JPH0567197A - Shape measuring instrument - Google Patents

Shape measuring instrument

Info

Publication number
JPH0567197A
JPH0567197A JP3225904A JP22590491A JPH0567197A JP H0567197 A JPH0567197 A JP H0567197A JP 3225904 A JP3225904 A JP 3225904A JP 22590491 A JP22590491 A JP 22590491A JP H0567197 A JPH0567197 A JP H0567197A
Authority
JP
Japan
Prior art keywords
measured
detecting means
photocurrent
slit light
position detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3225904A
Other languages
Japanese (ja)
Inventor
Kazutoshi Iketani
和俊 池谷
Mutsuko Gomi
睦子 五味
Yukifumi Tsuda
幸文 津田
Kunio Sannomiya
邦夫 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3225904A priority Critical patent/JPH0567197A/en
Publication of JPH0567197A publication Critical patent/JPH0567197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To quickly measure the shape of an object and to acquire luminance information at a measurement point. CONSTITUTION:This instrument in provided with a slit light scanning means 103 and a position detecting means 105 having the image pickup face where plural narrow and non-divided one-dimensional position detecting sensors are arranged in the breadthwise direction, and scattered light obtained by reflection from an object 101 to be measured is condensed on the position detecting means 105 by a condenser lens 106, and a photocurrent signal is outputted by a photocurrent detecting means 107, and a height calculating means 115 calculates height data of the object to be measured by this photocurrent signal, and a luminance calculating means 116 calculates luminance data of the object to be measured by the photocurrent signal, thereby quickly acquiring height data of the surface of the object to be measured and luminance data corresponding to the height data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非接触で物体の形状を
測定する形状測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring device for measuring the shape of an object in a non-contact manner.

【0002】[0002]

【従来の技術】従来の立体物測定装置としては、接触式
の三次元測定器が多く使用されているが、測定に時間が
かかるため非接触で高速に測定できる三次元測定器が開
発されている。非接触三次元測定器の一例として、特開
昭63−182503号公報には、レ−ザ光を用いた非
接触三次元測定器が提案されている。
2. Description of the Related Art As a conventional three-dimensional object measuring device, a contact type three-dimensional measuring device is often used. However, since it takes a long time to measure, a non-contact three-dimensional measuring device has been developed. There is. As an example of the non-contact three-dimensional measuring device, Japanese Patent Application Laid-Open No. 63-182503 proposes a non-contact three-dimensional measuring device using laser light.

【0003】図4に、その従来例の基本構成を示す。4
01はレ−ザ発振器、402はレ−ザ発振器401より
発射されたレ−ザビ−ム、403は被測定物、404は
被測定物403を撮影するテレビカメラ、405はテレ
ビカメラ404で撮影した被測定物403の映像情報を
A/D変換するA/Dコンバ−タである。406はA/
D変換された画像情報の雑音成分を除去する雑音除去回
路、407は画像メモリ、408は画像情報の中で最大
値を見つけ出し、その時のアドレス情報を検出するアド
レス検出器、409は画像メモリ407に記憶されてい
る画像情報の中から、アドレス検出器408で検出され
たアドレス情報をもとに小領域の画像情報を抽出し、重
心座標を計算する重心座標演算器である。410は装置
の制御を行うCPU、411はCPUメモリ、412は
CRTコントロ−ラ、413はモニタである。
FIG. 4 shows the basic configuration of the conventional example. Four
Reference numeral 01 is a laser oscillator, 402 is a laser beam emitted from the laser oscillator 401, 403 is an object to be measured, 404 is a television camera for photographing the object 403 to be measured, and 405 is a television camera 404 for photographing. It is an A / D converter for A / D converting the image information of the DUT 403. 406 is A /
A noise removal circuit for removing noise components of D-converted image information, 407 is an image memory, 408 is an address detector that finds the maximum value in the image information and detects address information at that time, and 409 is an image memory 407. It is a barycentric coordinate calculator that calculates barycentric coordinates by extracting image information of a small area from the stored image information based on the address information detected by the address detector 408. 410 is a CPU for controlling the apparatus, 411 is a CPU memory, 412 is a CRT controller, and 413 is a monitor.

