JPH056285B2 - - Google Patents

Info

Publication number
JPH056285B2
JPH056285B2 JP58213204A JP21320483A JPH056285B2 JP H056285 B2 JPH056285 B2 JP H056285B2 JP 58213204 A JP58213204 A JP 58213204A JP 21320483 A JP21320483 A JP 21320483A JP H056285 B2 JPH056285 B2 JP H056285B2
Authority
JP
Japan
Prior art keywords
film
substrate
polymer film
insulating polymer
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58213204A
Other languages
Japanese (ja)
Other versions
JPS60107214A (en
Inventor
Toshiaki Tamamura
Osamu Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58213204A priority Critical patent/JPS60107214A/en
Priority to US06/657,314 priority patent/US4559112A/en
Priority to DE8787106076T priority patent/DE3484598D1/en
Priority to CA000464743A priority patent/CA1231670A/en
Priority to EP19870106076 priority patent/EP0247366B1/en
Priority to EP19840306764 priority patent/EP0144127B1/en
Priority to DE8484306764T priority patent/DE3481849D1/en
Priority to KR1019840006200A priority patent/KR890004938B1/en
Publication of JPS60107214A publication Critical patent/JPS60107214A/en
Publication of JPH056285B2 publication Critical patent/JPH056285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は改良された導電性高分子フイルムとそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved conductive polymer film and a method for producing the same.

〔従来技術〕[Prior art]

ある種の芳香族化合物は電解質を添加した溶剤
中に溶解させ、電解酸化行うことにより、導電性
の高分子フイルムを電極基板上に形成させること
ができる。このような芳香族化合物としてはピロ
ール類、チオフエン類等の複素環式化合物、アズ
レン、ピレン、トリフエニレン等の多環芳香族化
合物が知られている〔例えばJ.バーゴン(J.
Bargon)、S.モーマンド(S.Mohmand)、R.J.ウ
オルトマン(R.J.Waltman)、IBMジヤーナル
オブ リサーチ エンド デベロツプメント
(IBM Journal of Reserch & Development)
第27巻 第4号 第330頁(1983年)参照〕。
A conductive polymer film can be formed on an electrode substrate by dissolving certain aromatic compounds in a solvent containing an electrolyte and performing electrolytic oxidation. Known examples of such aromatic compounds include heterocyclic compounds such as pyrroles and thiophenes, and polycyclic aromatic compounds such as azulene, pyrene, and triphenylene [for example, J. Burgon (J.
Bargon), S. Mohmand, RJ Waltman, IBM Journal
IBM Journal of Research & Development
See Vol. 27, No. 4, p. 330 (1983)].

しかしながら、従来の電極基板上に直接電解酸
化して形成した導電性高分子フイルムは以下のよ
うな欠点があつた。
However, conventional conductive polymer films formed by direct electrolytic oxidation on electrode substrates have the following drawbacks.

(1) フイルムの機械的強度が弱いため、基板上で
もまたフイルムとして単離した状態でも破れや
すく取扱いが困難であつた。
(1) Because the mechanical strength of the film is weak, it is easy to tear and difficult to handle both on a substrate and when isolated as a film.

(2) 電気伝導度を制御することが困難であつた。(2) It was difficult to control electrical conductivity.

(3) 基板との密着力が弱く、フイルム形成中ある
いは形成後の洗浄過程ではがれやすい。
(3) It has weak adhesion to the substrate and is likely to peel off during film formation or during the cleaning process after formation.

(4) ネサガラスの様な、電解溶液や形成される芳
香族系高分子フイルムに比べて電気抵抗が同等
あるいはそれ以下の電極基板を用いると均一な
フイルムを形成できず、膜厚に大きなバラツキ
がみられた。
(4) If an electrode substrate such as Nesa Glass, which has an electrical resistance equal to or lower than the electrolytic solution or the aromatic polymer film formed, is used, it will not be possible to form a uniform film, and there will be large variations in film thickness. It was seen.

(5) 空気中に放置すると電気伝導度が低下しやす
い。
(5) Electrical conductivity tends to decrease when left in air.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの欠点を除去するためになされ
たものであり、その目的は密着性、均一性、安定
性、基板表面性、電気伝導度制御性に優れた複合
導電性高分子フイルム及びその製造方法を提供す
ることにある。
The present invention was made to eliminate these drawbacks, and its purpose is to provide a composite conductive polymer film with excellent adhesion, uniformity, stability, substrate surface properties, and electrical conductivity controllability, and its production. The purpose is to provide a method.

