JPH0565275B2 - - Google Patents

Info

Publication number
JPH0565275B2
JPH0565275B2 JP7792787A JP7792787A JPH0565275B2 JP H0565275 B2 JPH0565275 B2 JP H0565275B2 JP 7792787 A JP7792787 A JP 7792787A JP 7792787 A JP7792787 A JP 7792787A JP H0565275 B2 JPH0565275 B2 JP H0565275B2
Authority
JP
Japan
Prior art keywords
flux
sintered
wire
raw material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7792787A
Other languages
Japanese (ja)
Other versions
JPS63242492A (en
Inventor
Shinichi Fukushima
Hideo Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP7792787A priority Critical patent/JPS63242492A/en
Publication of JPS63242492A publication Critical patent/JPS63242492A/en
Publication of JPH0565275B2 publication Critical patent/JPH0565275B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、溶接用フラツクス入りワイヤ用の充
填フラツクスの原料に関し、特にB含有充填フラ
ツクスに使用するB含有鉄粉原料に関するもので
ある。 〔従来の技術〕 溶接用フラツクス入りワイヤは、外皮として鋼
の帯材又は管状材を使用しており、成形したこれ
らの帯材又は管状材に充填するフラツクスには、
複数の原料を配合して均一混合し、充填するもの
と、更にこの均一混合したフラツクスに水ガラス
等を添加して湿式混合した後、乾燥して整粒後充
填するものとがある。 充填フラツクスのワイヤ外皮内への充填は例え
ば次のようにしておこなわれる。即ち、帯材外皮
の場合は成形したU溝内に混合フラツクスが、管
状材の場合は造粒フラツクスがワイヤ重量比で7
〜25%の量で夫々充填される。フラツクスが充填
されたワイヤ外皮は製品サイズ(例えば1.0〜2.0
mmφ)まで伸線され、所定の表面処理が施された
後、リール巻き等の製品形態にされる。この溶接
用フラツクス入りワイヤはCO2又は、CO2+Arガ
スシールドの半自動又は自動アーク溶接に使用さ
れるものである。 溶接用フラツクス入りワイヤにおける充填フラ
ツクスの役割は、スラグ生成剤、脱酸剤、
合金剤等の供給にあるが、特に低温において高靭
性が要求される低温鋼用のフラツクス入りワイヤ
には、合金剤の添加のために、フラツクス中に、
Ni、Cr、Mo等の他に、微量のB源としてFe−
Bが配合添加されている。 即ち、低温高靭性の溶接金属を得るため、フラ
ツクス入りワイヤの充填フラツクスにFe−Bを
所定量添加し、溶接金属にBを20〜70ppm程度含
有させることにより低温靭性の向上を図ることは
周知である。しかしながら、充填フラツクスの原
料の内、特にBは極微量の配合でよく、一方、容
接金属に含有するB量がわずかでも変動するなら
ば、目標の靭性値を得られないだけでなく、逆に
著しく靭性が劣化する傾向がある。 従つて、B成分を如何に溶接金属中に所定量を
均一に含有させるかが重要な問題である。溶接材
料のB源の原材料は普通B2O3又はFe−B(20%)
が使用され、フラツクス入りワイヤには後者の
Fe−Bが、歩留率で前者のB2O3に比較して7〜
8倍の効果であることから多用されている。しか
し、例えばFe−B(20%)を用いてフラツクス入
りワイヤの充填フラツクスを作る場合、フラツク
ス100Kgに対して所定のB含有量を得るためにFe
−Bを400〜500g添加配合するものであるが、B
成分を均一に分配混合することは極めて困難であ
る。そこで均一に分配混合するために、10種類前
後にもおよぶ配合原料を2段階、3段階混合法を
行つて混合しているのが現状である。 即ち、例えば充填フラツクス100Kgを配合調製
する場合は、先ずFe−Bと、これと同等の比重、
粒度の原料とで第1段階の混合を行つて、Bを均
一に含有した原料を増量し、更に比重が略同等の
他の合金剤と混合して10Kg程度まで増量を行い、
最終的にはその他のスラグ剤等を配合混合して、
B成分が均一に分配混合された所定量(100Kg)
の充填フラツクスを作つていた。 このように配合原料の物性を考慮して多段階の
工程、各工程に適した混合機を使い分けて、多数
の混合工程を経ないと、B成分が均一に分配され
た充填フラツクスが得られず、このような複雑高
度な技術を駆使しての混合が、溶接金属に歩留ま
るB含有量を一定に維持し、安定した低温におけ
る高靭性を得る方法であつた。 〔発明が解決しようとする問題点〕 本発明は前述した事情を考慮してなされたもの
であつて、その目的とするところは、簡単な混合
工程であつても微量なB成分をフラツクス中に均
一に混合できる溶接用フラツクス入りワイヤの充
填フラツクス用のフラツクス焼結B原料を提供す
るにある。 〔問題点を解決するための手段〕 本発明の要旨とするところは、還元鉄粉表面に
Fe−B粉末が焼結付着した粒状物であつて、
B0.5〜4重量%を含有したことを特徴とする溶
接用フラツクス入りワイヤのフラツクス用焼結B
原料にある。 〔作用〕 本発明に係る充填フラツクス用焼結B原料は、
好ましくは0.5mm以下の粒径に整粒された還元鉄
粉に好ましくは0.4mm以下の粒径に整粒されたFe
−Bを配合混合して焼結したものである。焼結B
原料のB含有量は0.5〜4.0重量%とする。その理
由は、以下の通りである。 焼結B原料中のBのばらつきはそのBの含有量
に影響される。即ち第1図に示す如くFe−Bの
配合量が少なくなるに従い焼結B原料中のB含有
量のばらつきが大きくなる傾向にある。これは混
合が均一にならない状態で焼結し、又還元鉄粉に
付着したFe−Bの粒子数が不均一なためである。
そこで、B含有量のばらつきが小さく且つ充填フ
ラツクス原料として使用して溶接金属中のBの含
有量が安定する範囲として、B含有量の下限を
0.5%とした。一方、B含有量の上限についても、
同様にフラツクス中のB含有量のバラツキが少な
いことと、それが溶接金属のB含有量のバラツキ
に及ばないという条件を勘案して4%とした。即
ち焼結B原料中のBが4%を越える程度にFe−
Bを多量に添加すると、還元鉄粉へのFe−Bの
焼結力を弱らせ、完全な焼結付着が達成されず、
Fe−Bが単体分散し易くなり、これがBのバラ
ツキを生ずる大きな要因となる。 なお、焼結B原料の粒径は本発明においては特
に限定するものではないが、製品ワイヤ内径のほ
ぼ80%程度以下とするのが、伸線加工性の観点か