【0004】以下、その動作を説明する。レ−ザ発振器
401より発射されたレ−ザビ−ム402を被測定物4
03に照射し、その被測定物403をテレビカメラ40
4で撮影する。テレビカメラ404で撮影した映像はA
/Dコンバ−タ405でA/D変換され、雑音除去回路
406に入力され、定められた値より小さい画像情報
は”0”に変換された後、画像メモリ407に格納され
る。
The operation will be described below. The laser beam 402 emitted from the laser oscillator 401 is used as the measured object 4
03, and the measured object 403 is displayed on the TV camera 40.
Shoot at 4. The video shot with the TV camera 404 is A
A / D converter 405 performs A / D conversion, inputs to noise removal circuit 406, and image information smaller than a predetermined value is converted to "0" and then stored in image memory 407.

【0005】雑音除去された画像情報はアドレス検出器
408に入力され、画像情報が最大のときのXおよびY
座標をアドレスとして出力する。このアドレスは重心座
標演算器409に引き渡され、この値を中心にその周辺
の小領域の画像情報とアドレス情報により重心座標が計
算され、この重心座標により被測定物403までの距離
を第5図に示す三角測量の原理を用いて計算して、被測
定物403の形状を求めている。
The noise-removed image information is input to the address detector 408, and X and Y when the image information is maximum.
Output coordinates as addresses. This address is passed to the barycentric coordinate calculator 409, and the barycentric coordinate is calculated based on this value based on the image information and the address information of the small area around the barycentric coordinate. The shape of the object 403 to be measured is obtained by calculation using the principle of triangulation shown in FIG.

【0006】即ち、図5は三角測量の原理を示してお
り、レ−ザビ−ム501を対象物上の点P502に照射
し、その時の反射光503をテレビカメラ504などで
撮像する。このとき、被測定物の表面の凹凸により生じ
たテレビカメラ504のスクリ−ン505上での像の移
動量を抽出することにより、基線AB506と反射光5
03との交差角θb及びθdが求められ、これらの値と
レ−ザビ−ム501の照射角、即ち基線AB506とレ
−ザビ−ム501との交差角θa及びθcと基線AB5
06の長さLから物体表面の三次元座標情報を取得する
ことができる。
That is, FIG. 5 shows the principle of triangulation. A laser beam 501 is applied to a point P502 on an object, and reflected light 503 at that time is picked up by a television camera 504 or the like. At this time, by extracting the movement amount of the image on the screen 505 of the television camera 504 caused by the unevenness of the surface of the object to be measured, the baseline AB 506 and the reflected light 5 are extracted.
And the irradiation angles of the laser beam 501, that is, the intersection angles .theta.a and .theta.c between the base line AB506 and the laser beam 501 and the base line AB5.
The three-dimensional coordinate information of the object surface can be acquired from the length L of 06.

【0007】[0007]