〔発明の構成〕[Structure of the invention]

本発明を概説すれば、本発明の第1の発明は複
合導電性高分子フイルムの発明であつて、電極基
板上に積層した2種以上の絶縁性高分子フイルム
と、該基板上に電解酸化により電気化学的に形成
した芳香族系高分子材料とから成ることを特徴と
する。
To summarize the present invention, the first invention of the present invention is an invention of a composite conductive polymer film, which comprises two or more types of insulating polymer films laminated on an electrode substrate, and electrolytic oxidation on the substrate. It is characterized by being made of an aromatic polymer material electrochemically formed by.

また、本発明の第2の発明は複合導電性高分子
フイルムの発明であつて、積層した2種以上の絶
縁性高分子フイルムと、電解酸化により電気化学
的に形成した芳香族系高分子材料とから成ること
を特徴とする。
Further, the second invention of the present invention is an invention of a composite conductive polymer film, which comprises two or more laminated insulating polymer films and an aromatic polymer material electrochemically formed by electrolytic oxidation. It is characterized by consisting of.

そして、本発明の第3の発明は複合導電性高分
子フイルムの製造方法の発明であつて、電極基板
上に絶縁性高分子フイルムを2種以上積層する工
程及びその上に電解酸化により芳香族系高分子材
料を電気化学的に形成する工程の各工程を包含す
ることを特徴とする。
The third invention of the present invention is an invention of a method for manufacturing a composite conductive polymer film, which includes a step of laminating two or more kinds of insulating polymer films on an electrode substrate, and an aromatic film is added thereon by electrolytic oxidation. The method is characterized in that it includes each step of electrochemically forming a polymeric material.

電解重合による導電性高分子フイルムは通常電
極基板を、アセトニトリル等の有機溶媒中に電解
重合用モノマーとなる芳香族系化合物と通電させ
るための電解質とを溶解させた溶液中に、対向電
極と共に入れ、両電極間に通電させることにより
形成される。この際、電極基板を絶縁性の高分子
フイルムでコーテイングすれば、当然通電できず
導電性フイルムは全く形成されない。しかしなが
ら本発明者等は電極基板上に各種の絶縁性高分子
フイルムを塗布し、これを溶解させることのない
適切な電解反応溶液を組合せることにより電解反
応が通常の電極上と同様に進むことを見出した。
このようにして得られたフイルムは第1図に示す
様に生成条件により絶縁性高分子フイルムの内部
に電解重合された芳香族系高分子材料の混入され
た導電性フイルムb、あるいは芳香族系高分子フ
イルムと絶縁性高分子フイルムの積層された2層
構造のフイルムcを与える。更にbとcの中間の
一部分だけ芳香族系高分子材料が混入したフイル
ムも得られる。すなわち第1図は電極基板上に一
層の絶縁性高分子フイルムをコーテイングした場
合の電解重合の工程図であつて、aは電解前、b
は芳香族系高分子材料がフイルム中に混入した場
合、cは芳香族系絶縁性高分子材料が高分子フイ
ルムと共に電極表面に積層された場合を示す。第
1図中符号1は電極基板、2は絶縁性高分子フイ
ルム、3は芳香族系高分子材料が混入した導電性
フイルム、4は芳香族系高分子材料のみのフイル
ムを意味する。複合されたフイルムはいずれも導
電性の芳香族系高分子材料が含まれているため、
高い電気伝導度を示すと共に、電解重合時間によ
り、フイルムの電気伝導度を広い範囲で制御でき
る。また、絶縁性高分子フイルムを選択すること
によりフイルムの性質を変えることができる。
Conductive polymer films produced by electrolytic polymerization are usually produced by placing the electrode substrate together with a counter electrode in a solution containing an aromatic compound that will serve as a monomer for electrolytic polymerization and an electrolyte for conducting electricity in an organic solvent such as acetonitrile. , is formed by passing current between both electrodes. At this time, if the electrode substrate is coated with an insulating polymer film, it will naturally not be possible to conduct electricity and no conductive film will be formed. However, the present inventors have discovered that by coating various insulating polymer films on the electrode substrate and combining them with an appropriate electrolytic reaction solution that does not dissolve the film, the electrolytic reaction proceeds in the same way as on normal electrodes. I found out.
As shown in Figure 1, the film obtained in this way can be a conductive film b in which an electrolytically polymerized aromatic polymer material is mixed inside an insulating polymer film, or an aromatic polymer material mixed in the inside of an insulating polymer film, depending on the production conditions. A film c having a two-layer structure in which a polymer film and an insulating polymer film are laminated is provided. Furthermore, a film in which an aromatic polymer material is mixed only in a portion between b and c can also be obtained. That is, FIG. 1 is a process diagram of electrolytic polymerization when a single layer of insulating polymer film is coated on an electrode substrate, where a is before electrolysis, b is
c shows the case where the aromatic polymer material is mixed into the film, and c shows the case where the aromatic insulating polymer material is laminated on the electrode surface together with the polymer film. In FIG. 1, reference numeral 1 denotes an electrode substrate, 2 an insulating polymer film, 3 a conductive film mixed with an aromatic polymer material, and 4 a film made only of an aromatic polymer material. All composite films contain conductive aromatic polymer materials, so
In addition to exhibiting high electrical conductivity, the electrical conductivity of the film can be controlled over a wide range by changing the electrolytic polymerization time. Further, by selecting an insulating polymer film, the properties of the film can be changed.