ら推奨される。 溶接用フラツクス入りワイヤは前述した如く、
成形した帯鋼又はパイプの外皮にフラツクスを充
填し、製品サイズに伸線されるが、この伸線の最
終工程において外皮の伸びに合せて充填フラツク
スも外皮内を移動しなければ、断線が多発し、生
産性が著しく阻害されるので、充填フラツクスの
最大粒径は伸線の最終工程において外皮の伸びに
応じて外皮内を移動しうる様にクリアランスを考
慮して規定される。ところで、充填当初のフラツ
クス粒子は複数の原料を配合して造粒したもので
あるから伸線加工とともに外圧で分離して原材料
の単体粒子に分離してしまうので、結局はこの単
体粒子の最大粒径が伸線加工性の観点から規定さ
れねばならない。この最大粒径は経験的に製品ワ
イヤ内径のほヾ80%であればクリアランスを満足
する。本発明の焼結B原料の最大粒径も斯かる観
点から、規定されうる。 焼結B原料の粒径が0.5mm超では伸線加工時に
断線が多発し、生産性も著しく低下させる。また
焼結性をも低下させる。 本発明の焼結B原料の製造方法の一例を示す。 還元鉄粉とFe−B粉末とを均一に配合混合し、
950〜1100℃のNHX雰囲気炉で40〜70分間焼結し
て整粒する。この方法によつて製造された焼結B
原料はX線回折及び電子顕微鏡で同定した結果、
Fe−B粉末か還元鉄粉の表面にFe−B、FeBの
型で焼結されていることが認められた。焼結温度
が950℃未満であると鉄粉との焼結力が不足して
安定したものが得られず、一方、1100℃超では焼
結力に大差はないが、エネルギー損失が大とな
る。 〔実施例〕 次に本発明の焼結B原料を使つた溶接用フラツ
クス入りワイヤの実施例を比較例とともに説明す
る。 第1表〜第2表に焼結B原料の基礎となる還元
鉄粉及びFe−Bの成分と粒径を示す、
[Industrial Field of Application] The present invention relates to a raw material for a filling flux for welding flux-cored wire, and particularly to a B-containing iron powder raw material used for a B-containing filling flux. [Prior Art] Flux-cored wire for welding uses a steel strip or tubular material as the outer sheath, and the flux used to fill the formed strip or tubular material includes:
There are methods in which a plurality of raw materials are mixed uniformly and then filled, and methods in which water glass or the like is further added to the uniformly mixed flux, wet-mixed, dried, sized, and then filled. The filling flux into the wire sheath is carried out, for example, as follows. That is, in the case of a strip outer skin, the mixed flux is in the formed U-groove, and in the case of a tubular material, the granulated flux is 7% by weight of the wire.
Each is filled in an amount of ~25%. The flux-filled wire sheath is available in product sizes (e.g. 1.0 to 2.0
After being drawn to a diameter of mmφ) and subjected to a prescribed surface treatment, it is wound into a product such as a reel. This flux-cored welding wire is used for semi-automatic or automatic arc welding of CO 2 or CO 2 +Ar gas shields. The role of the filling flux in flux-cored wire for welding is as a slag generator, deoxidizer,
Flux-cored wire for low-temperature steel, which requires high toughness at low temperatures, requires the addition of alloying agents, etc.
In addition to Ni, Cr, Mo, etc., Fe-
B is mixed and added. That is, it is well known that in order to obtain a weld metal with high low-temperature toughness, it is possible to improve the low-temperature toughness by adding a predetermined amount of Fe-B to the filling flux of a flux-cored wire and making the weld metal contain about 20 to 70 ppm of B. It is. However, among the raw materials for filling flux, B in particular only needs to be added in a very small amount; on the other hand, if the amount of B contained in the weld metal fluctuates even slightly, not only will the target toughness value not be obtained, but the There is a tendency for toughness to deteriorate significantly. Therefore, an important issue is how to uniformly contain the B component in a predetermined amount in the weld metal. The B source raw material for welding materials is usually B 2 O 3 or Fe-B (20%)
