JPH0561668U - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPH0561668U
JPH0561668U JP165892U JP165892U JPH0561668U JP H0561668 U JPH0561668 U JP H0561668U JP 165892 U JP165892 U JP 165892U JP 165892 U JP165892 U JP 165892U JP H0561668 U JPH0561668 U JP H0561668U
Authority
JP
Japan
Prior art keywords
catalyst
section
gas
combustion
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP165892U
Other languages
Japanese (ja)
Inventor
裕 古瀬
雅文 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP165892U priority Critical patent/JPH0561668U/en
Publication of JPH0561668U publication Critical patent/JPH0561668U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】ガスタービン燃焼器において、触媒部がセラミ
ック製の分割構造であっても格子の通口面積をほぼ一定
に確保でき、触媒反応特性やガスタービン熱効率特性を
一段と高めることができるようにする。 【構成】シェル1の頭部から燃焼ガスの流れ方向に沿っ
て次順に予燃焼部2、予混合部3、触媒部4および気相
燃焼部5を形成し、触媒部4を格子状とするとともに燃
焼ガスの流れ方向に沿って分割構造としたガスタービン
燃焼器において、分割した触媒部4b,4c間に、その
触媒部の孔よりも孔径が大きい多孔構造の介装体17を
設けた。
(57) [Abstract] [Purpose] In a gas turbine combustor, even if the catalyst part is of a ceramic split structure, the passage area of the lattice can be kept almost constant, further improving the catalytic reaction characteristics and the gas turbine thermal efficiency characteristics. To be able to. [Structure] A pre-combustion section 2, a pre-mixing section 3, a catalyst section 4 and a gas-phase combustion section 5 are formed in this order from the head of a shell 1 along the flow direction of combustion gas, and the catalyst section 4 is formed in a lattice shape. At the same time, in the gas turbine combustor having the divided structure along the flow direction of the combustion gas, the interposer 17 having a porous structure having a pore diameter larger than the hole of the catalyst portion is provided between the divided catalyst portions 4b and 4c.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、ガスタービン燃焼器にかかり、とりわけ燃焼ガスと触媒反応させ る触媒部に改良を加えたガスタービン燃焼器に関する。 The present invention relates to a gas turbine combustor, and more particularly to a gas turbine combustor having an improved catalyst portion for catalytically reacting with combustion gas.

【0002】[0002]

【従来の技術】[Prior Art]

従来、ガスタービンは、燃料として、LNG等の上質燃料を使用する傾向にあ るものの、NOx、CO等の公害規制上で求められる一段と低い値に対処するた め、公害対策の研究が進められており、その一つに触媒の使用がある。 Conventionally, gas turbines have tended to use high-quality fuels such as LNG as fuel, but in order to deal with the much lower values required by pollution regulations such as NOx and CO, research on pollution measures has been advanced. The use of a catalyst is one of them.

【0003】 触媒を使用するガスタービン燃焼器は、図5に示すように、頭部に燃料ノズル 6およびスワラー7を備えたシェル1を有し、このシェル1に燃焼ガスの流れ方 向に沿って次順に予燃焼部2、予混合部3、触媒部4および気相燃焼部5を形成 した構成とされている。As shown in FIG. 5, a gas turbine combustor using a catalyst has a shell 1 provided with a fuel nozzle 6 and a swirler 7 at its head, and the shell 1 is provided along the flow direction of the combustion gas. Then, the pre-combustion section 2, the pre-mixing section 3, the catalyst section 4 and the gas phase combustion section 5 are formed in this order.

【0004】 予燃焼部2は、燃料ノズル6からの燃料8を、スワラー7からの空気9の旋回 流を利用して拡散燃焼し、この間、空気9を予熱するための領域であり、この領 域から徐々に燃焼ガスが作り出される。The pre-combustion section 2 is a region for pre-heating the air 9 from the fuel nozzle 6 by diffusively burning the fuel 8 using the swirling flow of the air 9 from the swirler 7, and in this region. Combustion gas is gradually produced from the area.