本発明者等は更に本発明において、これらの各
種複合あるいは積層導電性フイルムを2種以上組
合せたフイルムの作製ができ、得られたフイルム
が単独の導電性フイルムに比べて著しく特性の良
い導電性高分子フイルムを与えることを見出し
た。
Furthermore, in the present invention, the present inventors have been able to produce a film that combines two or more of these various composite or laminated conductive films, and the resulting film has significantly better conductivity than a single conductive film. It was discovered that a polymer film can be obtained.

すなわち、第2図に示す様に電極基板上に第1
の絶縁性高分子フイルムをコーテイングし、更に
その上部に第2の絶縁性高分子フイルムを積層し
d、この基板を芳香族系化合物を含む電解重合溶
液中で重合することにより2層構造の複合導電性
高分子フイルムが得られる。この場合、条件によ
りeに示す様な2層共に芳香族系高分子材料が混
入した導電性フイルムを与える場合と、fのよう
に第1層のみ導電性フイルムを与える場合があ
る。第2図中符号5は1層目の絶縁性高分子フイ
ルム、6は2層目の絶縁性高分子フイルム、7は
芳香族系高分子材料が混入した1層目の導電性フ
イルムそして8は芳香族系高分子材料が混入した
2層目の導電性フイルムを意味する。
That is, as shown in FIG.
A second insulating polymer film is coated on top of the first insulating polymer film, and this substrate is polymerized in an electrolytic polymerization solution containing an aromatic compound to form a two-layer composite. A conductive polymer film is obtained. In this case, depending on the conditions, a conductive film mixed with an aromatic polymer material may be provided for both layers as shown in e, or a conductive film may be provided only in the first layer as shown in f. In FIG. 2, numeral 5 is the first layer of insulating polymer film, 6 is the second layer of insulating polymer film, 7 is the first layer of conductive film mixed with aromatic polymer material, and 8 is the first layer of conductive film. This refers to the second layer of conductive film mixed with an aromatic polymer material.

また、絶縁性高分子フイルムを3層以上に積層
しても膜厚と高分子フイルムの種類、溶剤を選択
することにより多層の複合導電性高分子フイルム
が得られる。
Furthermore, even if three or more layers of insulating polymer films are laminated, a multilayer composite conductive polymer film can be obtained by selecting the film thickness, type of polymer film, and solvent.

絶縁性高分子フイルムとしてポリグリシジルメ
タクリレート等のエポキシ基を含む高分子化合
物、あるいはノボラツク樹脂の様なOH基を含む
高分子化合物を用いる基板との密着性の良好な導
電性フイルムが形成される。
A conductive film with good adhesion to the substrate is formed using a polymer compound containing an epoxy group such as polyglycidyl methacrylate or a polymer compound containing an OH group such as novolak resin as the insulating polymer film.

他方、絶縁性高分子フイルムとしてポリステレ
ン、クロロメチル化ポリスチレン、ポリビニルナ
フタレン、ポリビニルカルバゾール等の芳香族高
分子化合物を用いると均一で電気伝導性の制御が
容易で電気伝導度の高い導電性フイルムができる
が基板との密着力は弱く、容易に基板からはがれ
る。
On the other hand, when an aromatic polymer compound such as polysterene, chloromethylated polystyrene, polyvinylnaphthalene, or polyvinylcarbazole is used as an insulating polymer film, a conductive film with uniform electrical conductivity and high electrical conductivity can be obtained with easy control of electrical conductivity. However, its adhesion to the substrate is weak and it easily peels off from the substrate.

したがつて、基板密着性の優れた高分子化合物
の上に芳香族高分子化合物を積層して電解重合を
行うことにより密着力、均一性、導電性いずれを
も良好な複合導電性フイルムが得られた。
Therefore, by laminating an aromatic polymer compound on a polymer compound with excellent substrate adhesion and performing electrolytic polymerization, a composite conductive film with good adhesion, uniformity, and conductivity can be obtained. It was done.

また、ポリ塩化ビニル、ポリフツ化ビニリデン
系の高分子化合物を絶縁性高分子フイルムとして
用いると電解重合芳香族系高分子材料と絶縁性高
分子フイルムの2層構造の積層フイルムが得られ
る。
Further, when a polyvinyl chloride or polyvinylidene fluoride-based polymer compound is used as the insulating polymer film, a laminated film having a two-layer structure of an electropolymerized aromatic polymer material and an insulating polymer film can be obtained.