is used, and the latter is used for flux-cored wires.
Fe-B has a yield rate of 7 to 7 compared to the former B 2 O 3 .
It is widely used because it is 8 times more effective. However, when making a filling flux for flux-cored wire using Fe-B (20%), for example, Fe-B is used to obtain a predetermined B content for 100 kg of flux.
- B is added and blended in 400 to 500 g.
It is extremely difficult to uniformly distribute and mix the components. Therefore, in order to achieve uniform distribution and mixing, at present, around 10 types of raw materials are mixed using a two-step or three-step mixing method. That is, for example, when preparing a mixture of 100 kg of packed flux, first Fe-B, a specific gravity equivalent to this,
The first stage of mixing is carried out with raw materials of the same particle size to increase the amount of raw materials uniformly containing B, and further mixed with other alloying agents of approximately the same specific gravity to increase the amount to about 10 kg.
Finally, other slag agents etc. are mixed and
Predetermined amount (100Kg) of component B uniformly distributed and mixed
was making a filling flux. In this way, a packed flux in which component B is evenly distributed cannot be obtained unless multiple mixing steps are performed, taking into account the physical properties of the raw materials and using the appropriate mixer for each step. Mixing using such complicated and advanced technology was a method of maintaining a constant B content in the weld metal and obtaining stable high toughness at low temperatures. [Problems to be Solved by the Invention] The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to eliminate a trace amount of the B component into the flux even in a simple mixing process. To provide a flux sintering B raw material for filling flux of a flux-cored wire for welding that can be uniformly mixed. [Means for solving the problem] The gist of the present invention is to
A granular material to which Fe-B powder is sintered and attached,
Sintered flux B for flux-cored wire for welding, characterized by containing 0.5 to 4% by weight of B
It's in the raw materials. [Function] The sintered B raw material for filling flux according to the present invention is
Fe, preferably sized to a particle size of 0.4 mm or less, is added to the reduced iron powder, which is preferably sized to a particle size of 0.5 mm or less.
-B is mixed and sintered. Sintering B
The B content of the raw material is 0.5 to 4.0% by weight. The reason is as follows. The variation in B in the sintered B raw material is influenced by the B content. That is, as shown in FIG. 1, the variation in the B content in the sintered B raw material tends to increase as the Fe-B content decreases. This is because sintering occurs without uniform mixing, and the number of Fe-B particles adhering to the reduced iron powder is non-uniform.
Therefore, the lower limit of the B content is set as the range in which the variation in the B content is small and the B content in the weld metal is stable when used as a filling flux raw material.
It was set at 0.5%. On the other hand, regarding the upper limit of B content,
