JPH0567641B2 - - Google Patents

Info

Publication number
JPH0567641B2
JPH0567641B2 JP57176765A JP17676582A JPH0567641B2 JP H0567641 B2 JPH0567641 B2 JP H0567641B2 JP 57176765 A JP57176765 A JP 57176765A JP 17676582 A JP17676582 A JP 17676582A JP H0567641 B2 JPH0567641 B2 JP H0567641B2
Authority
JP
Japan
Prior art keywords
acid
sulfonic acid
polystyrene sulfonic
cation exchange
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57176765A
Other languages
Japanese (ja)
Other versions
JPS5966403A (en
Inventor
Koji Itagaki
Takeshi Ito
Hiromi Tejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP57176765A priority Critical patent/JPS5966403A/en
Publication of JPS5966403A publication Critical patent/JPS5966403A/en
Publication of JPH0567641B2 publication Critical patent/JPH0567641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は陽イオン交換樹脂の製造法に関する。
現在多種のスルホン酸基をイオン交換基として有
するイオン交換樹脂が市販されており、各方面に
使用されている。それらの殆んどの樹脂はスチレ
ンに代表されるモノビニル芳香族化合物とジビニ
ルベンゼンの如きポリビニル芳香族化合物を水中
で懸濁重合し、得られる球状の重合体を硫酸・ク
ロルスルホン酸もしくはオリウム等でスルホン化
することにより製造されている。 これらの架橋ポリスチレンスルホン酸型のイオ
ン交換樹脂は使用に際し極く微量であるがポリス
チレンスルホン酸を樹脂から溶出することが知ら
れている。このポリスチレンスルホン酸の溶出量
は非常に僅かな量であり、通常の使用に於いては
問題ないが、超純水等の非常に精製された水を必
要とする場合には問題となるケースもあり得る。 このポリスチレンスルホン酸の生成又は溶出理
由は不明な所も多い。 本発明者等はかかる状況に鑑み鋭意検討した結
果、架橋ポリスチレンスルホン酸型の陽イオン交
換樹脂を亜硫酸ソーダ、ジメチルアニリン等の還
元剤で処理すると溶出するポリスチレンスルホン
酸の量を半減出来ることを見い出し、本発明に達
した。この理由は不明であるが、一因としてイオ
ン交換樹脂製造の工程で生じた酸化された箇所が
使用に際し、更に開裂して溶出を生ずるものと推
定され、還元剤で処理することによりかかる箇所
が消失することに基づくものと考えられる。 本発明の要旨は、架橋ポリスチレンスルホン酸
型の陽イオン交換樹脂を、亜硫酸、亜硫酸塩から
選ばれる低級酸素酸またはその塩;塩化第一鉄、
塩化第一スズから選ばれる低原子価状態にある金
属の塩類;アルデヒド類、糖類、ギ酸、蓚酸、1
〜3級アミン、ベンゾフエノンから選ばれる酸化
階程の低い有機化合物から選ばれる還元剤で処理
することを特徴とするポリスチレンスルホン酸の
溶出量が少ない陽イオン交換樹脂の製造法に存す
る。 以下、本発明をさらに詳細に説明する。 本発明方法において処理の対象となる架橋ポリ
スチレンスルホン酸型の陽イオン交換樹脂として
は、スチレン等のモノビニル化合物とジビニルベ
ンゼン等のポリビニル化合物との共重合体をスル
ホン化して得られる強酸性の陽イオン交換樹脂で
ある。処理に使用される還元剤としては、上記し
たものから選ばれるが、このうち水もしくは水に
任意の割合で溶解する溶媒に溶けるものが好まし
い。 還元剤の使用される量は湿潤形の陽イオン交換
樹脂1当り0.01〜20g程度である。 還元剤による処理は還元剤を水もしくは水に任
意の割合で溶解する溶媒に溶解し、その溶液に強
酸性陽イオン交換樹脂を加えて室温〜100℃で2
〜24時間行なわれる。この処理により、製造工程
中に生じた樹脂中の酸化部位(例えば−OOH,−
O.)は還元されて安定化される。使用される水
又は溶媒の量は任意の割合で変え得るが、強酸性
陽イオン交換樹脂1容積に対し0.5〜5容積量で
あることが望ましい。処理温度は室温〜100℃の
範囲で自由にかえ得るが、処理を迅速に行なう為
には60〜100℃であることが好ましい。 かかる処理を行なつた強酸性陽イオン交換樹脂
は処理後充分に水洗し、さらに酸及びアルカリに
よる洗浄を行なつて残存する還元剤および還元反
応時の副生物を除去して使用に供せられる。 以下実施例によつて本発明を更に詳細に説明す
るが、本発明は以下の実施例に限定されるもので
はない。 実施例 1 公知の方法により合成されたジビニルベンゼン
8重量%を含有するゲル型架橋ポリスチレン粒
100gを四ツ口フラスコにとり200mlのジクロルエ
タン、700gの硫酸を加え80℃にて10時間かきま
ぜながら樹脂のスルホン化を行なつた。ついで水
1000mlをゆつくりとフラスコ内に滴下した。樹脂
を別後、大量の水でPH6になる迄洗浄し、樹脂
を四ツ口フラスコにとり水1000mlを加えて100℃
で4時間撹拌した。得られた樹脂をカラムに移
し、2N塩酸1000ml、脱塩水3000ml、5%の食塩
水1500ml、脱塩水3000mlをSV10で流す操作を5
回繰り返した。この樹脂は交換容量1.98meq/
ml、4.63meq/gr、水分48.2重量%であつた。
この樹脂をNa形で100ml採り、500mlの四ツ口に
入れ、水100ml、塩化第一鉄6gを加え、かくは
んしながら、100℃で8時間処理した。 ついで樹脂を冷却後別し、1000mlの脱塩水、
500mlの1N塩酸、1000mlの脱塩水、500mlの5重
量%食塩水、1000mlの脱塩水にて順次洗浄した。 実施例 2 実施例1に於ける塩化第1鉄6gの代りに酸性
亜硫酸ソーダ1gを用いた以外は全く同一にして
処理し、次いで全く同様に洗浄した。 実施例 3 実施例1に於ける塩化第1鉄6gの代りにジメ
チルアニリン2.0gを用いた以外は実施例1と全
く同様に処理し、洗浄した。 比較例 1 実施例1に於ける塩化第1鉄6gを除いた以外
は実施例1と全く同様に処理し、洗浄した。 試験例 溶出の試験 実施例1〜3及び比較例1の樹脂10.0mlを採
り、1Nの塩酸100ml及び脱塩水1000mlを流してH
形に変換した。ついでこの樹脂を3000回転の遠心
過機で5分間水切りし、300mlの三角フラスコ
に入れた。この中に脱塩水100mlを加え室温にて
56日間放置後、上澄液の吸光度を225μで測定し、
吸光度より溶出したポリスチレンスルホン酸の量
を次式により計算した。 ポリスチレンスルホン酸量mg/=23.98×吸
光度結果を表−1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cation exchange resins.