【発明が解決しようとする課題】しかし、物体の形状を
測定して、その物体を検査したり認識したりする時にそ
の物体の表面の輝度情報も必要になる場合が多い。例え
ば、第3回日本ロボット学会学術講演会(昭和60年)
「濃淡画像の境界線として抽出された線分からの線図形
構成」では、物体の輝度情報(濃淡情報)を用いること
により物体のエッジ(境界線)を抽出する有効な手法が
提案されており、検査や認識を行う際のデータとして形
状情報に加え輝度情報が有効であることがわかる。また
製造ライン等の検査工程への組み込みを考えた場合検査
時間が限られてくるため、形状情報及び輝度情報を高速
に計測する必要がある。しかし図4に示した従来の三次
元測定器では、被測定物の形状を非接触で測定する事は
できるが、被測定物の表面の輝度情報までは読み取るこ
とはできないという課題があり、またテレビカメラを用
いているため、テレビカメラの撮像速度によって測定速
度が限定されてしまっている。本発明は上記従来技術の
課題を解決するもので、被測定物の形状を非接触で高速
に測定すると同時に、被測定物の表面の輝度情報までも
読み取ることができる形状計測装置を提供することを目
的とする。
However, when measuring the shape of an object and inspecting or recognizing the object, the brightness information of the surface of the object is often necessary. For example, the 3rd Academic Conference of the Robotics Society of Japan (1985)
In "Line drawing configuration from line segments extracted as boundary lines of grayscale image", an effective method of extracting the edge (boundary line) of the object by using the luminance information (grayscale information) of the object is proposed. It can be seen that the luminance information is effective in addition to the shape information as the data for the inspection and recognition. Further, when considering the incorporation into the inspection process of a manufacturing line or the like, the inspection time is limited, so it is necessary to measure the shape information and the brightness information at high speed. However, although the conventional three-dimensional measuring device shown in FIG. 4 can measure the shape of the object to be measured in a non-contact manner, there is a problem that it is not possible to read the brightness information of the surface of the object to be measured. Since a TV camera is used, the measurement speed is limited by the imaging speed of the TV camera. The present invention solves the above-mentioned problems of the prior art, and provides a shape measuring device capable of measuring the shape of an object to be measured at high speed in a non-contact manner and also reading the brightness information of the surface of the object to be measured. With the goal.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明は、スリット光を被測定物へ照射するスリット
光走査手段と、幅の細い非分割型の1次元位置検出セン
サを、その幅方向に複数個配列して構成した撮像面を有
する位置検出手段と、前記スリット光の照射により前記
被測定物上から反射して得られる散乱光を集光レンズで
前記位置検出手段に集光し光電流信号を出力する光電流
検出手段と、前記光電流検出手段からの光電流信号によ
り前記被測定物の高さデ−タを演算する高さ演算手段
と、前記光電流信号により前記被測定物の輝度デ−タを
演算する輝度演算手段と、全体系を制御する装置制御手
段から構成されている。
In order to achieve this object, the present invention provides a slit light scanning means for irradiating an object to be measured with slit light and a non-divided one-dimensional position detection sensor having a narrow width. Position detecting means having an imaging surface formed by arranging a plurality in the width direction, and scattered light obtained by being reflected from the object to be measured by irradiation of the slit light is condensed on the position detecting means by a condenser lens. A photocurrent detecting means for outputting a photocurrent signal; a height calculating means for calculating height data of the object to be measured by the photocurrent signal from the photocurrent detecting means; It is composed of a brightness calculation means for calculating the brightness data of the object to be measured and a device control means for controlling the entire system.

【0009】[0009]

【作用】本発明は上記構成によって、スリット光を被測
定物に照射し、被測定物から反射して得られる散乱光を
集光レンズで位置検出手段に導き、被測定物上の高さの
凹凸に従って変化する位置検出手段上の散乱光の集光位
置を光電流信号で検出し、その光電流信号から高さ演算
手段及び輝度演算手段により被測定物表面の高さデータ
及びその高さデータに対応した輝度データを高速に取得
することができる。
According to the present invention, with the above structure, the slit light is applied to the object to be measured, and the scattered light obtained by being reflected from the object to be measured is guided to the position detecting means by the condensing lens so that the height above the object to be measured can be improved. The condensing position of scattered light on the position detecting means, which changes according to the unevenness, is detected by a photocurrent signal, and height data and height data of the surface of the object to be measured are calculated from the photocurrent signal by the height calculating means and the brightness calculating means. The luminance data corresponding to can be acquired at high speed.

【0010】[0010]

【実施例】以下、本発明の一実施例について、図面を参
照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例における形状計測
装置のブロック結線図である。図1において、101は
被測定物、102はレーザ光源、103はスリット光走
査手段、104はスリット光、105は位置検出手段、
106は集光レンズ、107は光電流検出手段、108
及び109は光電流検出手段107からの光電流信号、
110は光電流信号を電圧信号に変化するI/V変換手
段、111は電圧信号をデジタル信号に変換するA/D
変換手段、112はデジタル信号を一次的に記憶してお
く画像メモリ、113はスリット光走査手段103を制
御するスキャナ制御ドライバ、114は全体を制御する
制御MPU、115は画像メモリ112に記憶されたデ
ジタル信号により三次元形状情報を計算する高さ演算手
段、116は画像メモリ112に記憶されたデジタル信
号により被測定物101表面の輝度情報を計算する輝度
演算手段、117はMPUバスである。
FIG. 1 is a block connection diagram of a shape measuring apparatus according to an embodiment of the present invention. In FIG. 1, 101 is an object to be measured, 102 is a laser light source, 103 is slit light scanning means, 104 is slit light, 105 is position detecting means,
106 is a condenser lens, 107 is photocurrent detection means, and 108
And 109 are photocurrent signals from the photocurrent detection means 107,
110 is an I / V conversion means for converting a photocurrent signal into a voltage signal, and 111 is an A / D for converting the voltage signal into a digital signal.
A conversion unit, 112 is an image memory that temporarily stores digital signals, 113 is a scanner control driver that controls the slit light scanning unit 103, 114 is a control MPU that controls the whole, and 115 is stored in the image memory 112. Height calculation means for calculating three-dimensional shape information by a digital signal, 116 a brightness calculation means for calculating brightness information on the surface of the object 101 to be measured by a digital signal stored in the image memory 112, and 117 a MPU bus.

