JPH056766B2 - - Google Patents

Info

Publication number
JPH056766B2
JPH056766B2 JP60292303A JP29230385A JPH056766B2 JP H056766 B2 JPH056766 B2 JP H056766B2 JP 60292303 A JP60292303 A JP 60292303A JP 29230385 A JP29230385 A JP 29230385A JP H056766 B2 JPH056766 B2 JP H056766B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
zinc oxide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60292303A
Other languages
Japanese (ja)
Other versions
JPS62154411A (en
Inventor
Uchitsugu Minami
Hidehito Nanto
Shinzo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP29230385A priority Critical patent/JPS62154411A/en
Publication of JPS62154411A publication Critical patent/JPS62154411A/en
Publication of JPH056766B2 publication Critical patent/JPH056766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は透明導電膜に関する。 〔従来技術〕 一般に、透明な赤外線遮へい板や静電遮へい板
や発熱体やタツチスイツチあるいは液晶表示素子
やエレクトロルミネツセンス表示素子等において
は、透明導電膜が必要不可欠であるが、この透明
導電膜としては、従来、ITO膜として知られてい
る酸化インジウム−酸化スズ系透明導電膜が汎用
されている。 しかしながら、このITO膜は、10-4Ω・cmオー
ダーの低抵抗率と80%以上の可視光透過率を有
し、光学特性及び電気特性並びに特性の安定性に
優れているが、原材料のインジウムが希少金属で
あるため資源的な問題から高価であり、製造コス
トが高いという問題があつた。また、低抵抗率の
ITO膜を製造するためには、250〜600℃程度の高
温処理が必要であるため、プラスチツクフイルム
など耐熱性に劣る基体上に形成できず、またエネ
ルギー消費量が多く製品コストが高くなるという
問題があつた。 他方、安価な酸化亜鉛が透明導電膜用材料とし
て注目されてはいるが、10-3Ω・cmオーダーの抵
抗率しか得られず、ITO膜のような低抵抗率のも
のを製造するのが困難で、しかも製造条件に極め
て敏感で再現性よく製造することが極めて困難で
あつた。 また、更に、透明導電膜に所望される基本的性
質として、可視光を十分に透過することができ、
しかも赤外線を良好に反射させることが望まれ
る。 〔発明の解決すべき問題点〕 本発明は、従来の問題点を解決し、低抵抗率で
しかも可視光透過率及び赤外線反射率の高い透明
導電膜を提供すべくなされたものである。 本発明は、また、この様な優れた特性を製造条
件に左右されず再現性良く発現することのできる
透明導電膜を提供すくなされたものである。 [問題点を解決するための手段] 即ち、本発明によつて提供される透明導電膜
は、酸化亜鉛を主成分とし、ケイ素、ゲルマニウ
ム及びジルコニウムからなる群から選ばれた少な
くとも一種(以下、必須添加元素という)を、亜
鉛原子との合計原子数を基準にして0.1〜20原子
%含有することを特徴とするものである。 [発明の具体的説明及び実施例] 本発明では使用する必須添加元素はケイ素、ゲ
ルマニウム及びジルコニウムからなる群から選ば
れた少なくとも一種であるが、所望により、炭
素、スズ、鉛、ハフニウム等の元素を併用するこ
とができる。更には、本発明の目的を損わない範
囲で、ホウ素、アルミニウム、ガリウム及びイン
ジウム等の元素を所望により併用することもでき
る。本発明においては、必須添加元素の含有量
は、亜鉛原子数と必須添加元素の原子数との合計
原子数100に対する必須添加元素の原子数で0.1〜
20(本明細書においては原子%と表している)で
あることが必須である。必須添加元素の含有量が
0.1%未満の場合には添加による効果の発現が不
十分であり、また20原子%を越える場合には結晶
性が著しく悪化し、抵抗率が増大するので好まし
くない。必須添加元素の含有量は好ましくは1〜
15原子%である。 本発明の透明導電膜としては、スパツタ法、イ
オンプレーテイング法、真空蒸着法、化学気相成
長法、スプレー法、陽極酸化法、その他任意の公
知の膜形成技術によつて製造できる。また、透明
導電膜中に必須添加元素を含有させる方法として
は、膜形成過程で原材料の亜鉛もしくは酸化亜鉛
に必須添加元素を含む合金、水素化物、酸化物、
ハロゲン化物及び有機化合物等の形態を導入する
のが好適であるが、透明導電膜を形成した後、必
須添加元素を酸化亜鉛膜中に熱拡散したりイオン
注入したりすることも可能である。 また、スパツタ法により製造する場合は、ター
ゲツト材料として本発明の透明導電膜の前記組成
と同じ組成の焼結体を用いることができる。ター
ゲツト材料の製造は、従来公知の方法によつて行
なうことができる。 酸化亜鉛は真性格子欠陥である酸素空孔や格子
間亜鉛によるドナー準位により縮退したn形半導
体が比較的容易に得られ、約1020cm-3オーダの伝
導電子密度を実現できるが、抵抗率を10-3Ω・cm
オーダより低下されることは困難である。しかし
ながら、必須添加元素を酸化亜鉛薄膜中に導入す
ると、必須添加元素の原子がドナーとして有効に
働くため、1021cm-3オーダの伝導電子を実現で
き、真性格子欠陥によるドナー及び不純物原子に
よるドナーが共存する結果として伝導電子密度を
約1桁大きくできるので、電子移動度が大幅に変
化せず、従つて、抵抗率10-4Ω・cmオーダの透明
導電膜を実現できる。また、これらの外因性ドナ
ーは、酸化亜鉛の真性格子欠陥による内因性ドナ
ーと比較して、薄膜形成過程で比較的安定に導入
できるため、膜特性の再現性を著しく向上させ
る。 以下、本発明の実施例について説明する。 実施例 1 純度99.99%の酸化ケイ素(SiO2)、酸化ゲルマ
ニウム(GeO2)、もしくは酸化ジルコニウム
(ZrO2)の粉末を純度99.99%の酸化亜鉛(ZnO)
の粉末に添加し、これを幅6cm長さ10cmの長方形
状に加圧成型したのち焼結させ、この焼結体をタ
ーゲツトとして外部磁界印加形高周波マグネトロ
ンスパツタ装置のマグネトロンカソード上に装着
し、スパツタガスとして純アルゴンを用いて、下
記条件でスパツタリングを行ない、ターゲツト表
面に対し垂直に配設したガラス基体上に透明導電
膜を形成した。なお、基体上は、特に加熱もしく
は冷却など温度制御することなく、常温から温度
の自然変化のままスパツタリングしたため、90℃
程度の温度上昇があつた。また、この時の成膜速
度は30〜50nm/minであつた。 <スパツタ条件> アルゴンガス圧:6.5Pa 高周波電力:120W プラズマ集束磁界:5×10-3T 基 体:30mm×60mmガラス(ターゲツト上32mm) 得られた透明導電膜の抵抗率及び可視孔透過率
(波長400〜800nm)を測定したところ、第1表
に示す結果が得られた。