Currently, ion exchange resins having various types of sulfonic acid groups as ion exchange groups are commercially available and are used in various fields. Most of these resins are produced by suspension polymerization of monovinyl aromatic compounds such as styrene and polyvinyl aromatic compounds such as divinylbenzene in water, and the resulting spherical polymers are sulfonated with sulfuric acid, chlorosulfonic acid, or olium, etc. It is manufactured by converting into It is known that when these crosslinked polystyrene sulfonic acid type ion exchange resins are used, polystyrene sulfonic acid is eluted from the resin, although it is a very small amount. The amount of polystyrene sulfonic acid eluted is very small and poses no problem in normal use, but may become a problem when extremely purified water such as ultrapure water is required. could be. The reason for the formation or elution of polystyrene sulfonic acid is largely unknown. As a result of intensive studies in view of the above situation, the present inventors have discovered that the amount of eluted polystyrene sulfonic acid can be halved by treating a crosslinked polystyrene sulfonic acid type cation exchange resin with a reducing agent such as sodium sulfite or dimethylaniline. , arrived at the present invention. The reason for this is unknown, but it is presumed that one of the reasons is that oxidized parts generated during the ion exchange resin manufacturing process are further cleaved and eluted during use, and such parts can be removed by treatment with a reducing agent. This is thought to be based on the fact that it disappears. The gist of the present invention is to use a crosslinked polystyrene sulfonic acid type cation exchange resin;
Salts of metals in a low valence state selected from stannous chloride; aldehydes, sugars, formic acid, oxalic acid, 1
- A method for producing a cation exchange resin with a small elution amount of polystyrene sulfonic acid, characterized by treating with a reducing agent selected from organic compounds with a low oxidation stage selected from tertiary amines and benzophenones. The present invention will be explained in more detail below. The crosslinked polystyrene sulfonic acid type cation exchange resin to be treated in the method of the present invention is a strongly acidic cation obtained by sulfonating a copolymer of a monovinyl compound such as styrene and a polyvinyl compound such as divinylbenzene. It is a replacement resin. The reducing agent used in the treatment is selected from those listed above, and among these, those that are soluble in water or a solvent that is soluble in water in any proportion are preferred. The amount of reducing agent used is about 0.01 to 20 g per wet cation exchange resin. For treatment with a reducing agent, the reducing agent is dissolved in water or a solvent that dissolves in water at an arbitrary ratio, a strongly acidic cation exchange resin is added to the solution, and the treatment is carried out at room temperature to 100°C for 2 hours.
~24 hours. This treatment eliminates oxidation sites (e.g. -OOH, -
O.) is reduced and stabilized. Although the amount of water or solvent used can be varied in any proportion, it is preferably 0.5 to 5 volumes per volume of strongly acidic cation exchange resin. Although the treatment temperature can be freely changed within the range of room temperature to 100°C, it is preferably 60 to 100°C in order to carry out the treatment quickly. After the treatment, the strongly acidic cation exchange resin is thoroughly washed with water and then washed with acid and alkali to remove the remaining reducing agent and by-products from the reduction reaction before it is ready for use. . EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples. Example 1 Gel-type crosslinked polystyrene particles containing 8% by weight of divinylbenzene synthesized by a known method