【0012】図2は光電流検出手段107の撮像面を構
成する位置検出手段105の構成図である。非分割型の
一次元位置検出センサ201を幅方向に128個配列し
て撮像面を構成している。本実施例では、非分割型の一
次元位置検出センサ201に、PSD(Position Sensi
tive Detector:半導***置検出素子)を用いており、
PSDに入射する被測定物からのスリット光の散乱光の
入射位置は、素子の両端電極202及び203に流れる
電流が各電極間との距離に反比例する特徴を利用して求
めることができる。即ち、両電極202及び203に流
れる電流I1及びI2より式(1)を用いて位置データ
を計算できる。
FIG. 2 is a block diagram of the position detecting means 105 constituting the image pickup surface of the photocurrent detecting means 107. 128 non-divided one-dimensional position detection sensors 201 are arranged in the width direction to form an imaging surface. In this embodiment, a PSD (Position Sensi) is used for the non-division type one-dimensional position detection sensor 201.
tive Detector: semiconductor position detection element) is used,
The incident position of the scattered light of the slit light from the DUT which is incident on the PSD can be obtained by utilizing the feature that the current flowing through the electrodes 202 and 203 of the element is inversely proportional to the distance between the electrodes. That is, the position data can be calculated using the equation (1) from the currents I1 and I2 flowing through the electrodes 202 and 203.

【0013】 位置データ=K・(I1−I2)/(I1+I2) ---------(1) なお、Kは正規化するための係数である。Position data = K · (I1−I2) / (I1 + I2) --------- (1) Note that K is a coefficient for normalization.

【0014】一方、輝度データは、両電極202及び2
03に流れる電流I1及びI2より式(2)を用いて求
めることができる。
On the other hand, the brightness data is obtained by comparing the electrodes 202 and 2 with each other.
It can be obtained from the currents I1 and I2 flowing in 03 using Equation (2).

【0015】 輝度データ=(I1+I2) ---------(2) 光電流検出手段107の撮像面をこのような構成にする
ことにより、従来のCCDカメラによる撮像方式に比べ
より高速にスリット光の散乱光を撮像することができ
る。即ち、従来のCCDカメラによる撮像方式では、1
画面(例えば垂直走査480ライン)を撮像するのに3
3ms必要であり、1点の撮像時間に換算すると約60μ
sとなる。これに対し、本実施例によれば各ラインでの
一次元位置検出センサの応答速度は約10μsであり、
センサそれぞれに対応したI/V変換手段を設けること
により従来方式より約6倍の高速計測が実現でき、かつ
同時に輝度情報も高速に取得することができる。
Luminance data = (I1 + I2) --------- (2) By configuring the image pickup surface of the photocurrent detection means 107 in this way, it is faster than the image pickup method by the conventional CCD camera. The scattered light of the slit light can be imaged. That is, in the conventional imaging method using the CCD camera, 1
3 to image the screen (for example, vertical scanning 480 lines)
3ms is required, and when converted to the imaging time of one point, it is about 60μ
s. On the other hand, according to this embodiment, the response speed of the one-dimensional position detection sensor on each line is about 10 μs,
By providing the I / V conversion means corresponding to each sensor, high-speed measurement about 6 times faster than the conventional method can be realized, and at the same time, the brightness information can be acquired at high speed.

