1. An oxygen-containing gas containing hydrogen chloride, which is obtained by adding copper, an alkali metal, and a rare earth metal to a catalyst containing chromium oxide as a main component, or chromium, copper, an alkali metal, and a rare earth metal. Catalyst for oxidizing and producing chlorine.
【請求項2】 酸化クロムを主成分とする触媒がクロム
塩とアンモニアあるいはアンモニアを放出する化合物と
の反応物とケイ素化合物とからなる混合物を800℃以
下の温度で焼成して得られる触媒である請求項1の触
媒。
2. A catalyst obtained by calcining a mixture comprising a reaction product of a chromium salt and ammonia or a compound releasing ammonia and a silicon compound at a temperature of 800 ° C. or lower, wherein the catalyst mainly containing chromium oxide is used. The catalyst of claim 1.
【請求項3】 酸化クロムを主成分とする触媒が塩化水
素を酸化して塩素を製造する触媒として一度反応に使用
され、活性が低下した触媒である請求項1の触媒。
3. The catalyst according to claim 1, wherein the catalyst containing chromium oxide as a main component is used once in a reaction as a catalyst for oxidizing hydrogen chloride to produce chlorine, and has a reduced activity.
【請求項4】 アルカリ金属がカリウムである請求項1
の触媒。
4. The method according to claim 1, wherein the alkali metal is potassium.
Catalyst.
【請求項5】 希土類金属がランタンである請求項1の
触媒。
5. The catalyst according to claim 1, wherein the rare earth metal is lanthanum.
【請求項6】 酸化クロムを主成分とする触媒中のクロ
ムに対して原子比で銅が0.01〜0.3、カリウムが
0.005〜0.2、ランタンが0.01〜0.3の割
合で存在する請求項1の触媒。
6. Atomic ratios of copper to copper, potassium to 0.005 to 0.2 and lanthanum to chromium in a catalyst containing chromium oxide as a main component are 0.01 to 0.3. 3. The catalyst of claim 1 which is present in a ratio of 3.
【請求項7】 焼成後の形態でケイ素化合物が二酸化ケ
イ素であり、酸化クロムと二酸化ケイ素が重量比で5/
95〜95/5の範囲である請求項2の触媒。
7. The fired form wherein the silicon compound is silicon dioxide, and the weight ratio of chromium oxide and silicon dioxide is 5 /
3. The catalyst of claim 2, wherein said catalyst is in the range of 95 to 95/5.
【請求項8】 銅、アルカリ金属、及び希土類金属、叉
はクロム、銅、アルカリ金属、及び希土類金属の成分を
含む溶液に酸化クロムを主成分とする触媒を含浸する工
程、及び含浸された該触媒を800℃以下の温度で焼成
する工程よりなる塩化水素から塩素を製造するための触
媒の製造方法。
8. A step of impregnating a solution containing copper, an alkali metal and a rare earth metal or a component containing chromium, copper, an alkali metal and a rare earth metal with a catalyst mainly composed of chromium oxide, and A method for producing a catalyst for producing chlorine from hydrogen chloride, comprising a step of calcining the catalyst at a temperature of 800 ° C. or lower.
【請求項9】 酸化クロムを主成分とする触媒に 銅、
アルカリ金属、及び希土類金属、叉はクロム、銅、アル
カリ金属、及び希土類金属の成分を加えて得られる触媒
を用いることを特徴とする塩化水素を含酸素ガスで酸化
することによる塩素の製造方法。
9. A catalyst comprising chromium oxide as a main component, copper,
A method for producing chlorine by oxidizing hydrogen chloride with an oxygen-containing gas, comprising using a catalyst obtained by adding a component of an alkali metal and a rare earth metal, or chromium, copper, an alkali metal, and a rare earth metal.
【請求項10】 塩化水素1モルに対して含酸素ガス中
の酸素を1/4モル〜1モル比の範囲で反応させること
を特徴とする請求項9の方法。
10. The method according to claim 9, wherein oxygen in the oxygen-containing gas is reacted with 1 mole of hydrogen chloride in a range of 1/4 mole to 1 mole.
JP29235295A 1994-11-14 1995-11-10 Catalyst for the production of chlorine from hydrogen chloride Expired - Lifetime JP3270670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29235295A JP3270670B2 (en) 1994-11-14 1995-11-10 Catalyst for the production of chlorine from hydrogen chloride