100 g was placed in a four-necked flask, 200 ml of dichloroethane and 700 g of sulfuric acid were added, and the resin was sulfonated while stirring at 80° C. for 10 hours. Then water
1000ml was slowly dropped into the flask. After separating the resin, wash it with a large amount of water until the pH reaches 6, take the resin into a four-necked flask, add 1000ml of water, and heat at 100℃.
The mixture was stirred for 4 hours. Transfer the obtained resin to a column and run 1000 ml of 2N hydrochloric acid, 3000 ml of demineralized water, 1500 ml of 5% saline solution, and 3000 ml of demineralized water using SV10.
Repeated times. This resin has an exchange capacity of 1.98meq/
ml, 4.63meq/gr, and water content 48.2% by weight.
100 ml of this resin was taken in Na form and placed in a 500 ml four-mouth tube, 100 ml of water and 6 g of ferrous chloride were added, and the mixture was treated at 100° C. for 8 hours while stirring. Then, after cooling the resin, separate it and add 1000ml of demineralized water,
It was washed sequentially with 500 ml of 1N hydrochloric acid, 1000 ml of demineralized water, 500 ml of 5% by weight saline, and 1000 ml of demineralized water. Example 2 The same treatment as in Example 1 was carried out except that 1 g of acidic sodium sulfite was used instead of 6 g of ferrous chloride, and then washing was carried out in the same manner. Example 3 The treatment and washing were carried out in the same manner as in Example 1 except that 2.0 g of dimethylaniline was used in place of 6 g of ferrous chloride in Example 1. Comparative Example 1 A sample was treated and washed in exactly the same manner as in Example 1 except that 6 g of ferrous chloride in Example 1 was removed. Test Example Elution Test Take 10.0 ml of the resin of Examples 1 to 3 and Comparative Example 1, pour 100 ml of 1N hydrochloric acid and 1000 ml of demineralized water, and
converted into form. The resin was then drained in a centrifuge at 3000 rpm for 5 minutes and placed in a 300 ml Erlenmeyer flask. Add 100ml of demineralized water to this and let it cool at room temperature.
After standing for 56 days, the absorbance of the supernatant was measured at 225μ.
The amount of polystyrene sulfonic acid eluted from the absorbance was calculated using the following formula. Polystyrene sulfonic acid amount mg/=23.98 x absorbance results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 架橋ポリスチレンスルホン酸型の陽イオン交
換樹脂を、亜硫酸、亜硫酸塩から選ばれる低級酸
素酸またはその塩;塩化第一鉄、塩化第一スズか
ら選ばれる低原子価状態にある金属の塩類;アル
デヒド類、糖類、ギ酸、蓚酸、1〜3級アミン、
ベンゾフエノンから選ばれる酸化階程の低い有機
化合物から選ばれる還元剤で処理することを特徴
とするポリスチレンスルホン酸の溶出量が少ない
陽イオン交換樹脂の製造法。
1 A cross-linked polystyrene sulfonic acid type cation exchange resin is mixed with a lower oxygen acid or its salt selected from sulfurous acid and sulfite; salts of metals in a low valence state selected from ferrous chloride and stannous chloride; aldehyde saccharides, formic acid, oxalic acid, primary to tertiary amines,
A method for producing a cation exchange resin with a small amount of elution of polystyrene sulfonic acid, characterized by treating with a reducing agent selected from organic compounds with a low oxidation stage selected from benzophenones.
JP57176765A 1982-10-07 1982-10-07 Preparation of cation exchange resin Granted JPS5966403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57176765A JPS5966403A (en) 1982-10-07 1982-10-07 Preparation of cation exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57176765A JPS5966403A (en) 1982-10-07 1982-10-07 Preparation of cation exchange resin

