JPH0565811A - Structure of combustion chamber for two-cycle internal combustion engine - Google Patents

Structure of combustion chamber for two-cycle internal combustion engine

Info

Publication number
JPH0565811A
JPH0565811A JP22715091A JP22715091A JPH0565811A JP H0565811 A JPH0565811 A JP H0565811A JP 22715091 A JP22715091 A JP 22715091A JP 22715091 A JP22715091 A JP 22715091A JP H0565811 A JPH0565811 A JP H0565811A
Authority
JP
Japan
Prior art keywords
valve
exhaust valve
exhaust
valves
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22715091A
Other languages
Japanese (ja)
Inventor
Hideo Einaga
秀男 永長
Toshiaki Asada
俊昭 浅田
Manabu Tateno
学 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22715091A priority Critical patent/JPH0565811A/en
Publication of JPH0565811A publication Critical patent/JPH0565811A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To secure a high exhausting efficiency by increasing the quantity of burnt combustion gas exhausted from a combustion chamber in the initial period of opening an exhaust valve. CONSTITUTION:A pair of inlet valves 12 are arranged on one side of the inner wall of a cylinder head, and a pair of first exhaust valves 14a and a second exhaust valve 14b are arranged on the other side of the inner wall of the cylinder head. An opening between the peripheral edge part of the inlet valve 12 located on the side of the exhaust valves 14a, 14b and the valve seat is closed by a masking wall over the whole period of opening the inlet valve 12. In a region in which the distance the first exhaust valve 14a and the second exhaust valve 14b in proximity to each other is extremely short, the openings of the exhaust valves 14a, 14b are positioned opposite to each other. The tilt angle of a valve stem of the first exhaust valve 14a and the tilt angle of a valve stem of the second exhaust valve 14b are different from each other, and thus, the openings of the respective exhaust valves 14a, 14b extend and intersect each other obliquely in a plane of projection of the openings of the respective exhaust valves 14a, 14b, in which the openings of the exhaust valves 14a, 14b positioned opposite to each other are projected so as to be overlapped with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2サイクル内燃機関の燃
焼室構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion chamber structure for a two-cycle internal combustion engine.

【0002】[0002]

【従来の技術】シリンダヘッド内壁面の一側に一対の給
気弁を隣接配置すると共にシリンダヘッド内壁面の他側
に一対の排気弁を隣接配置し、排気弁の弁径を大きくし
て給気弁の弁径とほぼ等しく形成した2サイクル内燃機
関の燃焼室構造が公知である(特開平2-64221号公報参
照)。この2サイクル内燃機関では互いに隣接配置され
た一対の排気弁の周縁部間の距離が最も近い近接領域に
おいて排気弁周縁部とその弁座間に形成される排気弁の
開口が互いに対面している。更に、一対の排気弁の弁軸
が互いに平行に配置されており、従って上述の近接領域
に形成される各排気弁開口が互いに重なるように投影し
た各排気弁開口の投影面において各排気弁開口が完全に
重なるように各排気弁が配置されている。
2. Description of the Related Art A pair of air supply valves are arranged adjacently on one side of an inner wall surface of a cylinder head, and a pair of exhaust valves are arranged adjacently on the other side of the inner wall surface of the cylinder head to increase the valve diameter of the exhaust valve. A combustion chamber structure of a two-cycle internal combustion engine, which is formed to have a diameter substantially equal to that of the air valve, is known (see Japanese Patent Laid-Open No. 2-64221). In this two-cycle internal combustion engine, the exhaust valve openings formed between the exhaust valve peripheral edge portion and its valve seat face each other in the proximity region where the distance between the peripheral edge portions of the pair of exhaust valves arranged adjacent to each other is the shortest. Further, the valve axes of the pair of exhaust valves are arranged in parallel with each other, and therefore, the exhaust valve openings are formed on the projection plane of the exhaust valve openings projected so that the exhaust valve openings formed in the above-mentioned adjacent region overlap each other. The exhaust valves are arranged so that they completely overlap each other.

【0003】2サイクル内燃機関では排気弁の開弁開始
直後、即ち排気弁のリフト量が小さいときに、燃焼室内
の高圧既燃ガスが排気弁の開口を介して急激に排出さ
れ、所謂ブローダウンを生ずる。このブローダウン作用
が強力なほど燃焼室内の既燃ガスが速やかに排出されて
燃焼室内の圧力が速やかに低下され、その結果燃焼室内
への新気の流入が促進される。上述の2サイクル内燃機
関では排気弁の弁径を大きくして給気弁の弁径とほぼ等
しく形成しているので、排気弁の開弁開始直後における
排気弁の開口面積が大きくなり、その結果強力なブロー
ダウン作用が得られ、斯くして良好な掃気効率が確保さ
れるようにしている。
In a two-cycle internal combustion engine, immediately after the opening of the exhaust valve is started, that is, when the lift amount of the exhaust valve is small, the high-pressure burned gas in the combustion chamber is rapidly discharged through the opening of the exhaust valve, so-called blowdown. Cause The stronger the blowdown action is, the more quickly the burnt gas in the combustion chamber is discharged and the pressure in the combustion chamber is promptly lowered, and as a result, the inflow of fresh air into the combustion chamber is promoted. In the above-mentioned two-cycle internal combustion engine, the valve diameter of the exhaust valve is made large so as to be almost equal to the valve diameter of the intake valve, so the opening area of the exhaust valve becomes large immediately after the opening of the exhaust valve starts, and as a result, A strong blowdown action is obtained, thus ensuring good scavenging efficiency.

【0004】[0004]

【発明が解決しようとする課題】ところで、排気弁のリ
フト量が小さいブローダウン期間には燃焼室内の既燃ガ
スが、排気弁の開口周りに位置する円板状の燃焼室領
域、即ちカーテン領域を介して排気弁開口からカーテン
状に流出される。このカーテン領域の直径は排気弁開口
の直径よりもやや大きく、また排気弁のリフト量が小さ
いのでカーテン領域の厚みは薄い。
By the way, during the blowdown period in which the lift amount of the exhaust valve is small, the burnt gas in the combustion chamber is a disc-shaped combustion chamber region located around the opening of the exhaust valve, that is, a curtain region. Through the exhaust valve opening in a curtain shape. The diameter of this curtain region is slightly larger than the diameter of the exhaust valve opening, and the lift amount of the exhaust valve is small, so the curtain region is thin.