[Industrial Application Field] The present invention relates to a transparent conductive film. [Prior Art] Generally, a transparent conductive film is essential for transparent infrared shielding plates, electrostatic shielding plates, heating elements, touch switches, liquid crystal display elements, electroluminescence display elements, etc. Conventionally, an indium oxide-tin oxide based transparent conductive film known as an ITO film has been widely used. However, this ITO film has a low resistivity on the order of 10 -4 Ω・cm and a visible light transmittance of more than 80%, and has excellent optical properties, electrical properties, and stability of properties. Since it is a rare metal, it is expensive due to resource issues, and the manufacturing cost is high. Also, low resistivity
In order to manufacture ITO films, high-temperature processing of approximately 250 to 600°C is required, so they cannot be formed on substrates with poor heat resistance such as plastic films, and they also consume a lot of energy and increase product costs. It was hot. On the other hand, inexpensive zinc oxide is attracting attention as a material for transparent conductive films, but it only has a resistivity on the order of 10 -3 Ωcm, making it difficult to manufacture low resistivity materials such as ITO films. Moreover, it is extremely sensitive to manufacturing conditions and extremely difficult to manufacture with good reproducibility. Furthermore, as a basic property desired for a transparent conductive film, visible light can be sufficiently transmitted;
Furthermore, it is desired that infrared rays be well reflected. [Problems to be Solved by the Invention] The present invention has been made to solve the conventional problems and provide a transparent conductive film having low resistivity and high visible light transmittance and infrared reflectance. The present invention has also been made to provide a transparent conductive film that can exhibit such excellent properties with good reproducibility regardless of manufacturing conditions. [Means for Solving the Problems] That is, the transparent conductive film provided by the present invention contains zinc oxide as a main component and at least one member selected from the group consisting of silicon, germanium, and zirconium (hereinafter, essential). It is characterized by containing 0.1 to 20 atom % of an additive element) based on the total number of atoms including zinc atoms. [Specific Description and Examples of the Invention] The essential additive element used in the present invention is at least one selected from the group consisting of silicon, germanium, and zirconium, but if desired, elements such as carbon, tin, lead, and hafnium may be added. Can be used together. Furthermore, elements such as boron, aluminum, gallium, and indium can be used in combination as desired within a range that does not impair the object of the present invention. In the present invention, the content of the essential additive element is from 0.1 to 100 atoms of the essential additive element based on the total number of atoms of zinc and the number of atoms of the essential additive element.
20 (herein expressed as atomic %). The content of essential additive elements is