Similarly, it was set at 4%, taking into account the fact that there is little variation in the B content in the flux and that it does not reach the same level as the variation in the B content in the weld metal. That is, Fe-
If a large amount of B is added, the sintering force of Fe-B to the reduced iron powder will be weakened, and complete sintering adhesion will not be achieved.
Fe-B becomes easily dispersed as a single substance, and this becomes a major factor causing variations in B. Although the particle size of the sintering B raw material is not particularly limited in the present invention, it is recommended from the viewpoint of wire drawability that it be about 80% or less of the inner diameter of the product wire. As mentioned above, flux-cored wire for welding is
Flux is filled into the outer skin of the formed steel strip or pipe and wire is drawn to the product size, but in the final process of wire drawing, if the filling flux does not move within the outer skin as the outer skin stretches, wire breakage will occur frequently. However, productivity is significantly hindered, so the maximum particle size of the filling flux is determined in consideration of clearance so that it can move within the outer shell in accordance with the elongation of the outer shell in the final step of wire drawing. By the way, since the flux particles at the time of filling are granulated by blending multiple raw materials, they are separated by external pressure during the wire drawing process and are separated into single particles of the raw materials. The diameter must be determined from the viewpoint of wire drawability. Empirically, this maximum grain size satisfies the clearance if it is about 80% of the inner diameter of the product wire. The maximum particle size of the sintered B raw material of the present invention can also be defined from this viewpoint. If the particle size of the sintered B raw material exceeds 0.5 mm, wire breakage will occur frequently during wire drawing, and productivity will also drop significantly. It also reduces sinterability. An example of the method for manufacturing the sintered B raw material of the present invention will be shown. Mix reduced iron powder and Fe-B powder uniformly,
It is sintered and sized for 40 to 70 minutes in an NH Sintered B produced by this method
The raw material was identified using X-ray diffraction and electron microscopy.
It was observed that Fe-B or FeB was sintered on the surface of Fe-B powder or reduced iron powder. If the sintering temperature is less than 950℃, the sintering force with the iron powder will be insufficient and a stable product will not be obtained.On the other hand, if the sintering temperature is higher than 1100℃, there will be no significant difference in sintering force, but the energy loss will be large. . [Example] Next, an example of a flux-cored wire for welding using the sintered B raw material of the present invention will be described together with a comparative example. Tables 1 and 2 show the components and particle sizes of reduced iron powder and Fe-B, which are the basis of sintered B raw materials.