【0005】しかしながら、上述の2サイクル内燃機関
の燃焼室構造では、互いに隣接配置された排気弁間の距
離が最も近い近接領域において互いに対面している各排
気弁の開口部分が、上述の投影面上において完全に重な
っている。このように互いに対面している各排気弁の開
口部分が投影面上において完全に重なるように各排気弁
が配置されると共にカーテン領域の直径が排気弁開口の
直径よりもやや大きいので、ブローダウン期間において
近接領域内に位置する各排気弁のカーテン領域の多くの
部分が互いに重なり合ってしまうことになる。この各排
気弁のカーテン領域の重なり部分内を通過する既燃ガス
の一部は一方の排気弁の開口から排出され、残りの部分
は他方の排気弁の開口から排出される。しかしながら、
このカーテン領域の重なり部分内を通過する既燃ガスは
本来どちらか一方の排気弁の開口から全量排出されうる
ものである。従って、排気弁の弁径を大きく形成して排
気弁の開口面積を大きくしていても、このようにカーテ
ン領域が重なる分だけ排気弁の開口面積が無駄になって
しまう。斯くしてブローダウン期間における既燃ガスの
排出量が減少してブローダウン作用が弱まり、その結果
掃気効率が低下してしまうという問題が生ずる。
However, in the above-mentioned combustion chamber structure of the two-cycle internal combustion engine, the opening portions of the exhaust valves facing each other in the proximity region where the distance between the exhaust valves arranged adjacent to each other is the shortest, the above-mentioned projection surface. It completely overlaps above. In this way, the exhaust valves are arranged so that the opening portions of the exhaust valves facing each other are completely overlapped on the projection surface, and the diameter of the curtain region is slightly larger than the diameter of the exhaust valve opening, so blowdown Many parts of the curtain region of each exhaust valve located in the proximity region will overlap each other for a period of time. A part of the burnt gas passing through the overlapping portion of the curtain regions of the exhaust valves is discharged from the opening of one exhaust valve, and the remaining portion is discharged from the opening of the other exhaust valve. However,
The burned gas passing through the overlapping portion of the curtain region can be completely discharged from the opening of either one of the exhaust valves. Therefore, even when the valve diameter of the exhaust valve is increased to increase the opening area of the exhaust valve, the opening area of the exhaust valve is wasted by the overlap of the curtain regions. Thus, the amount of burned gas discharged during the blowdown period is reduced, the blowdown action is weakened, and as a result, the scavenging efficiency is reduced.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、互いに隣接配置された排気弁間の
距離が最も近い領域において排気弁とその弁座間に形成
される排気弁の開口が互いに対面している2サイクル内
燃機関の燃焼室構造において、上述の領域に形成される
各排気弁開口が互いに重なるように投影した各排気弁開
口の投影面において各排気弁開口が互いに斜めに交差し
て延びるように各排気弁を配置している。
In order to solve the above problems, according to the present invention, an exhaust valve formed between an exhaust valve and its valve seat in a region where the distance between the exhaust valves arranged adjacent to each other is the shortest. In the combustion chamber structure of the two-cycle internal combustion engine in which the exhaust valve openings face each other, the exhaust valve openings are projected in such a manner that the exhaust valve openings formed in the above-mentioned region overlap each other. The exhaust valves are arranged so as to extend diagonally.

【0007】[0007]

【作用】互いに隣接配置された排気弁間の距離が最も近
い領域に形成される各排気弁開口が互いに重なるように
投影した各排気弁開口の投影面において各排気弁開口が
互いに斜めに交差して延びているので、排気弁の開弁期
間初期において互いに隣接配置された各排気弁の開口周
りに位置する燃焼室領域、即ちカーテン領域の重なりが
減少する。斯くして排気弁の開弁期間初期に各排気弁の
カーテン領域内を通って各排気弁開口から排出される既
燃ガス量が増大する。
In the projection plane of the exhaust valve openings formed so that the exhaust valve openings formed in the region where the distances between the exhaust valves arranged adjacent to each other are closest to each other overlap each other, the exhaust valve openings obliquely intersect each other. Since the exhaust valve extends, the overlap of the combustion chamber regions, that is, the curtain regions, located around the openings of the exhaust valves arranged adjacent to each other is reduced in the early stage of opening the exhaust valve. Thus, the amount of burnt gas discharged from each exhaust valve opening through the curtain region of each exhaust valve at the beginning of the opening period of the exhaust valve increases.

【0008】[0008]

【実施例】図1から図9に本発明を2気筒2サイクル内
燃機関に適用した場合を示す。図1から図4にこの2気
筒2サイクル内燃機関の一つの気筒の燃焼室構造を示
す。図1から図4を参照すると、1はシリンダブロッ
ク、2はシリンダブロック1内に固定されたシリンダラ
イナ、4はシリンダライナ2内で往復動するピストン、
6はシリンダブロック1上に固定されたシリンダヘッ
ド、8はシリンダヘッド6の内壁面6aとピストン4の
頂面間に形成された燃焼室を夫々示す。シリンダヘッド
内壁面6a上には窪み部10が形成され、この窪み部1
0の底壁面をなすシリンダヘッド内壁面部分6b上に一
対の給気弁12が配置される。一方、窪み部10を除く
シリンダヘッド内壁面部分6cは傾斜したほぼ平坦をな
し、このシリンダヘッド内壁面部分6c上に一対の第1
排気弁14aと1個の第2排気弁14bとが配置され
る。
1 to 9 show a case where the present invention is applied to a two-cylinder two-cycle internal combustion engine. 1 to 4 show the structure of the combustion chamber of one cylinder of this two-cylinder two-cycle internal combustion engine. 1 to 4, 1 is a cylinder block, 2 is a cylinder liner fixed in the cylinder block 1, 4 is a piston that reciprocates in the cylinder liner 2,
Reference numeral 6 indicates a cylinder head fixed on the cylinder block 1, and 8 indicates a combustion chamber formed between the inner wall surface 6a of the cylinder head 6 and the top surface of the piston 4. A hollow portion 10 is formed on the inner wall surface 6a of the cylinder head.
A pair of air supply valves 12 are arranged on the cylinder head inner wall surface portion 6b forming the bottom wall surface of 0. On the other hand, the cylinder head inner wall surface portion 6c excluding the hollow portion 10 is inclined and substantially flat, and a pair of first wall surfaces 6c are formed on the cylinder head inner wall surface portion 6c.
An exhaust valve 14a and one second exhaust valve 14b are arranged.