If it is less than 0.1%, the effects of addition will not be sufficiently expressed, and if it exceeds 20 at %, crystallinity will be significantly deteriorated and resistivity will increase, which is not preferable. The content of essential additive elements is preferably 1-
It is 15 atom%. The transparent conductive film of the present invention can be manufactured by a sputtering method, an ion plating method, a vacuum evaporation method, a chemical vapor deposition method, a spray method, an anodizing method, or any other known film forming technique. In addition, methods for incorporating essential additive elements into the transparent conductive film include alloys, hydrides, oxides, etc. containing essential additive elements in the raw material zinc or zinc oxide during the film formation process.
Although it is preferable to introduce halides and organic compounds, it is also possible to thermally diffuse or ion-implant essential additive elements into the zinc oxide film after forming the transparent conductive film. Further, when manufacturing by sputtering, a sintered body having the same composition as the above composition of the transparent conductive film of the present invention can be used as the target material. The target material can be produced by conventionally known methods. In zinc oxide, a degenerate n-type semiconductor can be obtained relatively easily due to oxygen vacancies, which are intrinsic lattice defects, and donor levels due to interstitial zinc, and a conduction electron density on the order of about 10 20 cm -3 can be achieved, but the resistance rate of 10 -3 Ω・cm
It is difficult to be lower than the order. However, when an essential additive element is introduced into a zinc oxide thin film, the atoms of the essential additive element effectively act as donors, so conduction electrons on the order of 10 21 cm -3 can be achieved, and donors due to intrinsic lattice defects and donors due to impurity atoms can be realized. As a result of their coexistence, the conduction electron density can be increased by about one order of magnitude, so that the electron mobility does not change significantly, and therefore, a transparent conductive film with a resistivity on the order of 10 -4 Ω·cm can be realized. In addition, these extrinsic donors can be introduced relatively stably during the thin film formation process compared to endogenous donors due to the intrinsic lattice defects of zinc oxide, so they significantly improve the reproducibility of film properties. Examples of the present invention will be described below. Example 1 99.99% pure silicon oxide (SiO 2 ), germanium oxide (GeO 2 ), or zirconium oxide (ZrO 2 ) powder was mixed with 99.99% pure zinc oxide (ZnO).
powder, press-molded it into a rectangular shape with a width of 6 cm and a length of 10 cm, and then sintered it. Using this sintered body as a target, it was mounted on the magnetron cathode of a high-frequency magnetron sputtering device that applied an external magnetic field. Sputtering was performed under the following conditions using pure argon as a sputtering gas to form a transparent conductive film on a glass substrate disposed perpendicularly to the target surface. Note that sputtering was carried out on the substrate as the temperature naturally changed from room temperature without any particular temperature control such as heating or cooling, so the temperature was 90℃.