【0016】図3はA/D変換手段111の構成要素を
示す図であり、前段のI/V変換手段110からの8個
の信号301はマルチプレクサ302により時分割的に
統合され、1個のA/D変換器303でデジタル信号に
変換されメモリ書き込み制御回路304により画像メモ
リ112に書き込まれる。A/D変換手段111は図4
の構成要素32個で構成されており、位置検出手段10
5の両電極202及び203に流れる電流I1及びI2
をそれぞれA/D変換している。このA/D変換及びメ
モリ書き込みを1信号当り約1μs強で実行しており、
センサの応答速度約10μsを実現している。
FIG. 3 is a diagram showing the components of the A / D conversion means 111. The eight signals 301 from the I / V conversion means 110 at the preceding stage are integrated by a multiplexer 302 in a time division manner, and one signal 301 is obtained. The digital signal is converted by the A / D converter 303 and written in the image memory 112 by the memory write control circuit 304. The A / D conversion means 111 is shown in FIG.
The position detecting means 10 is composed of 32 components.
Currents I1 and I2 flowing through both electrodes 202 and 203
Are A / D converted. This A / D conversion and memory writing are executed in a little over 1 μs per signal,
The response speed of the sensor is about 10 μs.

【0017】以上のように構成された形状計測装置につ
いて、以下にその動作を説明する。レーザ光源102か
らのレーザ光をスリット光走査手段103によりスリッ
ト光104に変換し被測定物101上に照射する。スリ
ット光104の照射により被測定物101上から反射し
てくる散乱光を、集光レンズ106及び複数配列された
位置検出手段105から構成される光電流検出手段10
7で撮像する。位置検出手段105からの光電流信号1
08及び109は、それぞれI/V変換手段110によ
り電圧信号に変換され、さらにA/D変換手段111に
より所定の同期信号のタイミングで1スリット当り約1
0μsでデジタル信号に変換され、画像メモリ112に
書き込まれる。その後、スキャナ制御ドライバ113か
らの制御信号によりスリット光走査手段103でスリッ
ト光104を被測定物101上の異なる位置に移動さ
せ、上記の画像メモリ112までの信号処理を繰り返す
ことにより高速に被測定物101全面をスリット走査す
る。
The operation of the shape measuring apparatus configured as described above will be described below. Laser light from the laser light source 102 is converted into slit light 104 by the slit light scanning means 103, and the slit light 104 is irradiated onto the DUT 101. The scattered current reflected from the object to be measured 101 by the irradiation of the slit light 104 is composed of a condensing lens 106 and a plurality of arranged position detecting means 105.
Image at 7. Photocurrent signal 1 from position detecting means 105
Each of 08 and 109 is converted into a voltage signal by the I / V conversion means 110, and further about 1 per slit at a timing of a predetermined synchronization signal by the A / D conversion means 111.
It is converted into a digital signal in 0 μs and written in the image memory 112. After that, by the control signal from the scanner control driver 113, the slit light scanning means 103 moves the slit light 104 to a different position on the object 101 to be measured, and the signal processing up to the image memory 112 is repeated to measure the object at high speed. The entire surface of the object 101 is slit-scanned.

【0018】次に高さ演算手段において、各スリットの
各一次元位置検出センサ(PSD)毎のデジタル信号よ
り式(1)に基づいて各スリットの各PSD毎の散乱光
入射位置を計算し、これを測定点の位置信号とし、図5
に示した三角測量の原理に基づき被測定物101の測定
点の所定の座標系に対する三次元形状情報を取得する。
また、輝度演算手段116において、各スリットの各一
次元位置検出センサ(PSD)毎のデジタル信号より式
(2)に基づいて各スリットの各PSD毎の光電流値の
総和を計算し、これを測定点の輝度信号とし、高さ演算
手段115で求めた三次元形状情報に一対一で対応する
被測定物101の表面の輝度情報を取得する。なお、こ
の一連の動作は制御MPU114により制御される。
Next, in the height calculation means, the scattered light incident position of each PSD of each slit is calculated from the digital signal of each one-dimensional position detection sensor (PSD) of each slit based on the equation (1), This is used as the position signal of the measurement point, and FIG.
Based on the principle of triangulation shown in (3), the three-dimensional shape information of the measurement point of the DUT 101 with respect to a predetermined coordinate system is acquired.
Further, in the brightness calculation means 116, the sum of the photocurrent values for each PSD of each slit is calculated from the digital signal for each one-dimensional position detection sensor (PSD) of each slit based on equation (2), and this is calculated. The brightness information of the surface of the object to be measured 101, which corresponds to the three-dimensional shape information obtained by the height calculation means 115 on a one-to-one basis, is acquired as the brightness signal of the measurement point. The series of operations is controlled by the control MPU 114.