【0009】図2に示されるように第2排気弁14bは
一対の第1排気弁14aの間であって給気弁12と反対
側のシリンダヘッド内壁面6aの周辺部に設けられてお
り、従って第2排気弁14bは第1排気弁14aに比べ
て給気弁12から離れた位置に配置されている。また、
互いに隣接配置された第2排気弁14bと各第1排気弁
14aとは、第2排気弁14bの周縁部と第1排気弁1
4aの周縁部との間の距離が最も近い近接領域において
排気弁14b,14aとその弁座16間に形成される開
口が互いに対面している。図1から図3に示されるよう
に第2排気弁14bの弁軸はシリンダボア軸線と第2排
気弁14bのかさ部中心とを含む平面K−K上に配置さ
れている。一方、一対の第1排気弁14aの弁軸は、図
1および図4に示されるように夫々平面K−Kに対して
平行な平面上に配置されている。図1、図3および図4
からわかるように、シリンダボア軸線方向に対する一対
の第1排気弁14aの弁軸の傾斜角は等しく形成されて
おり、一方第2排気弁14bの弁軸の傾斜角は第1排気
弁14aの弁軸の傾斜角よりも小さくなっている。従っ
て、第1排気弁14aと第2排気弁14b間の距離が最
も近い近接領域に形成される各排気弁14a,14bの
開口が互いに重なるように投影した投影面において、即
ち図2において矢印Vまたは矢印Aの方向に投影した投
影面において、各排気弁14a,14bの開口は互いに
斜めに交差して延びている(図5参照)。また図3、図
4および図9に示されるように一対の第1排気弁14a
は一対の第1排気弁駆動カム18aによって開閉制御さ
れ、一方第2排気弁14bは第2排気弁駆動カム18b
によって開閉制御される。図9に示されるようにこれら
の排気弁駆動カム18a,18bは1本の排気弁用カム
シャフト20上に形成されている。
As shown in FIG. 2, the second exhaust valve 14b is provided between the pair of first exhaust valves 14a and on the periphery of the cylinder head inner wall surface 6a opposite to the air supply valve 12, Therefore, the second exhaust valve 14b is located farther from the air supply valve 12 than the first exhaust valve 14a. Also,
The second exhaust valve 14b and each first exhaust valve 14a that are arranged adjacent to each other include a peripheral portion of the second exhaust valve 14b and the first exhaust valve 1
The openings formed between the exhaust valves 14b and 14a and their valve seats 16 face each other in the proximity region where the distance from the peripheral edge of 4a is the shortest. As shown in FIGS. 1 to 3, the valve shaft of the second exhaust valve 14b is arranged on a plane KK including the cylinder bore axis and the center of the bulkhead of the second exhaust valve 14b. On the other hand, the valve shafts of the pair of first exhaust valves 14a are arranged on planes parallel to the plane KK, respectively, as shown in FIGS. 1 and 4. 1, 3 and 4
As can be seen from the above, the inclination angles of the valve shafts of the pair of first exhaust valves 14a with respect to the cylinder bore axis direction are formed to be equal, while the inclination angle of the valve shaft of the second exhaust valve 14b is equal to the valve shaft of the first exhaust valve 14a. It is smaller than the inclination angle of. Therefore, on the projection plane projected so that the openings of the exhaust valves 14a and 14b formed in the adjacent region where the distance between the first exhaust valve 14a and the second exhaust valve 14b is the shortest, that is, the arrow V in FIG. Alternatively, on the projection plane projected in the direction of arrow A, the openings of the exhaust valves 14a and 14b extend obliquely to each other (see FIG. 5). Further, as shown in FIGS. 3, 4 and 9, a pair of first exhaust valves 14a
Is controlled by a pair of first exhaust valve drive cams 18a, while the second exhaust valve 14b is controlled by the second exhaust valve drive cams 18b.
The opening and closing is controlled by. As shown in FIG. 9, these exhaust valve drive cams 18a and 18b are formed on one exhaust valve camshaft 20.

【0010】一方、図1および図4に示されるように一
対の給気弁12の弁軸は夫々上述の平面K−Kに対して
平行な平面上に配置される。図1からわかるようにシリ
ンダボア軸線方向に対する一対の給気弁12の弁軸の傾
斜角は等しくなっている。また図4および図9に示され
るように一対の給気弁12は一対の給気弁駆動カム22
によって開閉制御され、これらの給気弁駆動カム22は
1本の給気弁用カムシャフト24上に形成されている。
On the other hand, as shown in FIGS. 1 and 4, the valve shafts of the pair of air supply valves 12 are arranged on planes parallel to the plane K-K. As can be seen from FIG. 1, the inclination angles of the valve shafts of the pair of air supply valves 12 with respect to the cylinder bore axis direction are equal. Further, as shown in FIG. 4 and FIG. 9, the pair of air supply valves 12 is a pair of air supply valve drive cams 22.
The air supply valve drive cam 22 is formed on a single air supply valve cam shaft 24 by being controlled to be opened and closed by.

【0011】図2に示されるようにシリンダヘッド内壁
面部分6bとシリンダヘッド内壁面部分6cは窪み部1
0の周壁26を介して互いに接続されており、この窪み
部周壁26は一対の給気弁12と第1排気弁14a、第
2排気弁14bとの間においてシリンダヘッド内壁面6
aの一方の周縁部から他方の周縁部まで延びている。こ
の窪み部周壁26は給気弁12の周縁部に極めて近接配
置されかつ給気弁12の周縁部に沿って円弧状に延びる
一対のマスク壁26aと、給気弁12間に位置する新気
ガイド壁26bと、シリンダヘッド内壁面6aの周壁と
給気弁12間に位置する一対の新気ガイド壁26cとに
より構成される。各マスク壁26aは最大リフト位置に
ある給気弁12よりも下方まで燃焼室8に向けて延びて
おり、従って排気弁14a,14b側に位置する給気弁
12周縁部と弁座28間の開口は給気弁12の開弁期間
全体に亙ってマスク壁26aにより閉鎖されることにな
る。また、各新気ガイド壁26b,26cはほぼ同一平
面内に位置しており、更にこれらの新気ガイド壁26
b,26cは両給気弁12の中心を結ぶ線に対してほぼ
平行に延びている。点火栓30はシリンダヘッド内壁面
6aの中心に位置するようにシリンダヘッド内壁面部分
6c上に位置されている。一方、第1排気弁14aおよ
び第2排気弁14bに対しては排気弁14a,14bと
弁座16間の開口を覆うマスク壁が設けられておらず、
従って排気弁14a,14bが開弁すると排気弁14
a,14bと弁座16間に形成される開口はその全体が
燃焼室8内に開口することになる。
As shown in FIG. 2, the cylinder head inner wall surface portion 6b and the cylinder head inner wall surface portion 6c have a recessed portion 1.
No. 0 peripheral wall 26 is connected to each other, and the recess peripheral wall 26 is provided between the pair of intake valves 12 and the first exhaust valve 14a and the second exhaust valve 14b.
It extends from one peripheral edge of a to the other peripheral edge. The recessed peripheral wall 26 is disposed very close to the peripheral edge of the air supply valve 12, and a pair of mask walls 26 a extending in an arc shape along the peripheral edge of the air supply valve 12 and fresh air located between the air supply valves 12. The guide wall 26b and a pair of fresh air guide walls 26c located between the peripheral wall of the cylinder head inner wall surface 6a and the air supply valve 12 are provided. Each mask wall 26a extends toward the combustion chamber 8 below the intake valve 12 at the maximum lift position, and therefore, between the peripheral portion of the intake valve 12 located on the exhaust valve 14a, 14b side and the valve seat 28. The opening is closed by the mask wall 26a during the entire opening period of the air supply valve 12. The fresh air guide walls 26b and 26c are located substantially in the same plane.
b and 26c extend substantially parallel to a line connecting the centers of both air supply valves 12. The spark plug 30 is located on the cylinder head inner wall surface portion 6c so as to be located at the center of the cylinder head inner wall surface 6a. On the other hand, for the first exhaust valve 14a and the second exhaust valve 14b, a mask wall that covers the opening between the exhaust valves 14a and 14b and the valve seat 16 is not provided,
Therefore, when the exhaust valves 14a and 14b are opened, the exhaust valve 14
The entire opening formed between the a and 14b and the valve seat 16 opens into the combustion chamber 8.