【0005】 この領域から出た燃焼ガス(大部分は燃料/空気の未然混合気)は、予混合部 3に送り出され、ここで主燃料ノズル10から供給される燃料11とダクト12 を経て透口13から導入される空気14とが加えられ、触媒反応に必要な温度と 燃料濃度とに調節された予混合気が作り出される。Combustion gas (mostly a fuel / air mixture) that has exited from this region is sent to the premixing section 3, where it passes through the fuel 11 supplied from the main fuel nozzle 10 and the duct 12. Air 14 introduced through port 13 is added to create a premixed mixture adjusted to the temperature and fuel concentration required for the catalytic reaction.

【0006】 こうして作り出された予混合気は触媒部4で化学反応し、この反応によって、 予混合気の燃焼火炎は一般燃焼火炎より温度が下り、窒素酸化物等の発生は著し く抑制される。The premixed gas thus produced undergoes a chemical reaction in the catalyst section 4. By this reaction, the combustion flame of the premixed gas has a temperature lower than that of the general combustion flame, and the generation of nitrogen oxides is significantly suppressed. It

【0007】 触媒部4は図6に示すように、セラミック材からなる格子状の担体の各孔を通 口4aとし、格子状壁部分にパラジウム等の触媒をコーティングした構成とされ ている。そして、予混合気が通口4aを通過するときに触媒と接触し、触媒・燃 焼反応が行われるようになっている。As shown in FIG. 6, the catalyst portion 4 has a structure in which each hole of a lattice-shaped carrier made of a ceramic material is formed as an opening 4a and a catalyst such as palladium is coated on the lattice-shaped wall portion. Then, when the premixed gas passes through the passage 4a, it comes into contact with the catalyst to carry out the catalyst / burn reaction.

【0008】 この触媒部4に供給される予混合気は、前述したように予混合部3で燃料と空 気との比が小さくなるよう調整されるので、燃焼火炎温度が低く保たれ、生成さ れるNOx量は著しく小さくなる。The premixed gas supplied to the catalyst unit 4 is adjusted in the premixing unit 3 so that the ratio of the fuel and the air becomes small as described above, so that the combustion flame temperature is kept low and generated. The amount of NOx to be held becomes extremely small.

【0009】 なお、触媒部4は、触媒の長寿命化とともに予混合気の圧力損失に伴う過圧力 荷重に対処する必要上、その出口の燃焼ガス温度を800℃程度に抑える一方、 触媒厚みを、例えば通口の直径450mmに対し、200mmに薄くしてある。Note that the catalyst unit 4 has a long catalyst life and needs to cope with an overpressure load due to the pressure loss of the premixed gas. Therefore, the combustion gas temperature at the outlet of the catalyst unit 4 is suppressed to about 800 ° C. For example, the diameter of the through hole is 450 mm, but it is thinned to 200 mm.

【0010】 触媒部4で燃焼反応した後の燃焼ガスは、気相燃焼部5に送り出される間に、 補助燃料ノズル15から燃料16が加えられ、ここでも燃焼ガスの高温化が抑制 される。The combustion gas that has undergone the combustion reaction in the catalyst unit 4 is added with the fuel 16 from the auxiliary fuel nozzle 15 while being sent to the gas-phase combustion unit 5, and the temperature rise of the combustion gas is also suppressed here.

【0011】 したがって、ガスタービン燃焼器から出る燃焼ガスはNOxの極めて少ない作 動ガスとしてガスタービンに送り出される。Therefore, the combustion gas emitted from the gas turbine combustor is sent to the gas turbine as an operating gas with extremely low NOx.

【0012】[0012]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、近時のガスタービンでは、単機容量の高出力を目指し、現状の11 00℃クラスの作動ガス温度(ガスタービン入口温度)から1300℃クラスの 開発が進められており、この開発の進展上、一つの問題点として触媒部の強度保 証がある。 By the way, in recent gas turbines, the development of 1300 ° C class from the current 1100 ° C class working gas temperature (gas turbine inlet temperature) is underway with the aim of achieving high output of a single unit capacity. One problem is the strength guarantee of the catalyst part.