【表】【table】

【表】 第1表に示す還元鉄粉に第2表に示すFe−B
を配合し、1000℃、NHX雰囲気炉で60分間焼結
して整粒して第3表に示す焼結B原料を製造し
た。、第3表に示す如く本発明のNo.2〜5はBの
成分分析でばらつきがなく良品質の原料ができて
いるが、No.1は目標値の2倍、No.5は1%、No.6
は1.2%とBの含有量がばらつき、偏析している
ことが明らかである。 次に焼結B原料No.1、3、4及び従来のFe−
Bを使用して、他のスラグ生成剤、脱酸剤及び合
金剤を第4表に示す如く配合し混合して溶接用フ
ラツクス入りワイヤの充填フラツクスとした。 第4表に示す4種の充填フラツクスを用いて、
配合混合工程の段階数とB成分のフラツクス中
の偏析及び溶接金属のB成分と靭性の変動の2
項目について、比較例、従来技術との比較を行つ
た。
[Table] Reduced iron powder shown in Table 1 and Fe-B shown in Table 2
were blended and sintered at 1000° C. for 60 minutes in an NH X atmosphere furnace to size the particles to produce sintered B raw materials shown in Table 3. As shown in Table 3, Nos. 2 to 5 of the present invention have good quality raw materials with no variation in the component analysis of B, but No. 1 has twice the target value and No. 5 has 1%. , No.6
It is clear that the B content varies, at 1.2%, and is segregated. Next, sintered B raw materials No. 1, 3, 4 and conventional Fe-
Using B, other slag forming agents, deoxidizing agents and alloying agents were blended and mixed as shown in Table 4 to prepare a filling flux for welding flux-cored wire. Using the four types of filling flux shown in Table 4,
Number of stages in the blending process, segregation of B component in flux, and variation in B component and toughness of weld metal 2
Regarding the items, comparisons were made with comparative examples and conventional technology.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の述べた如く、本発明による焼結B原料を
溶接用フラツクス入りワイヤの充填フラツクスの
原料として使用することにより、配合、混合工程
の大幅な削減、簡略化が図られるとともに混合後
の充填フラツクス内のB成分偏析もなく、このフ
ラツクス充填したワイヤを使つた溶接結果は溶接
金属のB含有量が所定値で極めて安定してばらつ
きがなく、これに伴う衝撃靭性も安定して健全な
溶接継手が得られるようになる。
As described above, by using the sintered B raw material according to the present invention as a raw material for the filling flux of flux-cored wire for welding, the blending and mixing processes can be significantly reduced and simplified, and the filling flux after mixing can be There is no B component segregation in the weld metal, and the results of welding using this flux-filled wire are that the B content of the weld metal is extremely stable at a predetermined value with no variation, and the accompanying impact toughness is also stable and a sound welded joint. will be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配合原料中のFe−Bの配合量と焼結
B原料中のB成分のばらつきとの関係を示す図、
第2図は実施例における各工程でのフラツクス中
のB成分のばらつきを示す図、第3図は第4表に
示す本発明例A、B、比較例及び従来品を使用し
て得られた溶接金属のB成分のばらつきを示す
図、第4図は同溶接金属の衝撃靭性の値を示す図
である。
Figure 1 is a diagram showing the relationship between the blended amount of Fe-B in the blended raw materials and the variation in the B component in the sintered B raw materials,
Figure 2 shows the variation in the B component in the flux at each step in the example, and Figure 3 shows the results obtained using the invention examples A and B, the comparative example, and the conventional product shown in Table 4. FIG. 4 is a diagram showing the variation in the B component of the weld metal, and FIG. 4 is a diagram showing the value of the impact toughness of the weld metal.