【0012】シリンダヘッド6内には各給気弁12に対
して夫々給気ポート32が形成され、各排気弁14a,
14bに対して夫々排気ポート33が形成される。ま
た、各給気弁12の近傍のシリンダヘッド内壁面6aの
周縁部には一対の燃料噴射弁、即ち第1燃料噴射弁35
aと第2燃料噴射弁35bとが配置され、これらの燃料
噴射弁35a,35bから燃料が燃焼室8内に向けて噴
射される。一方、図1、図3および図4に示されるよう
にピストン4の頂面上には点火栓30の下方から燃料噴
射弁35a,35bの先端部の下方まで延びる凹部37
が形成されている。
In the cylinder head 6, an air supply port 32 is formed for each air supply valve 12, and each exhaust valve 14a,
An exhaust port 33 is formed for each of 14b. In addition, a pair of fuel injection valves, that is, the first fuel injection valve 35, is provided at the peripheral edge of the cylinder head inner wall surface 6a near each air supply valve 12.
a and the second fuel injection valve 35b are arranged, and the fuel is injected into the combustion chamber 8 from these fuel injection valves 35a and 35b. On the other hand, as shown in FIGS. 1, 3 and 4, on the top surface of the piston 4, a recess 37 extending from below the spark plug 30 to below the tips of the fuel injection valves 35a and 35b.
Are formed.

【0013】図6に示されるように本実施例では排気弁
14a,14bが給気弁12よりも先に開弁し、排気弁
14a,14bが給気弁12よりも先に閉弁する。ま
た、図6においてIrは機関低負荷運転時における燃料
噴射時期を示しており、Im1 おおびIm2 は機関中負
荷運転時における燃料噴射時期を示しており、Ih1
よびIh2 は機関高負荷運転時における燃料噴射時期を
示している。なお、機関低負荷運転時における燃料噴射
Irおよび機関中負荷運転時における第2回目の燃料噴
射Im2 は第1燃料噴射弁35aにより行われ、機関中
負荷運転時における第1回目の燃料噴射Im1 は第2燃
料噴射弁35bにより行われ、機関高負荷運転時におけ
る燃料噴射Ih1 およびIh2 は第1燃料噴射弁35a
および第2燃料噴射弁35bの双方により行われる。
As shown in FIG. 6, in this embodiment, the exhaust valves 14a and 14b are opened before the air supply valve 12, and the exhaust valves 14a and 14b are closed before the air supply valve 12. Further, in FIG. 6, Ir indicates the fuel injection timing during engine low load operation, Im 1 and Im 2 indicate fuel injection timing during engine medium load operation, and Ih 1 and Ih 2 indicate engine height. The fuel injection timing at the time of load operation is shown. It should be noted that the fuel injection Ir during the engine low load operation and the second fuel injection Im 2 during the engine medium load operation are performed by the first fuel injection valve 35a, and the first fuel injection Im during the engine medium load operation. 1 is performed by the second fuel injection valve 35b, and the fuel injections Ih 1 and Ih 2 during engine high load operation are performed by the first fuel injection valve 35a.
And the second fuel injection valve 35b.

【0014】次に、排気弁14a,14bが開弁したと
きのブローダウン作用、および給気弁12が開弁したと
きの掃気作用について説明する。排気弁14a,14b
が開弁すると燃焼室8内の既燃ガスが急激に排気ポート
33内に流出し、所謂ブローダウンを生ずる。その結
果、燃焼室8内の圧力が急激に低下する。本実施例では
3個の排気弁14a,14bが設けられているので2個
あるいは1個の排気弁が設けられている場合に比べて排
気弁の開口面積が増大し、その結果燃焼室8内の既燃ガ
スの排出が促進され、斯くして燃焼室8内の圧力がより
急激に低下する。
Next, the blowdown action when the exhaust valves 14a and 14b are opened and the scavenging action when the air supply valve 12 is opened will be described. Exhaust valves 14a, 14b
When the valve is opened, the burnt gas in the combustion chamber 8 suddenly flows into the exhaust port 33, causing so-called blowdown. As a result, the pressure in the combustion chamber 8 drops sharply. In this embodiment, since three exhaust valves 14a and 14b are provided, the opening area of the exhaust valve is increased as compared with the case where two or one exhaust valve is provided, and as a result, the inside of the combustion chamber 8 is increased. The discharge of the burned gas is promoted, and thus the pressure in the combustion chamber 8 drops more rapidly.

【0015】このようにブローダウンが生ずる期間、即
ち排気弁14a,14bの開弁期間初期において、燃焼
室8内の既燃ガスは各排気弁14a,14bの開口周り
に位置する円板状の燃焼室領域40a,40b、即ちカ
ーテン領域40a,40bを通って各排気弁14a,1
4bの開口からカーテン状に流出する。図2に示される
ようにこのカーテン領域40a,40bの直径は排気弁
14a,14bの開口の直径よりもやや大きく、またブ
ローダウン期間には排気弁14a,14bのリフト量が
小さいのでカーテン領域40a,40bの厚みは薄い。
In the period in which the blowdown occurs in this way, that is, in the early stage of the opening period of the exhaust valves 14a, 14b, the burnt gas in the combustion chamber 8 is in the form of a disc located around the openings of the exhaust valves 14a, 14b. Each exhaust valve 14a, 1 passes through the combustion chamber area 40a, 40b, i.e. the curtain area 40a, 40b.
It flows out like a curtain from the opening of 4b. As shown in FIG. 2, the diameters of the curtain regions 40a and 40b are slightly larger than the diameters of the openings of the exhaust valves 14a and 14b, and the lift amount of the exhaust valves 14a and 14b is small during the blowdown period. , 40b is thin.