【0013】 すなわち、従来から使用されている触媒部は主に一体軸長タイプであり、この ような触媒部を高温化したガスタービン燃焼器に適用した場合の触媒反応温度分 布を調べると、図7に示すように、触媒部入口から軸方向に沿って数十mmまで上 昇が続き、それ以後はほぼ一定値になっている。That is, the conventionally used catalyst part is mainly of the integral shaft length type, and when the catalyst reaction temperature distribution when such a catalyst part is applied to a gas turbine combustor having a high temperature is examined, As shown in Fig. 7, the temperature continues to rise from the inlet of the catalyst section to several tens of mm along the axial direction, and after that, the value is almost constant.

【0014】 また、触媒部の熱応力分布についても、図8に示すように、触媒部入口から軸 方向に沿って数十mmまでがピークであり、それ以後は激減している。Further, as shown in FIG. 8, the thermal stress distribution in the catalyst portion has a peak from the inlet of the catalyst portion to several tens of millimeters along the axial direction, and then decreases sharply thereafter.

【0015】 かかる特性から触媒部入口は、強度的にもはや余裕がなく、上述のように作動 ガス温度を高めた場合、何らかの事情で不測の引張応力等が作用すると、切裂・ 破損等の損耗を招来することがあった。Due to these characteristics, the catalyst inlet has no margin in strength, and when the working gas temperature is increased as described above, if unexpected tensile stress or the like acts for some reason, wear such as cracking or damage occurs. Was sometimes invited.

【0016】 そこで、かかる技術の代替として図9に示すように、触媒部4を燃焼ガスの流 れ方向に沿って第1触媒部4bと第2触媒部4cとに2分割し、上述した図7お よび図8の特性を考慮して、第1触媒部4bを相対的に短く、第2触媒部4cを 相対的に長くする、いわゆる二重配置のものが既に提案されている。Therefore, as an alternative to such a technique, as shown in FIG. 9, the catalyst portion 4 is divided into two parts, a first catalyst portion 4b and a second catalyst portion 4c, along the flow direction of the combustion gas, and the above-mentioned diagram is used. Considering the characteristics of FIG. 7 and FIG. 8, a so-called double arrangement in which the first catalyst portion 4b is relatively short and the second catalyst portion 4c is relatively long has already been proposed.

【0017】 この技術だと、第1触媒部4bでは触媒反応時間を短くし、その余の反応を第 2触媒部4cで受け持たせる関係上、触媒性能が高く、加えて触媒部の強度保証 の点でも優れている。According to this technique, the catalyst reaction time is shortened in the first catalyst section 4b, and the remaining reaction is taken care of by the second catalyst section 4c, so that the catalyst performance is high and the strength of the catalyst section is guaranteed. Is also excellent.

【0018】 しかし反面では、図10に示すように、第1触媒部4bの格子4dと第2触媒 部4cの格子4eとの軸ずれ移動が起こり、両触媒部4b,4cの接合部分で通 口4aが狭少になる場合があり、この場合には圧力損失の増加が招来されて、触 媒反応特性上およびガスタービンの熱効率特性上に悪影響が生じる場合があった 。 このような格子4d,4eの軸ずれ移動の要因は、担体がセラミック製で、 製作誤差や据付誤差が比較的生じ易いほかに、金属製のような確実な固定ができ ないことにゆえんするものと考えられる。On the other hand, on the other hand, as shown in FIG. 10, an off-axis movement occurs between the lattice 4d of the first catalyst portion 4b and the lattice 4e of the second catalyst portion 4c, so that the catalyst portions 4b and 4c pass through each other. The port 4a may be narrowed, and in this case, an increase in pressure loss may be caused, which may have a bad effect on the catalytic reaction characteristics and the thermal efficiency characteristics of the gas turbine. The reason for such axis shift movement of the lattices 4d and 4e is that the carrier is made of ceramic, manufacturing errors and installation errors are relatively easy to occur, and it is not possible to securely fix it like metal. it is conceivable that.

【0019】 この考案は、上記の事情に鑑みてなされたもので、触媒部がセラミック製の分 割構造であっても格子の通口面積をほぼ一定に確保でき、触媒反応特性やガスタ ービン熱効率特性を一段と高めることができるガスタービン燃焼器を提供するこ とを目的とする。The present invention has been made in view of the above circumstances, and even if the catalyst portion has a ceramic division structure, the passage area of the lattice can be kept substantially constant, and the catalytic reaction characteristics and the gas turbine thermal efficiency can be improved. An object of the present invention is to provide a gas turbine combustor that can further improve the characteristics.