したがつて、絶縁性高分子フイルムとしてまず
芳香族高分子化合物を用い、更にその上に積層フ
イルムが得られる高分子フイルムを形成して、電
解重合を行うことにより均一で導電性の制御され
た複合導電性高分子フイルムが絶縁性高分子フイ
ルムの表面コート付きで得られる。
Therefore, by first using an aromatic polymer compound as an insulating polymer film, and then forming a polymer film on top of which a laminated film can be obtained, and performing electrolytic polymerization, it is possible to obtain uniform and controlled conductivity. A composite conductive polymer film is obtained with a surface coating of an insulating polymer film.

更に3層に絶縁性高分子フイルムを積層すると
各層の組合せの複合導電性高分子フイルムを得る
ことができる。例えば第3図に示す様に、まず電
極基板1上に基板密着力のよい絶縁性高分子フイ
ルム(第1層)2をコーテイングし、次いで電気
伝導度制御用の芳香族高分子化合物(第2層)3
をコーテイングし、その上に積層構造を与える絶
縁性高分子フイルム(第3層)9をコーテイング
した基板gを用いて、電解重合することにより、
密着力、均一性、導電性のすべてについて良好な
複合導電性高分子フイルムを、表面に絶縁性高分
子フイルムがコートされた構造hで得られる。な
お第3図中で符号7及び8は第2図と同義であ
り、9は3層目の高分子フイルムを意味する。
Furthermore, by laminating three layers of insulating polymer films, a composite conductive polymer film with a combination of each layer can be obtained. For example, as shown in FIG. 3, an insulating polymer film (first layer) 2 with good adhesion to the substrate is first coated on the electrode substrate 1, and then an aromatic polymer compound (second layer) for controlling electrical conductivity is coated on the electrode substrate 1. layer) 3
By electrolytically polymerizing using a substrate g coated with an insulating polymer film (third layer) 9 that provides a laminated structure,
A composite conductive polymer film having good adhesion, uniformity, and conductivity can be obtained with structure h in which the surface is coated with an insulating polymer film. In FIG. 3, numerals 7 and 8 have the same meanings as in FIG. 2, and 9 means the third layer of polymer film.

したがつて、あらかじめ基板に設ける絶縁性高
分子フイルムは、いかなるものを用いてもよい。
そして電解液としては次の条件を満していればよ
い。
Therefore, any insulating polymer film may be used to provide the substrate in advance.
The electrolytic solution may satisfy the following conditions.

(1) 絶縁性高分子フイルムを溶かさないこと (2) 電解塩と電解重合用モノマーを溶かすことが
できること (3) あらかじめ基板上に形成した絶縁性高分子フ
イルム中に電解重合用モノマーを拡散させるこ
とができること なお、本発明におけるフイルム用高分子材料中
には、可塑剤、顔料及び色素等の常用の添加剤を
添加してもよく、それらを添加した場合でも、そ
れら添加剤が電解液中に溶出することはなく、ま
た得られた導電性高分子フイルムの所望の特性は
変化しない。
(1) Do not dissolve the insulating polymer film. (2) Be able to dissolve the electrolytic salt and monomer for electrolytic polymerization. (3) Diffuse the monomer for electrolytic polymerization into the insulating polymer film formed on the substrate in advance. Note that commonly used additives such as plasticizers, pigments, and dyes may be added to the polymeric material for films in the present invention, and even if these additives are added, they may not be present in the electrolyte. The conductive polymer film will not be eluted, and the desired properties of the obtained conductive polymer film will not change.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明
するが、本発明はこれらに限定されない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例 1 ネサガラス基板上にクロロメチル化ポリスチレ
ン(以下CMSと略記する)(分子量30万)を0.5μ
mの厚さに塗布した。このフイルムに500Wキセ
ノンランプを15分照射してCMSを三次元架橋さ
せた。このフイルムの上にポリ塩化ビニルを0.8μ
mの厚さに塗布した。この基板をピロール1M、
電解質としてテトラエチルアンモニウムテトラフ
ルオロボレート0.3Mを加えたアセトニトリル−
水−エチレングリコール(98:1:1)混合溶媒
に、対向電極としての白金メツシユと共に浸漬
し、1.3Vで20分間電解重合を行うと基板上に黒
色のポリピロールが析出した。このフイルムは膜
厚が1.7μmでネサガラス基板より容易にひきはが
すことができ、膜の構造がCMSとポリピロール
の混合した黒色の導電性フイルムと透明な光沢を
もつポリ塩化ビニルのフイルムの2層膜になつて
いた。このポリ塩化ビニル膜は高い強度をもつて
いるため得られた2層膜は高い強度をもつてい
る。CMS−ポリピロール複合膜面の電気伝導度
は4.3/Ω・cmで、他方ポリ塩化ビニル面は
10-7/Ω・cm以上の絶縁性を示した。
Example 1 Chloromethylated polystyrene (hereinafter abbreviated as CMS) (molecular weight 300,000) was deposited at 0.5μ on a Nesa glass substrate.
It was applied to a thickness of m. This film was irradiated with a 500W xenon lamp for 15 minutes to three-dimensionally crosslink CMS. PVC 0.8μ on top of this film
It was applied to a thickness of m. This substrate is pyrrole 1M,
Acetonitrile with 0.3M of tetraethylammonium tetrafluoroborate added as electrolyte.
The substrate was immersed in a water-ethylene glycol (98:1:1) mixed solvent together with a platinum mesh serving as a counter electrode, and electrolytically polymerized at 1.3 V for 20 minutes to deposit black polypyrrole on the substrate. This film has a thickness of 1.7 μm and can be easily peeled off from the Nesa glass substrate, and its structure is a two-layer film consisting of a black conductive film made of a mixture of CMS and polypyrrole, and a transparent glossy polyvinyl chloride film. I was getting used to it. Since this polyvinyl chloride film has high strength, the obtained two-layer film has high strength. The electrical conductivity of the CMS-polypyrrole composite film surface is 4.3/Ω・cm, while the polyvinyl chloride surface is
It showed insulation properties of 10 -7 /Ω・cm or more.