There was a slight temperature rise. Further, the film formation rate at this time was 30 to 50 nm/min. <Sputtering conditions> Argon gas pressure: 6.5 Pa High frequency power: 120 W Plasma focusing magnetic field: 5 × 10 -3 T Substrate: 30 mm × 60 mm glass (32 mm above the target) Resistivity and visible hole transmittance of the obtained transparent conductive film (wavelength: 400 to 800 nm), the results shown in Table 1 were obtained.

【表】 第1表の結果から明らかなように、いずれの場
合も抵抗率が10-4Ω・cm以下で可視孔透過率85%
以上の透明導電膜が得られる。 また、伝導電子密度が1021cm-3オーダでケイ素
を含有する透明導電膜の可視孔透過率と赤外線反
射率を測定したところ、第1図に示す結果が得ら
れた。他の必須添加元素をドーパントとして用い
た透明導電膜でも、第1図と同様な光学的特性が
得られた。 これとは別に、ケイ素の添加量を種々に変えて
酸化亜鉛系透明導電膜を製造し、抵抗率とケイ素
の含有量との関係を測定した処、第2図に示す結
果が得られた。他のドーパンの含有量を変えた場
合にも同様な結果が得られた。 実施例 2 実施例1における高周波マグネトロンスパツタ
装置とSiをドーパントするターゲツトを用い、ポ
リプロピレンフイルム、ヒ化ガリウム(GaAs)
及びシリコンの単結晶をそれぞれ基体として実施
例1と同様に透明導電膜を形成した。得られた透
明導電膜の電気的特性及び光学的特性は、いずれ
もガラス基体上に形成したものと同程度で、基体
の変形、変質は認められなかつた。 実施例 3 電子ビーム加熱高真空蒸着装置を用い、1.3×
10-5Paの真空度の下で純度99.99%の酸化亜鉛と、
それぞれ純度99.99%の酸化ケイ素、酸化ゲルマ
ニウム、または酸化ジルコニウムを別々の蒸着セ
ルに入れ、2源蒸着法によつてガラス基体上に酸
化亜鉛系透明導電膜を形成した。基体は加熱ヒー
タにより100〜300℃に維持し、約5rpmの速度で
回転させながら蒸着した。得られた各透明導電膜
の抵抗率及び可視光透明導電膜を第2表に示す。
[Table] As is clear from the results in Table 1, in all cases, the visible hole transmittance is 85% when the resistivity is 10 -4 Ω・cm or less.
The above transparent conductive film is obtained. Furthermore, when the visible pore transmittance and infrared reflectance of a transparent conductive film containing silicon and having a conduction electron density on the order of 10 21 cm -3 were measured, the results shown in FIG. 1 were obtained. Optical properties similar to those shown in FIG. 1 were also obtained with transparent conductive films using other essential additive elements as dopants. Separately, zinc oxide transparent conductive films were produced with various amounts of silicon added, and the relationship between resistivity and silicon content was measured, and the results shown in FIG. 2 were obtained. Similar results were obtained when the contents of other dopanes were varied. Example 2 Using the high frequency magnetron sputtering device and Si doped target in Example 1, polypropylene film, gallium arsenide (GaAs)
Transparent conductive films were formed in the same manner as in Example 1 using single crystals of silicon and silicon as substrates, respectively. The electrical and optical properties of the obtained transparent conductive film were comparable to those formed on a glass substrate, and no deformation or alteration of the substrate was observed. Example 3 Using an electron beam heating high vacuum evaporation device, 1.3×
With 99.99% purity zinc oxide under vacuum degree of 10 -5 Pa,