【0020】 また、この考案の他の目的は、触媒部の入口が過酷な状態に晒されていること に鑑み、触媒部が受ける応力等の過酷な状態を極力少なくすることができるガス タービン燃焼器を提供することにある。Further, another object of the present invention is to consider that the inlet of the catalyst section is exposed to a harsh state, so that the gas turbine combustion capable of minimizing the harsh state such as stress applied to the catalyst section. To provide a container.

【0021】[0021]

【課題を解決するための手段】[Means for Solving the Problems]

請求項1の考案は、シェル頭部から燃焼ガスの流れ方向に沿って次順に予燃焼 部、予混合部、触媒部および気相燃焼部を形成し、上記触媒部を格子状とすると ともに燃焼ガスの流れ方向に沿って分割構造としたガスタービン燃焼器において 、上記分割した触媒部間に、その触媒部の孔よりも孔径が大きい多孔構造の介装 体を設けたことを特徴とする。 In the invention of claim 1, the pre-combustion part, the pre-mixing part, the catalyst part and the gas phase combustion part are formed in this order from the shell head along the flow direction of the combustion gas. A gas turbine combustor having a divided structure along the gas flow direction is characterized in that an interposed member having a porous structure having a pore diameter larger than the hole of the catalyst portion is provided between the divided catalyst portions.

【0022】 請求項2の考案は、シェル頭部から燃焼ガスの流れ方向に沿って次順に予燃焼 部、予混合部、触媒部および気相燃焼部を形成し、上記触媒部を格子状としたガ スタービン燃焼器において、上記触媒部の上流側に、上記触媒部の孔よりも孔径 が大きい多孔構造の前置体を設けたことを特徴とする。According to a second aspect of the present invention, a pre-combustion section, a pre-mixing section, a catalyst section and a gas-phase combustion section are formed in this order from the shell head along the flow direction of the combustion gas, and the catalyst section is formed in a lattice shape. In the gas turbine combustor described above, a front body having a porous structure having a larger pore diameter than the pores of the catalyst portion is provided on the upstream side of the catalyst portion.

【0023】[0023]

【作用】[Action]

請求項1の考案にかかるガスタービン燃焼器によると、分割した触媒部間に、 その触媒部の孔よりも孔径が大きい多孔構造の介装体を設けることにより、各触 媒部を互いに離間させた構成としたので、燃焼ガスの圧力損失に伴う圧力荷重の 作用を受けて各触媒部の格子の相対的軸ずれ移動が生じても、それに伴う通口の 閉塞を防止することができる。 According to the gas turbine combustor according to the first aspect of the present invention, the catalyst parts are separated from each other by providing the interposed body having a porous structure having a larger diameter than the holes of the catalyst parts between the divided catalyst parts. With this configuration, even if the relative axial displacement of the lattice of each catalyst portion occurs due to the action of the pressure load caused by the pressure loss of the combustion gas, it is possible to prevent the passage opening from being blocked.

【0024】 つまり、第1触媒部を相対的に短くして触媒反応時間を短縮させ、未反応の燃 焼ガスを第2触媒部で反応させるようにしたような場合、燃焼ガスの圧力損失に 伴う圧力荷重の作用を受けて触媒部や介装体の軸ずれ移動があろうとも、いわば 介装体のメッシュが粗になっているので、各触媒部の格子の通口面積を常時一定 の範囲内に確保することができ、燃焼ガスの触媒反応に支障が生じることを防止 できるものである。That is, when the first catalyst section is relatively shortened to shorten the catalytic reaction time and the unreacted combustion gas is reacted in the second catalyst section, the pressure loss of the combustion gas is reduced. Even if the catalyst part and the interposer move axially under the influence of the accompanying pressure load, the mesh of the interposer is so coarse that the area of the lattice opening of each catalyst part is always constant. It can be secured within the range, and it can prevent the catalytic reaction of combustion gas from being hindered.