実施例 2 実施例1と同様なCMS(0.5μm厚)とポリ塩化
ビニル(0.8μm厚)の2層フイルムを塗布したネ
サガラス基板を5枚作製した。この基板を実施例
1と同じ電解重合溶液に浸漬し、1.3Vの電圧で
10秒、30秒、2分、10分、60分でそれぞれ電解重
合した。重合時間が増加するに従つて膜厚が増加
した。いずれのフイルムも均一で滑らかなポリ塩
化ビニルのフイルムに覆われた。CMS−ポリピ
ロール複合フイルムになつており、基板からはく
離して測定したCMS−ポリピロール面の電気伝
導度はそれぞれ2×10-4、4×10-2、1×10-1
3.2×10-1、9.2/Ω・cmであり、重合時間により
電気伝導度が制御できることが明らかになつた。
Example 2 Five Nesa glass substrates coated with the same two-layer film of CMS (0.5 μm thick) and polyvinyl chloride (0.8 μm thick) as in Example 1 were prepared. This substrate was immersed in the same electrolytic polymerization solution as in Example 1, and a voltage of 1.3V was applied.
Electrolytic polymerization was performed for 10 seconds, 30 seconds, 2 minutes, 10 minutes, and 60 minutes, respectively. The film thickness increased as the polymerization time increased. Both films were covered with a uniform, smooth polyvinyl chloride film. It is a CMS-polypyrrole composite film, and the electrical conductivity of the CMS-polypyrrole surface measured after peeling it off from the substrate is 2×10 -4 , 4×10 -2 , 1×10 -1 , respectively.
3.2×10 −1 and 9.2/Ω·cm, and it became clear that the electrical conductivity could be controlled by the polymerization time.

実施例 3 n型シリコン基板上(抵抗5Ω・cm)にポリグ
リシジルメタクリレート(以下PGMAと略記す
る)(分子量8万5千)を0.2μm厚に塗布し、200
℃で30分ベーキングした。このフイルム上にポリ
ビニルカルバゾール(以下PVCzと略記する)
(分子量46万)を1.0μm厚に塗布した。この基板
を正極とし、チオフエンを1M、過塩素酸銀を
0.2M溶解させたアセトニトリル中に白金メツシ
ユの対向電極と共に入れ、窒素気流下1.4Vの電
圧で、20分間電解反応を行つたところ基板表面に
青黒色のポリチオフエンが析出した。このフイル
ムはほぼ均一で膜厚1.5μmであり、基板との優れ
た密着性を示した。このフイルムを切出して、電
気伝導度を測定したところ0.75/Ω・cmで、
PGMA/PVCz両面にポリチオフエンが複合した
構造をもつていた。
Example 3 Polyglycidyl methacrylate (hereinafter abbreviated as PGMA) (molecular weight 85,000) was coated to a thickness of 0.2 μm on an n-type silicon substrate (resistance 5 Ω cm), and
Bake for 30 minutes at ℃. On this film, polyvinylcarbazole (hereinafter abbreviated as PVCz)
(molecular weight 460,000) was applied to a thickness of 1.0 μm. Using this substrate as a positive electrode, 1M thiophene and silver perchlorate were added.
The substrate was placed in 0.2M acetonitrile with a platinum mesh counter electrode, and an electrolytic reaction was carried out for 20 minutes at a voltage of 1.4V under a nitrogen stream, resulting in the precipitation of blue-black polythiophene on the substrate surface. This film was almost uniform with a thickness of 1.5 μm, and showed excellent adhesion to the substrate. When this film was cut out and the electrical conductivity was measured, it was 0.75/Ω・cm.
It had a structure in which polythiophene was composited on both sides of PGMA/PVCz.