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP27880494 1994-11-14
JP22309095 1995-08-31
JP22874995 1995-09-06
JP23968895 1995-09-19
JP7-223090 1995-09-19
JP7-228749 1995-09-19
JP7-239688 1995-09-19
JP6-278804 1995-09-19
JP29235295A JP3270670B2 (en) 1994-11-14 1995-11-10 Catalyst for the production of chlorine from hydrogen chloride

Publications (2)

Publication Number Publication Date
JPH09141104A JPH09141104A (en) 1997-06-03
JP3270670B2 true JP3270670B2 (en) 2002-04-02

Family

ID=27529733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29235295A Expired - Lifetime JP3270670B2 (en) 1994-11-14 1995-11-10 Catalyst for the production of chlorine from hydrogen chloride

Country Status (1)

Country Link
JP (1) JP3270670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110392A1 (en) 2009-03-26 2010-09-30 三井化学株式会社 Catalyst for production of chlorine and process for production of chlorine using the catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388974B2 (en) * 2010-09-17 2014-01-15 三井化学株式会社 Method for producing regenerated catalyst for chlorine production, method for regenerating degraded catalyst, method for producing chlorine, and method for maintaining activity of catalyst for chlorine production
CN102000583B (en) * 2010-11-18 2012-08-15 烟台万华聚氨酯股份有限公司 Catalyst for preparing chlorine by oxidizing hydrogen chloride and preparation method thereof
CN104785271B (en) * 2014-01-21 2017-02-22 万华化学集团股份有限公司 Preparation method of catalyst used for chlorine preparation, catalyst, and method used for preparing chlorine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110392A1 (en) 2009-03-26 2010-09-30 三井化学株式会社 Catalyst for production of chlorine and process for production of chlorine using the catalyst
CN102341173A (en) * 2009-03-26 2012-02-01 三井化学株式会社 Catalyst for production of chlorine and process for production of chlorine using the catalyst
CN102341173B (en) * 2009-03-26 2014-05-21 三井化学株式会社 Catalyst for production of chlorine and process for production of chlorine using the catalyst
US9108845B2 (en) 2009-03-26 2015-08-18 Mitsui Chemicals, Inc. Chlorine production catalyst and chlorine production process using the catalyst

Also Published As

Publication number Publication date
JPH09141104A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
US5707919A (en) Catalyst for preparing chlorine from hydrogen chloride
EP0743277B1 (en) Process for producing chlorine
JPH0569042B2 (en)
JP2645467B2 (en) Oxychlorination catalyst
JPS6191142A (en) Synthesis of iodobenzene
JP2513756B2 (en) Chlorine production method
JP3284879B2 (en) Method for producing chlorine
JP3852983B2 (en) Catalyst for producing chlorine from hydrogen chloride
JPH0377839A (en) Ortho-alkylation
JP5015057B2 (en) Catalyst for synthesis of chlorine and method for producing the same, and method for synthesizing chlorine using the catalyst
JP3270670B2 (en) Catalyst for the production of chlorine from hydrogen chloride
JP2012529415A (en) Method for oxidizing hydrogen chloride over a catalyst with low surface roughness
JP2988999B2 (en) Catalyst regeneration method
JP3788530B2 (en) Catalyst regeneration method
JPH0366241B2 (en)
JP5289132B2 (en) Catalyst for producing chlorine and method for producing chlorine using the catalyst
US5093292A (en) Chromium oxide catalyst impregnation regeneration method
JPH0568401B2 (en)
JPS62270404A (en) Production of chlorine
JP4210255B2 (en) Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JPH0767530B2 (en) Catalyst activation method
JP3031688B2 (en) Catalyst activity stabilization method
JPH0367961B2 (en)
JP2003093878A (en) Catalyst for manufacturing hydrogen and manufacturing method for hydrogen using the same
JP3221445B2 (en) Catalyst for producing phenol, method for producing the same, and method for producing phenol

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term