【0025】 また、請求項2の考案にかかるガスタービン燃焼器によると、触媒部の上流側 に、その触媒部の孔よりも孔径が大きい多孔構造の前置体を設けたので、触媒部 の格子の通口面積を一定の範囲内に確保しつつ、触媒部の入口での触媒反応温度 や熱応力の緩和機能が得られる。したがって、従来のガスタービン燃焼器で見ら れた図7および図8に示したような苛酷な触媒反応温度、触媒部の熱応力等が回 避でき、触媒部の損耗抑制ひいては触媒部の安全な運行ができるようになる。Further, according to the gas turbine combustor according to the second aspect of the present invention, since the preform having a porous structure having a pore diameter larger than that of the catalyst portion is provided on the upstream side of the catalyst portion, While securing the passage area of the lattice within a certain range, the function of relaxing the catalytic reaction temperature and thermal stress at the inlet of the catalyst section can be obtained. Therefore, it is possible to avoid the severe reaction temperature of the catalyst, the thermal stress of the catalyst portion, etc., which are seen in the conventional gas turbine combustor, as shown in FIG. 7 and FIG. Will be able to operate.

【0026】 また、前置体は触媒部を上流側から保持する状態となるので、触媒部の軸ずれ 移動の抑制機能も発揮でき、触媒反応効率等を高めるうえでも効果的なものとな り、さらに万一、運転中に触媒部に亀裂が生じたような場合でも、即座に触媒部 が崩壊する等の事態が回避でき、形状維持が図れる等の利点も得られる。Further, since the front body is in a state of holding the catalyst portion from the upstream side, it can exert the function of suppressing the axial displacement of the catalyst portion, which is effective in enhancing the catalytic reaction efficiency and the like. Further, even if a catalyst portion is cracked during operation, it is possible to avoid a situation in which the catalyst portion immediately collapses, and it is possible to obtain an advantage that the shape can be maintained.

【0027】[0027]

【実施例】【Example】

以下、この考案にかかるガスタービン燃焼器の実施例を、従来例と対応させな がら図1〜図4を参照して説明する。なお、従来例と同一構成部分には同一符号 を付す。 An embodiment of a gas turbine combustor according to the present invention will be described below with reference to FIGS. 1 to 4 while corresponding to a conventional example. The same components as those of the conventional example are designated by the same reference numerals.

【0028】 図1は第1実施例の全体構成を示す概略図、図2は図1のA−A線矢視図であ る。FIG. 1 is a schematic view showing the overall configuration of the first embodiment, and FIG. 2 is a view taken along the line AA of FIG.

【0029】 図1において、符号1はシェルを示し、このシェル1は、燃焼ガスの流れ方向 に沿って次順に予燃焼部2、予混合部3、触媒部4および気相燃焼部5を形成し ており、予燃焼部2でスワラー7からの空気9と燃料ノズル6からの燃料8との 混合気を予熱・燃焼させ、予混合部3で主燃料ノズル10から供給する燃料11 と、ダクト12から透口13を経で導入する空気14とを加えて予混合気にし、 触媒部4で予混合気を触媒反応させて気相燃焼部5に送り出し、ここでも補助燃 料ノズル15から燃料16を加えるようにしている。In FIG. 1, reference numeral 1 indicates a shell, which forms a pre-combustion section 2, a pre-mixing section 3, a catalyst section 4 and a gas-phase combustion section 5 in this order along the flow direction of the combustion gas. Therefore, the pre-combustion section 2 preheats and burns a mixture of the air 9 from the swirler 7 and the fuel 8 from the fuel nozzle 6, and the pre-mixing section 3 supplies the fuel 11 supplied from the main fuel nozzle 10 and the duct. Air 14 introduced from 12 through the through hole 13 is added to form a premixed gas, and the premixed gas is catalytically reacted in the catalyst part 4 and sent out to the gas phase combustion part 5, where the fuel is also discharged from the auxiliary fuel nozzle 15 again. I'm trying to add 16.