実施例 4 実施例3と同様にn型シリコン基板上に
PGMAを0.2μm厚、その上にPVCz0.8μmを塗布
し、更にポリフツ化ビニリデン(以下PVDFと略
記する)(分子量82万)を0.6μm厚にコーテイン
グした。この基板をピロール1M、テトラエチル
アンモニウムp−トルエンスルホン酸0.4Mを溶
解させたアセトニトリル−N,N−ジメチルホル
ムアミド(95:5)溶剤中に白金メツシユ対向電
極と共に入れ、1.2Vで35分間電解重合を行つた。
ポリピロールが析出し、膜厚は2.2μmに増加し
た。このフイルムは基板と良好に密着しており、
また、フイルム表面は電解重合前とほぼ同様非常
に光沢があつた。フイルムを基板から切出して構
造及び電気伝導度を調べたところ、PGMA/
PVCz層にポリピロールが混合した複合フイルム
上にPVDFが積層された構造をとつており、
PGMA/PVCz面とPVDF面の電気伝導度は
6.5/Ω・cm及び2×10-4/Ω・cmであつた。こ
の基板に付着した積層フイルムと実施例3の
PVDFのないフイルムをそれぞれ空気中に1週間
放置したところ、実施例3のフイルムは電気伝導
度が1/4に低下したのに対し、実施例4のフイル
ムでは10%程度しか低下しなかつた。これらは明
らかに表面をコーテイングしているPVDFが保護
膜として働いていることを示しており、導電性高
分子フイルムの安定性を積層構造にすることによ
り向上させることができた。
Example 4 Similar to Example 3, on an n-type silicon substrate
PGMA was applied to a thickness of 0.2 μm, PVCz was applied to a thickness of 0.8 μm, and polyvinylidene fluoride (hereinafter abbreviated as PVDF) (molecular weight: 820,000) was further coated to a thickness of 0.6 μm. This substrate was placed together with a platinum mesh counter electrode in acetonitrile-N,N-dimethylformamide (95:5) solvent in which 1M pyrrole and 0.4M tetraethylammonium p-toluenesulfonic acid were dissolved, and electrolytic polymerization was carried out at 1.2V for 35 minutes. I went.
Polypyrrole precipitated and the film thickness increased to 2.2 μm. This film adheres well to the substrate,
Furthermore, the surface of the film was very shiny, almost the same as before electropolymerization. When we cut out the film from the substrate and examined its structure and electrical conductivity, we found that it was PGMA/
It has a structure in which PVDF is laminated on a composite film that is a mixture of PVCz layer and polypyrrole.
The electrical conductivity of the PGMA/PVCz surface and the PVDF surface is
They were 6.5/Ω·cm and 2×10 -4 /Ω·cm. The laminated film attached to this substrate and Example 3
When each of the films without PVDF was left in the air for one week, the electrical conductivity of the film of Example 3 decreased to 1/4, while that of the film of Example 4 decreased by only about 10%. These clearly indicate that the PVDF coating the surface acts as a protective film, and the stability of the conductive polymer film could be improved by creating a layered structure.