【0016】本実施例では排気弁14a,14bの開口
面積ができるだけ大きくなるように排気弁14a,14
bの弁径が大きく形成されているので、図2に示すよう
に互いに隣接配置された第1排気弁14aの開口と第2
排気弁14bの開口とが対面している領域において各排
気弁のカーテン領域40a,40bの一部が互いに重な
り合う。
In the present embodiment, the exhaust valves 14a, 14b are arranged so that the opening areas of the exhaust valves 14a, 14b are as large as possible.
Since the valve diameter of b is large, the opening of the first exhaust valve 14a and the second exhaust valve 14a which are arranged adjacent to each other as shown in FIG.
In the region where the opening of the exhaust valve 14b faces, the curtain regions 40a and 40b of the exhaust valves partially overlap each other.

【0017】しかしながら本実施例では上述のように第
1排気弁14aの弁軸の傾斜角が第2排気弁14bの弁
軸の傾斜角よりも大きくなっている。従って、互いに対
面する各排気弁14a,14bの開口が互いに重なるよ
うに投影した各排気弁開口の投影面において、即ち図2
において矢印Vまたは矢印Aの方向に投影した投影面に
おいて、各排気弁14a,14bの開口が図5に示され
るように互いに斜めに交差して延びている。従って第1
排気弁14aのカーテン領域40aと第2排気弁14b
のカーテン領域40bもこの投影面上において互いに斜
めに交差して延びている。図5において第1排気弁14
aのカーテン領域部分41aおよび第2排気弁14bの
カーテン領域部分41bは、図2において互いに重なっ
て見えるカーテン領域40a部分およびカーテン領域4
0b部分に対応している。なお、図5ではカーテン領域
部分41a,41bを実際の位置よりも下方にずらして
図示している。このようにカーテン領域部分41a,4
1bが互いに斜めに交差して延びているので、カーテン
領域部分41a,41bが互いに平行に延びている場
合、即ちカーテン領域部分41a,41bが互いに完全
に重なっている場合に比べてカーテン領域部分41a,
41bの重なり部分42(図5においてハッチングが施
されている部分)が大幅に減少する。
However, in this embodiment, as described above, the inclination angle of the valve shaft of the first exhaust valve 14a is larger than the inclination angle of the valve shaft of the second exhaust valve 14b. Therefore, on the projection surface of the exhaust valve openings projected so that the openings of the exhaust valves 14a and 14b facing each other overlap each other, that is, in FIG.
On the projection plane projected in the direction of arrow V or arrow A in FIG. 5, the openings of the exhaust valves 14a and 14b extend obliquely to each other as shown in FIG. Therefore the first
The curtain region 40a of the exhaust valve 14a and the second exhaust valve 14b
The curtain areas 40b also extend obliquely to each other on this projection plane. In FIG. 5, the first exhaust valve 14
The curtain region portion 41a of a and the curtain region portion 41b of the second exhaust valve 14b are seen to overlap each other in FIG.
It corresponds to part 0b. Note that, in FIG. 5, the curtain region portions 41a and 41b are shown by being shifted downward from the actual position. Thus, the curtain area portions 41a, 4a
Since 1b extends obliquely to each other, the curtain region portion 41a can be compared to when the curtain region portions 41a and 41b extend parallel to each other, that is, when the curtain region portions 41a and 41b completely overlap each other. ,
The overlapping portion 42 of 41b (hatched portion in FIG. 5) is significantly reduced.

【0018】このカーテン領域の重なり部分42内を通
過する既燃ガスの一部は第1排気弁14aの開口から排
出され、残りの部分は第2排気弁14bの開口から排出
されることになる。しかしながらこのカーテン領域の重
なり部分42内を通過する既燃ガスは本来どちらか一方
の排気弁14aまたは14bの開口から全量排出されう
るものである。従ってカーテン領域の重なり部分42が
大きいとその分だけ排気弁14a,14bの開口面積が
無駄になってしまい、その結果ブローダウン期間におけ
る既燃ガスの排出量が減少してしまう。本実施例では上
述のように第1排気弁14aの弁軸の傾斜角と第2排気
弁14bの弁軸の傾斜角とを変えることによりカーテン
領域の重なり部分42を低減させているので、ブローダ
ウン期間において既燃ガスが速やかかつ大量に排出され
る。
Part of the burnt gas passing through the overlapping portion 42 of the curtain region is discharged from the opening of the first exhaust valve 14a, and the remaining portion is discharged from the opening of the second exhaust valve 14b. .. However, the burned gas passing through the overlapping portion 42 of the curtain region can be completely discharged from the opening of either exhaust valve 14a or 14b. Therefore, if the overlapping portion 42 of the curtain region is large, the opening area of the exhaust valves 14a and 14b is wasted by that amount, and as a result, the amount of burned gas discharged during the blowdown period is reduced. In this embodiment, as described above, the overlapping portion 42 of the curtain region is reduced by changing the inclination angle of the valve shaft of the first exhaust valve 14a and the inclination angle of the valve shaft of the second exhaust valve 14b. Burned gas is discharged promptly and in large quantities during the down period.

【0019】このように本実施例では3個の排気弁14
a,14bを設けることにより排気弁の開口面積を増大
させると共に、第1排気弁14aおよび第2排気弁14
bの弁軸の傾斜角を変えることによりカーテン領域の重
なり部分42を低減させているので、排気弁14a,1
4bが開弁すると燃焼室8内の既燃ガスが極めて急激に
排気ポート33内に流出し、その結果燃焼室8内の圧力
が極めて急激に低下する。即ち強力なブローダウン作用
が得られる。なお、このブローダウンが生ずるブローダ
ウン期間は排気弁14a,14bの開弁開始時期から給
気弁12の開弁開始時期までの期間にほぼ対応する。
As described above, in this embodiment, the three exhaust valves 14 are provided.
By providing a and 14b, the opening area of the exhaust valve is increased and the first exhaust valve 14a and the second exhaust valve 14 are provided.
Since the overlapping portion 42 of the curtain region is reduced by changing the inclination angle of the valve shaft of b, the exhaust valves 14a, 1
When the valve 4b is opened, the burnt gas in the combustion chamber 8 flows into the exhaust port 33 very rapidly, and as a result, the pressure in the combustion chamber 8 drops extremely rapidly. That is, a strong blowdown action is obtained. The blowdown period in which this blowdown occurs substantially corresponds to the period from the opening start timing of the exhaust valves 14a and 14b to the opening start timing of the air supply valve 12.