Silicon oxide, germanium oxide, or zirconium oxide each having a purity of 99.99% was placed in separate vapor deposition cells, and a zinc oxide-based transparent conductive film was formed on a glass substrate by a two-source vapor deposition method. The substrate was maintained at a temperature of 100 to 300° C. using a heater, and vapor deposition was performed while rotating at a speed of about 5 rpm. Table 2 shows the resistivity and visible light transparent conductive film of each of the obtained transparent conductive films.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、安価な酸化亜鉛を主原料とし
て用いて、ITO膜と同等以上の電気的特性及び光
学的特性を有する導電膜を比較的容易に得ること
ができる。 また、本発明の透明導電膜は、その主原料であ
る亜鉛が、ITO膜の主原料であるインジウムに比
べて極めて安価であるため、たとえ高価なチタン
やジルコニウムをドーパントして使用しても、そ
の必要量はITO膜の30分の1以下であり、製造コ
ストも著しく低減でき、また亜鉛は資源的にも豊
富であり、公害を招くことも殆ど無い。 さらに、本発明の透明導電膜は、高温で製造す
る必要がないため、プラスチツクフイルムなど耐
熱性に劣る基体上にも形成できる他、表面が極め
て平滑で、基体に対する付着力が強く、熱的に
も、化学的にも、また機械的にも安定であるの
で、透明スイツチ用電極、透明電極、熱線遮へい
膜、静電遮へい膜、透明ヒータなどの他、多層コ
ーテイングを必要とする用途にも適用できるなど
優れた効果が得られる。
According to the present invention, a conductive film having electrical and optical properties equivalent to or better than those of an ITO film can be obtained relatively easily using inexpensive zinc oxide as a main raw material. In addition, the main raw material for the transparent conductive film of the present invention, zinc, is extremely cheap compared to indium, the main raw material for ITO films, so even if expensive titanium or zirconium is used as a dopant, The required amount is less than one-thirtieth of that of an ITO film, and manufacturing costs can be significantly reduced. Zinc is also an abundant resource and causes almost no pollution. Furthermore, since the transparent conductive film of the present invention does not need to be manufactured at high temperatures, it can be formed even on substrates with poor heat resistance such as plastic films. It is also chemically and mechanically stable, so it can be applied to transparent switch electrodes, transparent electrodes, heat ray shielding films, electrostatic shielding films, transparent heaters, and other applications that require multilayer coatings. Excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で得られた透明導電膜
の光学的特性を示した曲線図、第2図はこの透明
導電膜と抵抗率とケイ素含量(Si/Zn)との関
係を示した曲線図である。 第1図中、曲線1……可視光線透過率、曲線2
……赤外線反射率。
Figure 1 is a curve diagram showing the optical characteristics of the transparent conductive film obtained in the example of the present invention, and Figure 2 shows the relationship between this transparent conductive film, resistivity, and silicon content (Si/Zn). FIG. In Figure 1, curve 1...Visible light transmittance, curve 2
...Infrared reflectance.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化亜鉛を主成分とし、ケイ素、ゲルマニウ
ム及びジルコニウムからなる群から選ばれた少な
くとも一種を、亜鉛原子との合計原子数を基準に
して0.1〜20原子%含有することを特徴とする透
明導電膜。
1. A transparent conductive film containing zinc oxide as a main component and at least one selected from the group consisting of silicon, germanium, and zirconium in an amount of 0.1 to 20 atomic percent based on the total number of atoms including zinc atoms. .