実施例 5 ネサガラス基板上にノボラツク樹脂(分子量
8000)を0.2μm厚にコーテイングし、200℃で30
分間加熱した。この上にポリ−2−ビニルナフタ
レン(分子量18000)を1.1μm厚にコーテイング
した。この基板を3−メチルピロール1M、テト
ラエチルアンモニウムp−トルエンスルホン酸
0.4Mを加えた、アセトニトリル−水−エチレン
グリコール(98:1:1)溶液に浸漬し、1.4V
で20分間電解重合すると青黒色のポリ−3−メチ
ルピロールが析出した。得られたフイルムは基板
との密着性に優れ、導電性のポリ−3−メチルピ
ロールがフイルム全体に混合されたものであつ
た。このフイルムを基板からはがして電気伝導度
を測定すると0.5/Ω・cmであつた。
Example 5 Novolac resin (molecular weight
8000) to a thickness of 0.2μm and heated at 200℃ for 30 minutes.
Heated for minutes. This was coated with poly-2-vinylnaphthalene (molecular weight 18,000) to a thickness of 1.1 μm. This substrate was mixed with 1M 3-methylpyrrole and tetraethylammonium p-toluenesulfonic acid.
Immersed in acetonitrile-water-ethylene glycol (98:1:1) solution with 0.4M added, 1.4V
After electrolytic polymerization for 20 minutes, blue-black poly-3-methylpyrrole was precipitated. The obtained film had excellent adhesion to the substrate, and conductive poly-3-methylpyrrole was mixed throughout the film. When this film was peeled off from the substrate and the electrical conductivity was measured, it was 0.5/Ω·cm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は絶縁性高分子フイ
ルムを塗布した電極基板上で、芳香族系化合物の
電解重合を行うことにより導電性高分子を作製す
る際に、絶縁性高分子フイルムとして1種の高分
子フイルムだけでなく、2種以上の高分子フイル
ムを積層する方法で、2種類の高分子が絶縁性で
電極表面が覆われても重合溶媒がフイルムをわず
かに膨潤させる条件を設定することにより電解重
合高分子のモノマーが絶縁性高分子中を拡散して
電極に達し、重合を開始し、その後、積層された
絶縁性高分子中に成長することにより複合フイル
ムを得ることができる。
As explained above, the present invention is a type of insulating polymer film that can be used when producing a conductive polymer by electrolytically polymerizing an aromatic compound on an electrode substrate coated with an insulating polymer film. This method involves laminating not only a polymer film but also two or more types of polymer films to create conditions that allow the polymerization solvent to swell the film slightly even if the two types of polymers are insulating and cover the electrode surface. As a result, the monomer of the electrolytically polymerized polymer diffuses through the insulating polymer, reaches the electrode, starts polymerization, and then grows into the laminated insulating polymer, thereby making it possible to obtain a composite film.

本発明方法によれば、従来導電性の材料中又は
上にしか複合することができなかつた電解重合高
分子を絶縁性高分子中に複合化できる特徴を有す
るため、電気伝導度を絶縁性から高導電性まで幅
広く制御することができる。
According to the method of the present invention, the electropolymerized polymer, which could only be composited in or on conductive materials, can be composited into insulating polymers. It can be controlled over a wide range up to high conductivity.

更に、本発明方法によれば、絶縁性高分子を2
層以上にしているため、構造を膜の厚み方向に制
御でき、密着力、均一性、安定性に優れた複合導
電性フイルムも得られるという格別顕著な効果が
奏せられる。
Furthermore, according to the method of the present invention, the insulating polymer is
Since it is made up of more than one layer, the structure can be controlled in the thickness direction of the film, and a particularly remarkable effect can be achieved in that a composite conductive film with excellent adhesion, uniformity, and stability can be obtained.

この導電性高分子フイルムは、電磁干渉防止フ
イルム、静電気・帯防止フイルム、感光体イメー
ジセンサ、太陽電池フイルム等に適用することが
できる。
This conductive polymer film can be applied to electromagnetic interference prevention films, static electricity/band prevention films, photoreceptor image sensors, solar cell films, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電極基板上に一層の絶縁性高分子フイ
ルムをコーテイングした場合の電解重合の工程
図、第2図は本発明に従つて電極基板上に2層の
絶縁性高分子フイルムをコーテイングした場合の
電解重合の工程図そして第3図は同じく本発明に
従つて電極基板上に3層の絶縁性高分子フイルム
を積層した場合の電解重合の工程図である。 1:電極基板、2:絶縁性高分子フイルム、
3:芳香族系高分子材料が混入した導電性フイル
ム、4:芳香族系高分子材料のみのフイルム、
5:1層目の絶縁性高分子フイルム、6:2層目
の絶縁性高分子フイルム、7:芳香族系高分子材
料が混入した1層目の絶縁性高分子フイルム、
8:芳香族系高分子材料が混入した2層目の絶縁
性高分子フイルム、9:3層目の絶縁性高分子フ
イルム。
Figure 1 is a process diagram of electrolytic polymerization in which one layer of insulating polymer film is coated on an electrode substrate, and Figure 2 is a process diagram of electrolytic polymerization in which two layers of insulating polymer film are coated on an electrode substrate according to the present invention. FIG. 3 is a process diagram of electrolytic polymerization in the case where three layers of insulating polymer films are laminated on an electrode substrate according to the present invention. 1: Electrode substrate, 2: Insulating polymer film,
3: Conductive film mixed with aromatic polymer material, 4: Film containing only aromatic polymer material,
5: first layer insulating polymer film, 6: second layer insulating polymer film, 7: first layer insulating polymer film mixed with aromatic polymer material,
8: Second layer insulating polymer film mixed with aromatic polymer material, 9: Third layer insulating polymer film.