【0019】以上のように本実施例によれば、スリット
光を被測定物へ照射し、幅の細い非分割型の1次元位置
検出センサをその幅方向に複数個配列して構成した撮像
面を有する位置検出手段により、前記スリット光の被測
定物上から反射して得られる散乱光を撮像し、そのセン
サからの光電流信号を用いて高さ演算手段と輝度演算手
段により被測定物表面の高さデータおよびその高さデー
タに対応した輝度データを高速に取得することができ、
その物体の形状情報とさらに輝度情報を用いることによ
り物体のエッジ検出等のアルゴリズムを簡略化できるな
ど、三次元形状を有する物体の認識や検査等を高精度か
つ効率的に行うことができる。
As described above, according to the present embodiment, the imaging surface formed by irradiating the object to be measured with slit light and arranging a plurality of narrow non-divided one-dimensional position detecting sensors in the width direction thereof. By the position detecting means having the above, the scattered light obtained by reflecting the slit light from the object to be measured is imaged, and the surface of the object to be measured is calculated by the height calculating means and the brightness calculating means using the photocurrent signal from the sensor. Height data and brightness data corresponding to the height data can be acquired at high speed,
By using the shape information of the object and the brightness information, an algorithm such as edge detection of the object can be simplified, and recognition and inspection of an object having a three-dimensional shape can be performed with high accuracy and efficiency.

【0020】[0020]

【発明の効果】以上のように本発明は、スリット光を被
測定物へ照射するスリット光走査手段と、幅の細い非分
割型の1次元位置検出センサを、その幅方向に複数個配
列して構成した撮像面を有する位置検出手段と、前記ス
リット光の照射により前記被測定物上から反射して得ら
れる散乱光を集光レンズで前記位置検出手段に集光し光
電流信号を出力する光電流検出手段と、前記光電流検出
手段からの光電流信号により前記被測定物の高さデ−タ
を演算する高さ演算手段と、前記光電流信号により前記
被測定物の輝度デ−タを演算する輝度演算手段とを設け
ることにより、被測定物表面の高さデータおよびその高
さデータに対応した輝度データを高速に取得することが
でき、その物体の形状情報とさらに輝度情報を用いるこ
とにより高精度かつ効率的な三次元形状を有する物体の
認識や検査等を可能とする優れた形状計測装置を実現で
きるものである。
As described above, according to the present invention, a plurality of slit light scanning means for irradiating an object to be measured with slit light and a non-divided one-dimensional position detecting sensor having a narrow width are arranged in the width direction. Position detecting means having an image pickup surface configured as described above, and scattered light obtained by being reflected from the object to be measured by irradiation of the slit light is condensed by the condensing lens on the position detecting means and outputs a photocurrent signal. Photocurrent detecting means, height calculating means for calculating height data of the object to be measured based on the photocurrent signal from the photocurrent detecting means, and brightness data of the object to be measured based on the photocurrent signal. By providing the brightness calculating means for calculating, the height data of the surface of the object to be measured and the brightness data corresponding to the height data can be acquired at high speed, and the shape information of the object and further the brightness information are used. Is it highly accurate Those that can achieve excellent shape measurement apparatus capable of recognition and inspection of an object having an efficient three-dimensional shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における形状計測装置のブロ
ック結線図
FIG. 1 is a block connection diagram of a shape measuring apparatus according to an embodiment of the present invention.

【図2】同実施例における形状計測装置の要部である位
置検出手段の概念図
FIG. 2 is a conceptual diagram of a position detecting means which is a main part of the shape measuring apparatus in the embodiment.

【図3】同実施例における形状計測装置の要部であるA
/D変換手段の詳細ブロック図
FIG. 3 is a main part A of the shape measuring apparatus in the embodiment.
Detailed block diagram of D / D conversion means

【図4】従来の形状計測装置のブロック結線図FIG. 4 is a block connection diagram of a conventional shape measuring device.