JP29230385A 1985-12-26 1985-12-26 Transparent conductive film Granted JPS62154411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29230385A JPS62154411A (en) 1985-12-26 1985-12-26 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29230385A JPS62154411A (en) 1985-12-26 1985-12-26 Transparent conductive film

Publications (2)

Publication Number Publication Date
JPS62154411A JPS62154411A (en) 1987-07-09
JPH056766B2 true JPH056766B2 (en) 1993-01-27

Family

ID=17780012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29230385A Granted JPS62154411A (en) 1985-12-26 1985-12-26 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPS62154411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044469A1 (en) 2006-10-06 2008-04-17 Sakai Chemical Industry Co., Ltd. Ultrafine zinc oxide particle and process for production thereof
JP5697449B2 (en) * 2008-09-04 2015-04-08 株式会社カネカ Substrate with transparent electrode and method for producing substrate with transparent electrode

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545306B2 (en) * 1991-03-11 1996-10-16 誠 小長井 Method for producing ZnO transparent conductive film
US7651640B2 (en) 2005-02-24 2010-01-26 Sekisui Chemical Co., Ltd. Gallium containing zinc oxide
US7674404B2 (en) * 2005-12-08 2010-03-09 Nippon Mining & Metals Co., Ltd. Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JPWO2007072950A1 (en) * 2005-12-22 2009-06-04 三井金属鉱業株式会社 Method for patterning zinc oxide-based transparent conductive film
KR101028985B1 (en) 2006-03-17 2011-04-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor
EP2056304A4 (en) 2006-08-24 2010-06-16 Nippon Mining Co Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target
JP5285331B2 (en) * 2008-06-04 2013-09-11 株式会社カネカ Thin film photoelectric converter
JP5003600B2 (en) * 2008-06-13 2012-08-15 住友金属鉱山株式会社 Oxide sintered body, target, transparent conductive film obtained using the same, and conductive laminate
JP4295811B1 (en) 2008-09-17 2009-07-15 三井金属鉱業株式会社 Zinc oxide target
WO2012083562A1 (en) * 2010-12-24 2012-06-28 海洋王照明科技股份有限公司 Electrically conductive film, perparation method and application therefor
JP5339100B2 (en) * 2011-09-22 2013-11-13 住友金属鉱山株式会社 Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP5761253B2 (en) * 2013-05-23 2015-08-12 住友金属鉱山株式会社 Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP2015135879A (en) * 2014-01-16 2015-07-27 住友化学株式会社 HIGH CARRIER DENSITY n-TYPE ZnO THIN FILM AND PRODUCTION METHOD THEREFOR
JP6356520B2 (en) * 2014-07-28 2018-07-11 株式会社カネカ Substrate with transparent electrode and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220407A (en) * 1982-06-16 1983-12-22 松下電器産業株式会社 Method of producing voltage nonlinear resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220407A (en) * 1982-06-16 1983-12-22 松下電器産業株式会社 Method of producing voltage nonlinear resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044469A1 (en) 2006-10-06 2008-04-17 Sakai Chemical Industry Co., Ltd. Ultrafine zinc oxide particle and process for production thereof
JP5697449B2 (en) * 2008-09-04 2015-04-08 株式会社カネカ Substrate with transparent electrode and method for producing substrate with transparent electrode

Also Published As

Publication number Publication date
JPS62154411A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
JPH056766B2 (en)
JP3358893B2 (en) Transparent conductor containing gallium-indium oxide
Enoki et al. The Electrical and Optical Properties of the ZnO‐SnO2 Thin Films Prepared by RF Magnetron Sputtering
US8747630B2 (en) Transparent conducting oxides and production thereof
Xirouchaki et al. Photoreduction and oxidation of as‐deposited microcrystalline indium oxide
JPS62122011A (en) Transparent conducting film and manufacture of the same
US8062777B2 (en) Semiconductor thin film and process for producing the same
JPH0372011B2 (en)
JPH05334924A (en) Manufacture of transparent conductive film
WO2016071000A1 (en) Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film
JPH09259640A (en) Transparent conductive film
US8734621B2 (en) Transparent conducting oxides and production thereof
JP3163015B2 (en) Transparent conductive film
JP4240928B2 (en) Oxide transparent conductive film and method for producing the same
Kim et al. Effect of trivalent element doping on structural and optical properties of SnO2 thin films grown by pulsed laser deposition technique
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
JPH08264021A (en) Transparent conductive film
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
KR102164629B1 (en) Composite transparent electrodes
JPH0756131A (en) Production of transparent conductive film
JPH0641723A (en) Electric conductive transparent film
JPH054768B2 (en)
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
JP2764899B2 (en) Method for producing transparent conductive film
JPH0765167B2 (en) Sputtering target for ITO transparent conductive film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term