【0020】このように強力なブローダウン作用によっ
て燃焼室8内の圧力が急激に低下するので、次いで給気
弁12が開弁するとただちに新気が燃焼室8内に流入を
開始する。従って多量の新気を燃焼室8内に送り込むこ
とができる。このように給気弁12が開弁すると新気が
燃焼室8内に流入を開始するが排気弁14a,14b側
の給気弁12の開口はマスク壁26aによって覆われて
いるので新気はマスク壁26aと反対側の給気弁12の
開口から燃焼室8内に流入する。この新気は給気弁12
下方のシリンダボア内壁面に沿い下降し、次いでピスト
ン4の頂面に沿い進んで排気弁14a,14b下方のシ
リンダボア内壁面に沿い上昇し、斯くして新気は燃焼室
8内をループ状に流れることになる。このループ状に流
れる新気によって燃焼室8内の既燃ガスが排気弁14
a,14bを介して良好に排出される。斯くして良好な
掃気効率を確保することができる。
Since the pressure in the combustion chamber 8 is drastically reduced by such a strong blowdown action, fresh air starts flowing into the combustion chamber 8 immediately when the air supply valve 12 is subsequently opened. Therefore, a large amount of fresh air can be sent into the combustion chamber 8. When the air supply valve 12 is opened in this manner, fresh air begins to flow into the combustion chamber 8, but the opening of the air supply valve 12 on the side of the exhaust valves 14a and 14b is covered by the mask wall 26a, so The gas flows into the combustion chamber 8 from the opening of the air supply valve 12 on the side opposite to the mask wall 26a. This fresh air is the intake valve 12
It descends along the inner wall surface of the lower cylinder bore, then advances along the top surface of the piston 4 and rises along the inner wall surface of the cylinder bore below the exhaust valves 14a and 14b, and thus fresh air flows in a loop in the combustion chamber 8. It will be. The burned gas in the combustion chamber 8 is exhausted by the exhaust valve 14 by the fresh air flowing in a loop.
It is satisfactorily discharged via a and 14b. Thus, good scavenging efficiency can be secured.

【0021】次いでピストン4が下死点BDCを過ぎて
上昇を開始するとその後燃料噴射弁35a,35bから
の燃料噴射が開始される。図6に示される燃料噴射Ir
およびIm2 では第1燃料噴射弁35aからピストン4
頂面上に形成された凹部37内に燃料が噴射され、点火
栓30周りに最適な濃度の混合気が形成されるようにし
ている。一方、燃料噴射Im1 ,Ih1およびIh2
は噴射燃料がピストン4頂面の広い領域に亘って衝突せ
しめられ、燃焼室8内に均一混合気が形成されるように
している。
Then, when the piston 4 passes the bottom dead center BDC and starts to rise, fuel injection from the fuel injection valves 35a and 35b is then started. Fuel injection Ir shown in FIG.
And Im 2 from the first fuel injection valve 35a to the piston 4
The fuel is injected into the concave portion 37 formed on the top surface so that the air-fuel mixture having the optimum concentration is formed around the spark plug 30. On the other hand, in the fuel injection Im 1 , Ih 1 and Ih 2 , the injected fuel is made to collide over a wide area of the top surface of the piston 4, and a uniform air-fuel mixture is formed in the combustion chamber 8.

【0022】また図1、図3および図4に示されるよう
に第1排気弁14aの弁軸の傾斜角と第2排気弁14b
の弁軸の傾斜角とが異なっているので、互いに隣接する
各排気弁14a,14bのバルブリフタ45の傾斜角も
互いに異なっている。その結果、互いに隣接するバルブ
リフタ45が平行に配置されている場合に比べて隣接す
るバルブリフタ45間に位置するリフタガイド部47
(図8参照)の肉厚が全体的に厚くなり、従って排気動
弁系の強度を向上させることができる。また、このよう
にリフタガイド部47の肉厚が全体的に厚くなるので、
バルブリフタ45の円筒状部分の肉厚を増してバルブリ
フタ45の強度を向上させることもできる。
Further, as shown in FIGS. 1, 3 and 4, the inclination angle of the valve shaft of the first exhaust valve 14a and the second exhaust valve 14b.
Since the inclination angle of the valve shaft is different, the inclination angles of the valve lifters 45 of the exhaust valves 14a and 14b adjacent to each other are also different. As a result, the lifter guide portion 47 located between the adjacent valve lifters 45 is different from the case where the adjacent valve lifters 45 are arranged in parallel.
The wall thickness (see FIG. 8) is increased as a whole, so that the strength of the exhaust valve system can be improved. Also, since the wall thickness of the lifter guide portion 47 becomes thicker in this way,
The thickness of the cylindrical portion of the valve lifter 45 can be increased to improve the strength of the valve lifter 45.

【0023】図8および図9を参照すると、排気弁用カ
ムシャフト20は互いに隣接する第1排気弁駆動カム1
8aと第2排気弁駆動カム18b間に位置する排気弁用
カムシャフト20部分において夫々、シリンダヘッド6
の上壁面上に形成された排気弁用カムジャーナル面50
と排気弁用カムキャップ52に形成されたジャーナル面
とにより支承されている。即ち、排気弁用カムシャフト
20は1気筒当たり、互いに隣接する排気弁駆動カム1
8a,18b間に位置する2箇所において支承されてい
る。
Referring to FIG. 8 and FIG. 9, the exhaust valve camshaft 20 includes the first exhaust valve drive cam 1 adjacent to each other.
8a and the second exhaust valve drive cam 18b.
Exhaust valve cam journal surface 50 formed on the upper wall surface
And a journal surface formed on the exhaust valve cam cap 52. That is, the exhaust valve camshaft 20 is provided for each exhaust valve drive cam 1 that is adjacent to each other for each cylinder.
It is supported at two places located between 8a and 18b.