【0030】 触媒部4は格子状で、上流側に位置する第1触媒部4bと、下流側に位置する 第2触媒部4cとに2分割されている。第1触媒部4bは、相対的に軸長が短く 、第2触媒部4cは相対的に軸長が長くなっている。The catalyst part 4 is in a grid shape and is divided into two parts, a first catalyst part 4b located on the upstream side and a second catalyst part 4c located on the downstream side. The first catalyst portion 4b has a relatively short axial length, and the second catalyst portion 4c has a relatively long axial length.

【0031】 そして、第1触媒部4bと第2触媒部4cとの間に、これらの触媒部4b,4 cの孔よりも孔径が大きい多孔構造の介装体、例えば斜格子状のハニカム体17 が介装されている。Then, between the first catalyst portion 4b and the second catalyst portion 4c, an interposer having a porous structure having a pore diameter larger than the pores of these catalyst portions 4b, 4c, for example, a honeycomb structure in a slant lattice shape. 17 are installed.

【0032】 すなわち、図2に第1触媒部4bとハニカム体17との重ね合せ状態を示すよ うに、第1触媒部4bの井桁に組み込まれた格子4dのメッシュよりも、ハニカ ム体17の菱形に組み込まれた格子17aのメッシュの方が大きくなっており( 例えば10mm前後)、これによってハニカム体17の通口4fが第1触媒部4b の通口4aよりも大きくなっている。That is, as shown in FIG. 2 in which the first catalyst portion 4b and the honeycomb body 17 are superposed on each other, the honeycomb body 17 is more meshed than the mesh of the lattice 4d incorporated in the girders of the first catalyst portion 4b. The mesh of the lattice 17a incorporated in the rhombus is larger (for example, about 10 mm), so that the opening 4f of the honeycomb body 17 is larger than the opening 4a of the first catalyst portion 4b.

【0033】 このような構成の第1実施例によると、燃焼ガスが第1触媒部4bを通過する 際、生成する圧力損失に基づく圧力荷重を受けてハニカム体17の軸ずれ移動が あろうとも、通口4fが広いことにより、第2触媒部4cの通口を塞ぐことには ならない。よって、第2触媒部4cの通口には、燃焼ガスと触媒反応に必要な面 積が確保される。According to the first embodiment having such a configuration, when the combustion gas passes through the first catalyst portion 4b, even if the honeycomb body 17 is displaced in the axial direction due to the pressure load based on the generated pressure loss. The wide opening 4f does not close the opening of the second catalyst portion 4c. Therefore, the area required for the catalytic reaction with the combustion gas is secured in the passage of the second catalyst portion 4c.

【0034】 また、第1触媒部4bの軸ずれ移動があっても、ハニカム体17の通口17a の広さがこれをカバーするので、ハニカム体17の通口17aには、燃焼ガス触 媒反応に必要な面積が確保される。Further, even if the first catalyst portion 4b is displaced in the axial direction, the area of the through hole 17a of the honeycomb body 17 covers this, so that the through hole 17a of the honeycomb body 17 has a combustion gas catalyst. The area required for the reaction is secured.

【0035】 したがって、燃焼ガスの圧力損失に伴う圧力荷重の作用を受けて軸ずれ移動が あっても、第2触媒部4cの軸ずれ移動に影響を与えることがなく、燃焼ガスの 触媒反応に支障が生じるのを防止することができる。Therefore, even if there is an axial displacement due to the action of a pressure load caused by the pressure loss of the combustion gas, the axial displacement of the second catalyst portion 4c is not affected, and the catalytic reaction of the combustion gas is not affected. It is possible to prevent trouble.

【0036】 図3は第2実施例の全体構成を示す概略図、図4は作用効果を示すグラフであ る。FIG. 3 is a schematic diagram showing the overall configuration of the second embodiment, and FIG. 4 is a graph showing the action and effect.

【0037】 この第2実施例では、第1実施例の構成に加え、第1触媒部4bの上流側に、 その触媒部4bの孔よりも孔径が大きい多孔構造の前置体として、前置ハニカム 体18を配設している。この前置ハニカム体18の構成は、図2に示した第1実 施例のハニカム体17と略同様に斜格子状としている。In the second embodiment, in addition to the structure of the first embodiment, the upstream side of the first catalyst portion 4b is provided with a front structure as a porous structure having a pore diameter larger than that of the catalyst portion 4b. A honeycomb body 18 is arranged. The configuration of the pre-placed honeycomb body 18 is in the form of a slanted lattice, similar to the honeycomb body 17 of the first embodiment shown in FIG.