Claims (1)

【特許請求の範囲】 1 電極基板上に積層した2種以上の絶縁性高分
子フイルムと、該基板上に電解酸化により電気化
学的に形成した芳香族系高分子材料とから成るこ
とを特徴とする複合導電性高分子フイルム。 2 積層した2種以上の絶縁性高分子フイルム
と、電解酸化により電気化学的に形成した芳香族
系高分子材料とから成ることを特徴とする複合導
電性高分子フイルム。 3 電極基板上に絶縁性高分子フイルムを2種以
上積層する工程、及びその上に電解酸化により芳
香族系高分子材料を電気化学的に形成する工程の
各工程を包含することを特徴とする複合導電性高
分子フイルムの製造方法。
[Claims] 1. A method comprising two or more types of insulating polymer films laminated on an electrode substrate, and an aromatic polymer material electrochemically formed on the substrate by electrolytic oxidation. Composite conductive polymer film. 2. A composite conductive polymer film comprising two or more laminated insulating polymer films and an aromatic polymer material electrochemically formed by electrolytic oxidation. 3. It is characterized by including the steps of laminating two or more types of insulating polymer films on an electrode substrate, and electrochemically forming an aromatic polymer material thereon by electrolytic oxidation. A method for producing a composite conductive polymer film.
JP58213204A 1983-10-07 1983-11-15 Composite conductive polymer film and method of producing same Granted JPS60107214A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58213204A JPS60107214A (en) 1983-11-15 1983-11-15 Composite conductive polymer film and method of producing same
US06/657,314 US4559112A (en) 1983-10-07 1984-10-02 Electrically conducting polymer film and method of manufacturing the same
DE8787106076T DE3484598D1 (en) 1983-10-07 1984-10-04 ELECTRICALLY CONDUCTIVE POLYMER AND THEIR PRODUCTION.
CA000464743A CA1231670A (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
EP19870106076 EP0247366B1 (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
EP19840306764 EP0144127B1 (en) 1983-10-07 1984-10-04 Electrically conducting polymer film and method of manufacturing the same
DE8484306764T DE3481849D1 (en) 1983-10-07 1984-10-04 ELECTRICALLY CONDUCTIVE POLYMERS AND THEIR PRODUCTION.
KR1019840006200A KR890004938B1 (en) 1983-10-07 1984-10-06 Electrically conduction polymer film and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213204A JPS60107214A (en) 1983-11-15 1983-11-15 Composite conductive polymer film and method of producing same

Publications (2)

Publication Number Publication Date
JPS60107214A JPS60107214A (en) 1985-06-12
JPH056285B2 true JPH056285B2 (en) 1993-01-26

Family

ID=16635256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213204A Granted JPS60107214A (en) 1983-10-07 1983-11-15 Composite conductive polymer film and method of producing same

Country Status (1)

Country Link
JP (1) JPS60107214A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289013A (en) * 1988-05-16 1989-11-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of organic functioning film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889636A (en) * 1981-11-24 1983-05-28 Achilles Corp Agricultural flexible vinyl chloride-based film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889636A (en) * 1981-11-24 1983-05-28 Achilles Corp Agricultural flexible vinyl chloride-based film

Also Published As

Publication number Publication date
JPS60107214A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
KR890004938B1 (en) Electrically conduction polymer film and method of manufacturing the same
KR900003155B1 (en) Polymer film with conductive pattern and method of manufacturing the same
JPS5918726A (en) Pyrrole electroconductive copolymer and manufacture
Niwa et al. Anisotropic conductivity of polypyrrole-polyvinylchloride conducting polymer alloy film prepared on patterned electrode
JP2519551B2 (en) Conductive polymer-method for producing thin layers
JPH0252737A (en) Laminate composed of base body and conductive polymer film
Roncali et al. Electroactive conducting composites from poly (3-methylthiophene) and poly (methylmethacrylate)
JPH056285B2 (en)
US5281327A (en) Method of producing conductive polymer composites
JPH047521B2 (en)
JPH07104527B2 (en) Electrochromic display element
JPS60177506A (en) Conductive polymer film and method of producing same
JPH056284B2 (en)
JPS61279001A (en) Conducting high polymer film and manufacture thereof
JPS60257011A (en) Method of producing polymer film having conductivity in pattern shape
JPH0124236B2 (en)
JPH03231932A (en) Porous film produced by electrolytic polymerization and production thereof
JPS60251675A (en) Conductive high-molecular film solar cell and manufacture thereof
JP2000021393A (en) Manufacture of polymer electrode
JPS60228548A (en) Continuous production of conductive polymer film and apparatus therefor
JPS60228546A (en) Antistatic film having excellent transparency
JPS6065031A (en) Production of polymer film
JPS61131304A (en) Conductive high polymer film and manufacture thereof
Kim et al. Transparent and conductive PEDOT films on PET substrate using an epoxy acrylate binder
JPS62156137A (en) Production of electrically conductive polymer film