【0024】このように、各気筒の3個の排気弁駆動カ
ム18a,18bの組の両外側に位置する2箇所で排気
弁用カムシャフト20を支承するのではなく、互いに隣
接する排気弁駆動カム18a,18b間に位置する2箇
所で排気弁用カムシャフト20を支承することにより、
中央の排気弁駆動カム、即ち第2排気弁駆動カム18b
における排気弁用カムシャフト20の撓みを小さく抑え
ることができ、従って排気弁用カムシャフト20の撓み
を全体的に小さくすることができる。特に本実施例では
第1排気弁14aの弁軸の傾斜角と第2排気弁14bの
弁軸の傾斜角とが異なっているので、バルブスプリング
54a(図4参照)のばね力により第1排気弁駆動カム
18aに加えられる力の方向とバルブスプリング54b
(図3参照)のばね力により第2排気弁駆動カム18b
に加えられる力の方向とが異なっている。図8および図
9に示されるように互いに隣接する排気弁駆動カム18
a,18b間に位置する2箇所で排気弁用カムシャフト
20を支承すれば、夫々異なる方向のばね力が加えられ
る排気弁用カムシャフト20部分の中間で排気弁用カム
シャフト20を支承することになり、従って排気弁用カ
ムシャフト20の撓みを確実に小さくすることができ
る。このように排気弁用カムシャフト20の撓みや回転
振れが低減されるので、排気弁用カムシャフト20の回
転速度を高めることができ、従って機関の最高回転数、
即ち許容回転数を高く設定することができる。また、各
排気弁14a,14bが正規のバルブリフト量を正確に
とることができる。更に、排気弁用カムキャップ52の
ジャーナル面に対するカムシャフト20の当たりも低減
されるのでカムキャップ52のジャーナル面の摩耗や異
音の発生が防止される。
As described above, the exhaust valve camshafts 20 are not supported at the two positions located on both outer sides of the set of the three exhaust valve drive cams 18a and 18b of each cylinder, but the exhaust valve drive cams adjacent to each other are driven. By supporting the exhaust valve cam shaft 20 at two positions located between the cams 18a and 18b,
Central exhaust valve drive cam, that is, second exhaust valve drive cam 18b
The bending of the exhaust valve camshaft 20 can be suppressed to be small, and therefore the bending of the exhaust valve camshaft 20 can be made small as a whole. Particularly, in this embodiment, since the inclination angle of the valve shaft of the first exhaust valve 14a and the inclination angle of the valve shaft of the second exhaust valve 14b are different, the first exhaust gas is generated by the spring force of the valve spring 54a (see FIG. 4). Direction of force applied to valve drive cam 18a and valve spring 54b
The second exhaust valve drive cam 18b is driven by the spring force (see FIG. 3).
The direction of the force applied to is different. The exhaust valve drive cams 18 adjacent to each other as shown in FIGS. 8 and 9.
If the exhaust valve camshaft 20 is supported at two positions located between a and 18b, the exhaust valve camshaft 20 should be supported in the middle of the exhaust valve camshaft 20 parts to which spring forces in different directions are applied. Therefore, the flexure of the exhaust valve camshaft 20 can be surely reduced. As described above, since the bending and the rotational runout of the exhaust valve camshaft 20 are reduced, the rotational speed of the exhaust valve camshaft 20 can be increased, and thus the maximum engine speed,
That is, the allowable rotation speed can be set high. Further, each exhaust valve 14a, 14b can accurately take a proper valve lift amount. Further, the contact of the camshaft 20 with the journal surface of the exhaust valve cam cap 52 is also reduced, so that the journal surface of the cam cap 52 is prevented from being worn and noise is prevented.

【0025】一方、給気弁用カムシャフト24は各気筒
の互いに隣接する一対の給気弁駆動カム22間に位置す
る給気弁用カムシャフト24部分において、シリンダヘ
ッド6の上壁面上に形成された給気弁用カムジャーナル
面56と給気弁用カムキャップ58に形成されたジャー
ナル面58aとにより支承される。次に機関冷却水通路
構造について説明する。本実施例における冷却水通路構
造は概略的に言って、ラジエータ(図示しない)から流
出した冷却水がウォータポンプ(図示しない)に供給さ
れ、ウォータポンプから吐出された冷却水がシリンダブ
ロック1内に形成されたシリンダブロック冷却水通路6
0内に供給され、シリンダブロック冷却水通路60から
流出した冷却水がシリンダヘッド6内に形成されたシリ
ンダヘッド冷却水通路62内に供給され、シリンダヘッ
ド冷却水通路62から流通した冷却水がラジエータに供
給される構造になっている。
On the other hand, the air supply valve cam shaft 24 is formed on the upper wall surface of the cylinder head 6 at the air supply valve cam shaft 24 portion located between the pair of air supply valve drive cams 22 adjacent to each other in each cylinder. The cam journal surface 56 for the intake valve and the journal surface 58a formed on the cam cap 58 for the intake valve are supported. Next, the engine cooling water passage structure will be described. Generally speaking, the cooling water passage structure in the present embodiment is such that cooling water flowing out from a radiator (not shown) is supplied to a water pump (not shown), and cooling water discharged from the water pump enters the cylinder block 1. Formed cylinder block cooling water passage 6
The cooling water supplied to the cylinder block cooling water passage 60 is supplied to the cylinder head cooling water passage 62 formed in the cylinder head 6, and the cooling water flowing from the cylinder head cooling water passage 62 is supplied to the radiator. It is structured to be supplied to.

【0026】図1、図3および図7に示されるように本
実施例では特に各気筒毎に、排気弁14a,14bの弁
座16の近傍を通る二つの第1冷却水通路64と、燃料
噴射弁35a,35bのノズル部の近傍を通る一つの第
2冷却水通路66とがシリンダヘッド6内に形成されて
いる。これらの第1冷却水通路64および第2冷却水通
路66はシリンダヘッド6の下壁面からドリル穴加工に
よって形成される。
As shown in FIGS. 1, 3 and 7, in this embodiment, in particular, for each cylinder, two first cooling water passages 64 passing near the valve seat 16 of the exhaust valves 14a and 14b, and a fuel are provided. A single second cooling water passage 66 is formed in the cylinder head 6 passing near the nozzles of the injection valves 35a and 35b. The first cooling water passage 64 and the second cooling water passage 66 are formed from the lower wall surface of the cylinder head 6 by drilling.

【0027】排気弁14a,14bは燃焼室8内の高温
既燃ガスが排出されるときにこの既燃ガスから熱を受
け、この熱が排気弁14a,14bの弁座16を介して
シリンダヘッド6に伝達される。排気弁の弁座16近傍
を通る第1冷却水通路64を形成することにより、この
熱が効率良く冷却水に吸収される。斯くしてシリンダヘ
ッド6の熱歪みが発生することを防止できる。またこの
ようにシリンダヘッド6および燃焼室8が過熱されるこ
とが阻止されるので、ノッキングの発生を阻止しつつ点
火時期を進角させることが可能となり、その結果機関出
力トルクを高めることができる。
The exhaust valves 14a and 14b receive heat from the burnt gas when the hot burned gas in the combustion chamber 8 is discharged, and this heat is transferred through the valve seat 16 of the exhaust valves 14a and 14b to the cylinder head. 6 is transmitted. By forming the first cooling water passage 64 passing near the valve seat 16 of the exhaust valve, this heat is efficiently absorbed by the cooling water. Thus, it is possible to prevent thermal distortion of the cylinder head 6. Further, since the cylinder head 6 and the combustion chamber 8 are prevented from being overheated in this way, it is possible to advance the ignition timing while preventing the occurrence of knocking, and as a result, the engine output torque can be increased. ..