Publications (2)

Publication Number Publication Date
JPS5966403A JPS5966403A (en) 1984-04-14
JPH0567641B2 true JPH0567641B2 (en) 1993-09-27

Family

ID=16019421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57176765A Granted JPS5966403A (en) 1982-10-07 1982-10-07 Preparation of cation exchange resin

Country Status (1)

Country Link
JP (1) JPS5966403A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119344A (en) * 1987-11-02 1989-05-11 Tokyo Organ Chem Ind Ltd Method for decreasing eluate of cation-exchange resin of high acidity
JPH0299146A (en) * 1988-10-05 1990-04-11 Tokyo Organ Chem Ind Ltd Method for reducing eluted substance from mixed resin bed
JP4583570B2 (en) * 1999-12-06 2010-11-17 オルガノ株式会社 Cation exchange resin performance evaluation method and water treatment system management method using the same
KR101557269B1 (en) 2007-04-19 2015-10-06 쿠리타 고교 가부시키가이샤 Method for producing anion exchange resin anion exchange resin method for producing cation exchange resin cation exchange resin mixed bed resin and method for producing ultra-pure water for cleaning electronic device/material
JP5700901B2 (en) * 2007-04-19 2015-04-15 栗田工業株式会社 Method for producing cation exchange resin, method for producing cation exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials
JP2014077149A (en) * 2014-02-04 2014-05-01 Kurita Water Ind Ltd Method for producing cation exchange resin, cation exchange resin, mixed bed resin, and method for producing ultrapure water for washing electronic component material

Also Published As

Publication number Publication date
JPS5966403A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
US4732887A (en) Composite porous material, process for production and separation of metallic element
US2764563A (en) Cation exchange resins containing phos-
JP2539011B2 (en) Method for producing synthetic resin having anion exchange property
CA1149550A (en) Process for bromination of resins based on crosslinked vinylaromatic copolymers
JPH0567641B2 (en)
US2764564A (en) Resinous reaction products of phosphorus thiochloride and insoluble cross-linked vinyl aromatic copolymers
US3586644A (en) Ion exchangers from aromatic hydrocarbon polymer by reaction with sulfur halide followed by oxidation or reduction
JPH02208322A (en) Production of sulfonated resin
US4415678A (en) Removal of sulfate ions from brine using amorphous polymeric zirconium oxide formed within a macroporous polymer matrix
US5302623A (en) Method of stabilizing cation-exchange resins against oxidative degradation
JPS587412A (en) Chelate resin, its preparation, and process for adsorption treatment
US2469472A (en) Cation exchange materials
JP3225607B2 (en) Method of treating strongly basic anion exchange resin
US2844546A (en) Cation exchange resins having phosphorus acid functional groups and method of preparation thereof
US2361754A (en) Base exchange bodies and the preparation of the same
JPH11114430A (en) Cation exchange resin
JPS586245A (en) Chelate type ion exchange resin and production thereof and adsorbing method
SU954401A1 (en) Process for preparing sulfamine cationite
JPS6191082A (en) Novel inorganic-organic composite body and manufacture
JPS62145061A (en) Purification of n-methyl-2-pyrrolidone
JPS61283355A (en) Method for preventing release of impurities from strong acidic cation exchange resin
JPS6139848B2 (en)
SU1118647A1 (en) Method of obtaining sulfocationite
Wagner Matrix-formed adsorbing polymers
JPS6067521A (en) Crosslinking agent of high polymer and its preparation