Claims (1)

【特許請求の範囲】[Claims] 1 還元鉄粉表面にFe−B粉末が焼結付着した
粒状物であつて、B0.5〜4重量%を含有したこ
とを特徴とする溶接用フラツクス入りワイヤのフ
ラツクス用焼結B原料。
1. A sintered B raw material for flux of a flux-cored wire for welding, which is a granular material in which Fe-B powder is sintered and adhered to the surface of reduced iron powder, and contains 0.5 to 4% by weight of B.
JP7792787A 1987-03-31 1987-03-31 Sintered b raw material for flux of flux cored wire for welding Granted JPS63242492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7792787A JPS63242492A (en) 1987-03-31 1987-03-31 Sintered b raw material for flux of flux cored wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7792787A JPS63242492A (en) 1987-03-31 1987-03-31 Sintered b raw material for flux of flux cored wire for welding

Publications (2)

Publication Number Publication Date
JPS63242492A JPS63242492A (en) 1988-10-07
JPH0565275B2 true JPH0565275B2 (en) 1993-09-17

Family

ID=13647720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7792787A Granted JPS63242492A (en) 1987-03-31 1987-03-31 Sintered b raw material for flux of flux cored wire for welding

Country Status (1)

Country Link
JP (1) JPS63242492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562910B2 (en) 2002-09-25 2017-02-07 Novo Nordisk A/S Method for producing acylated peptides

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100538756B1 (en) * 2000-12-12 2005-12-26 현대종합금속 주식회사 Titania type flux cored wire without Boron segregation
CN104178725A (en) * 2014-07-31 2014-12-03 法瑞钠(济南)焊接器材有限公司 Automatic boron coating device for welding wires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562910B2 (en) 2002-09-25 2017-02-07 Novo Nordisk A/S Method for producing acylated peptides

Also Published As

Publication number Publication date
JPS63242492A (en) 1988-10-07

Similar Documents

Publication Publication Date Title
DE2738379A1 (en) PROCESS FOR REFINING METAL IRON AND STEEL
US1814719A (en) Ductile thorium and method of making the same
JPH0565275B2 (en)
GB2416174A (en) Cored wire for adding titanium to molten steel
US3080228A (en) Process for the production of cast iron
JPH0617163A (en) Production of eutectic copper-iron alloy
CN112059471B (en) Flux-cored wire for welding 022 austenitic stainless steel seamless pipe for fluid transportation
CN115121787B (en) Water atomization ferroboron powder and preparation method thereof
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
CN109822258A (en) A kind of low-temperature steel LPG ship flux-cored wire used for submerged arc welding
GB1391487A (en) Electroslag welding process
JPH01162717A (en) Nitrogen-containing additive for molten steel and treatment of molten steel
JP4208544B2 (en) Metal magnesium raw material and flux-cored wire for arc welding containing the same
CN112077475B (en) Flux-cored wire for NCu30 nickel alloy seamless pipe welding for pressure-bearing equipment
JPS63212093A (en) Production of flux cored wire for welding
JP2783841B2 (en) Covered arc welding rod
CN109175777B (en) 550 MPa-level low-temperature steel matched flux-cored wire
CN112935630B (en) Argon-filling-free self-protection flux-cored wire for back of stainless steel pipeline and preparation method thereof
SU829709A1 (en) Molybdenum-based alloy
US4035183A (en) Method for making aluminum-containing ferroalloy
JPH04288992A (en) Wire with welding flux
CN106001993B (en) A kind of self-fluxing alloyed powder doping vario-property self protection pile-up welding flux core welding wire and preparation method thereof
JPS6349397A (en) Production of seamless flux cored wire for welding stainless steel
WO2017176155A1 (en) Wire for treating molten metals and method for producing same
JPH03166326A (en) Manufacture of mo-al alloy by aluminothermit process