【0028】一方、第2冷却水通路66内を流通する冷
却水によって燃料噴射弁35a,35bのノズル部が良
好に冷却される。その結果、ノズル部の熱膨張により燃
料噴射弁35a,35b内の燃料通路径が変化すること
が防止されると共に、燃料噴射弁35a,35b内で燃
料が気化して気泡が発生することが阻止される。斯くし
て燃料噴射量を正確に制御することができる。
On the other hand, the nozzle portions of the fuel injection valves 35a and 35b are satisfactorily cooled by the cooling water flowing in the second cooling water passage 66. As a result, the diameter of the fuel passage in the fuel injection valves 35a, 35b is prevented from changing due to the thermal expansion of the nozzle portion, and the fuel is prevented from being vaporized and bubbles are generated in the fuel injection valves 35a, 35b. To be done. Thus, the fuel injection amount can be controlled accurately.

【0029】[0029]

【発明の効果】排気弁の開弁期間初期に燃料室内から排
出される既燃ガス量を増大させることができ、その結果
燃料室内に流入する新気量を増大させることができる。
斯くして良好な掃気効率を確保することができる。
The amount of burnt gas discharged from the fuel chamber can be increased at the beginning of the opening period of the exhaust valve, and as a result, the amount of fresh air flowing into the fuel chamber can be increased.
Thus, good scavenging efficiency can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】2サイクル内燃機関の一つの気筒の斜視図であ
る。
FIG. 1 is a perspective view of one cylinder of a two-cycle internal combustion engine.

【図2】シリンダヘッドの底面図である。FIG. 2 is a bottom view of a cylinder head.

【図3】図2の III−III 線に沿ってみた断面図であ
る。
FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】図2のIV−IV線に沿ってみた断面図である。4 is a sectional view taken along line IV-IV in FIG.

【図5】図2の矢印Vに沿ってみた排気弁の投影図であ
る。
5 is a projection view of the exhaust valve taken along the arrow V in FIG. 2. FIG.

【図6】給排気弁の開弁時期と燃料噴射時期を示す線図
である。
FIG. 6 is a diagram showing a valve opening timing of a supply / exhaust valve and a fuel injection timing.

【図7】2気筒2サイクル内燃機関のシリンダヘッドの
全体を示す底面図である。
FIG. 7 is a bottom view showing the entire cylinder head of a 2-cylinder 2-cycle internal combustion engine.

【図8】排気弁用カムシャフトおよび給気弁用カムシャ
フトが取り付けられていない状態を示すシリンダヘッド
の上面図である。
FIG. 8 is a top view of the cylinder head showing a state in which an exhaust valve camshaft and an intake valve camshaft are not attached.

【図9】排気弁用カムシャフトおよび給気弁用カムシャ
フトが取り付けられた状態を示すシリンダヘッドの上面
図である。
FIG. 9 is a top view of the cylinder head showing a state in which an exhaust valve camshaft and an intake valve camshaft are attached.

【符号の説明】[Explanation of symbols]

4…ピストン 12…給気弁 14a…第1排気弁 14b…第2排気弁 16…弁座 30…点火栓 35a…第1燃料噴射弁 35b…第2燃料噴射弁 4 ... Piston 12 ... Air supply valve 14a ... 1st exhaust valve 14b ... 2nd exhaust valve 16 ... Valve seat 30 ... Spark plug 35a ... 1st fuel injection valve 35b ... 2nd fuel injection valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02B 25/20 Z 7114−3G ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02B 25/20 Z 7114-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 互いに隣接配置された排気弁間の距離が
最も近い領域において排気弁とその弁座間に形成される
排気弁の開口が互いに対面している2サイクル内燃機関
の燃焼室構造において、上記領域に形成される各排気弁
開口が互いに重なるように投影した各排気弁開口の投影
面において各排気弁開口が互いに斜めに交差して延びる
ように各排気弁を配置した2サイクル内燃機関の燃焼室
構造。
1. A combustion chamber structure for a two-cycle internal combustion engine, wherein the exhaust valve and the opening of the exhaust valve formed between its valve seats face each other in the region where the distance between the exhaust valves arranged adjacent to each other is the shortest. A two-cycle internal combustion engine in which the exhaust valves are arranged so that the exhaust valve openings are formed so as to overlap each other on the projection plane of the exhaust valve openings projected so as to overlap each other Combustion chamber structure.
JP22715091A 1991-09-06 1991-09-06 Structure of combustion chamber for two-cycle internal combustion engine Pending JPH0565811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22715091A JPH0565811A (en) 1991-09-06 1991-09-06 Structure of combustion chamber for two-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22715091A JPH0565811A (en) 1991-09-06 1991-09-06 Structure of combustion chamber for two-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0565811A true JPH0565811A (en) 1993-03-19

Family

ID=16856280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22715091A Pending JPH0565811A (en) 1991-09-06 1991-09-06 Structure of combustion chamber for two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0565811A (en)

Similar Documents

Publication Publication Date Title
US6009849A (en) Direct fuel injection engine
US6035822A (en) Combustion chamber for direct injected engine
US5724927A (en) Direct cylinder injected engine and method of operating same
USRE37289E1 (en) Induction system for engine
EP1199462A2 (en) Internal combustion engine and piston for internal combustion engine
JP3333298B2 (en) In-cylinder fuel injection type multi-cylinder engine
US11022027B2 (en) Internal combustion engine with reduced engine knocking
JPH0674042A (en) Structure of cylinder head for four-valve type internal combustion engine
JPH06185312A (en) Combustion chamber of two cycle engine
JPH0565811A (en) Structure of combustion chamber for two-cycle internal combustion engine
JP3426296B2 (en) Engine intake system
JPH01182524A (en) Combustion chamber for multi-valve type engine
JPH06185367A (en) Diesel internal combustion engine
US20030019467A1 (en) Set of cylinder heads with desmodromic valve operation, for internal combustion engines
JPH05133227A (en) Combustion chamber of two cycle engine
US6367444B1 (en) Cylinder head for direct injected engine
JPH10299571A (en) Cylinder head structure for engine
JP3612875B2 (en) In-cylinder injection engine
JPH0580568B2 (en)
JPH05263647A (en) Combustion chamber of two-cycle internal combustion engine
JPH1182024A (en) Gas engine combustion chamber structure
JPH0571352A (en) Combustion chamber structure for two-cycle internal combustion engine
JP2003090243A (en) Control method of fuel injection for gas engine
JPH0565850A (en) Internal combustion engine
JPH0736093Y2 (en) Internal combustion engine intake system