【図5】三角測量の原理を示す幾何学的配置図[Figure 5] Geometric layout showing the principle of triangulation

【符号の説明】[Explanation of symbols]

101 被測定物 102 レーザ光源 103 スリット光走査手段 104 スリット光 105 位置検出手段 106 集光レンズ 107 光電流検出手段 108 光電流信号 110 I/V変換手段 111 A/D変換手段 112 画像メモリ 113 スキャナ制御ドライバ 114 制御MPU 115 高さ演算手段 116 輝度演算手段 101 Object to be Measured 102 Laser Light Source 103 Slit Light Scanning Means 104 Slit Light 105 Position Detection Means 106 Condenser Lens 107 Photocurrent Detection Means 108 Photocurrent Signals 110 I / V Conversion Means 111 A / D Conversion Means 112 Image Memory 113 Scanner Control Driver 114 Control MPU 115 Height calculating means 116 Brightness calculating means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宮 邦夫 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kunio Sannomiya 3-10-10 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture Matsushita Giken Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スリット光を被測定物へ照射するスリッ
ト光走査手段と、幅の細い非分割型の1次元位置検出セ
ンサを、その幅方向に複数個配列して構成した撮像面を
有する位置検出手段と、前記スリット光の走査により前
記被測定物上から反射して得られる散乱光を集光レンズ
で前記位置検出手段に集光し光電流信号を出力する光電
流検出手段と、前記光電流検出手段からの光電流信号に
より前記被測定物の高さデ−タを演算する高さ演算手段
と、前記光電流信号により前記被測定物の輝度デ−タを
演算する輝度演算手段と、全体系を制御する装置制御手
段を具備することを特徴とする形状計測装置。
1. A position having an imaging surface formed by arranging a plurality of slit light scanning means for irradiating an object to be measured with slit light and a non-divided one-dimensional position detection sensor having a narrow width in the width direction. A detecting means, a photocurrent detecting means for collecting a scattered light obtained by reflecting from the object to be measured by scanning the slit light on the position detecting means with a condenser lens, and outputting a photocurrent signal; Height calculating means for calculating height data of the object to be measured by a photocurrent signal from the current detecting means, and brightness calculating means for calculating brightness data of the object to be measured by the photocurrent signal; A shape measuring device comprising a device control means for controlling the entire system.
JP3225904A 1991-09-05 1991-09-05 Shape measuring instrument Pending JPH0567197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225904A JPH0567197A (en) 1991-09-05 1991-09-05 Shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225904A JPH0567197A (en) 1991-09-05 1991-09-05 Shape measuring instrument

Publications (1)

Publication Number Publication Date
JPH0567197A true JPH0567197A (en) 1993-03-19

Family

ID=16836713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225904A Pending JPH0567197A (en) 1991-09-05 1991-09-05 Shape measuring instrument

Country Status (1)

Country Link
JP (1) JPH0567197A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161302A (en) * 1988-12-14 1990-06-21 Juki Corp Shape measuring instrument
JPH03158710A (en) * 1989-11-16 1991-07-08 Toyota Motor Corp Image data generating device
JPH03162610A (en) * 1989-06-19 1991-07-12 Fujitsu Ltd Height measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161302A (en) * 1988-12-14 1990-06-21 Juki Corp Shape measuring instrument
JPH03162610A (en) * 1989-06-19 1991-07-12 Fujitsu Ltd Height measuring instrument
JPH03158710A (en) * 1989-11-16 1991-07-08 Toyota Motor Corp Image data generating device

Similar Documents

Publication Publication Date Title
US5319442A (en) Optical inspection probe
JPH02114156A (en) Inspection device of mounted substrate
JPS6211110A (en) Distance measuring apparatus
US5880844A (en) Hybrid confocal microscopy
JP2861800B2 (en) Shape measuring device
JPH0567197A (en) Shape measuring instrument
JPS5856972B2 (en) position detection device
JPH11166813A (en) Dimension measuring circuit using image processing
JPH11241916A (en) Height measuring method, height data processing method, and height measuring device
JP3039704B2 (en) Printing evaluation method and printing evaluation device
KR940003791B1 (en) Width measuring device
EP0939294A1 (en) Determining topographical values
JP2000003444A (en) Pattern matching method
JP3381420B2 (en) Projection detection device
JPH07119705B2 (en) Electronic component inspection device
JP3072787B2 (en) Printing evaluation method and printing evaluation device
JPH0534117A (en) Image processing method
JP2701872B2 (en) Surface inspection system
JPS624851B2 (en)
JP2705458B2 (en) Mounting board appearance inspection device
JP3072788B2 (en) Printing evaluation method and printing evaluation device
JP3029142B2 (en) Printing evaluation method and printing evaluation device
JPH07324913A (en) Measuring method of dimension
JPH0621179A (en) Erasing method for eliminated area of ic chip
JP2564962B2 (en) Stand-off measuring device for semiconductor device