【0038】 その他の構成は第1実施例と同様であるから図3に、図1と同一符号を付して 説明を省略する。Since other configurations are similar to those of the first embodiment, the same reference numerals as those in FIG.

【0039】 この第2実施例によると、第1触媒部4bを、触媒反応温度や熱応力の過酷な 状態から緩和することができる。すなわち、図4に示すように、第1触媒部4b が受ける熱応力を大幅に低減することができ、したがって、第1触媒部4bの軸 ずれ移動の心配がなくなり、燃焼ガスとは効果的な触媒・燃焼反応がなされるよ うになり、触媒反応効率等を高めるうえで効果的なものとなる。According to the second embodiment, the first catalyst portion 4b can be relieved from a severe reaction temperature or thermal stress. That is, as shown in FIG. 4, it is possible to greatly reduce the thermal stress applied to the first catalyst portion 4b, so that there is no concern about the axial displacement of the first catalyst portion 4b, and it is effective for combustion gas. The catalyst / combustion reaction is carried out, which is effective in improving the efficiency of the catalytic reaction.

【0040】 また、前置ハニカム体18は、第1触媒部4bの防護的機能を有する。すなわ ち、第1触媒部4bと第2触媒部4cとの間に介装するハニカム体17と対応し て、前置ハニカム体18が第1触媒部4bを上流側から保持する状態となるので 、万一、運転中に第1触媒部4bに亀裂が生じたり破損して即座に交換できない ような場合でも、即座に触媒部が崩壊する等の事態が回避でき、形状維持が図れ ることにより、触媒・燃焼反応上の問題を生じない等の利点も得られる。Further, the pre-placed honeycomb body 18 has a protective function of the first catalyst portion 4b. That is, in correspondence with the honeycomb body 17 interposed between the first catalyst portion 4b and the second catalyst portion 4c, the front honeycomb body 18 is in a state of holding the first catalyst portion 4b from the upstream side. Therefore, even if the first catalyst part 4b is cracked or damaged during operation and cannot be replaced immediately, it is possible to avoid a situation in which the catalyst part immediately collapses and maintain the shape. As a result, advantages such as no problems in catalyst / combustion reaction can be obtained.

【0041】[0041]

【考案の効果】[Effect of the device]

以上述べたように、請求項1の考案にかかるガスタービン燃焼器によれば、分 割された触媒部の間に介装体を設け、このハニカム体によって触媒部の軸ずれ移 動をカバーするようにしたので、燃焼ガスが通過する触媒部の触媒反応に必要な 通口面積を確保することができ、その結果、触媒反応効率やガスタービン熱効率 を従来以上に一段と高めることができる。 As described above, according to the gas turbine combustor according to the first aspect of the present invention, the interposing body is provided between the divided catalyst parts, and the honeycomb body covers the axial shift movement of the catalyst parts. As a result, it is possible to secure the passage area required for the catalytic reaction of the catalytic portion through which the combustion gas passes, and as a result, it is possible to further improve the catalytic reaction efficiency and the gas turbine thermal efficiency.

【0042】 また、請求項2の考案にかかるガスタービン燃焼器によれば、触媒部の上流側 に前置体を設けたので、これによって触媒部入口がうける高熱応力が緩和され、 したがって、触媒部の軸ずれ移動の心配もなく、触媒反応効率等をさらに高める ことができる等の優れた効果が奏される。Further, according to the gas turbine combustor according to the second aspect of the invention, since the front body is provided on the upstream side of the catalyst part, the high thermal stress received at the catalyst part inlet is relaxed by this, and therefore the catalyst is There are no worries about the axial displacement of the parts, and the excellent effects such as the catalytic reaction efficiency can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案にかかるガスタービン燃焼器の第1実
施例の全体構成を示す概略図。
FIG. 1 is a schematic diagram showing the overall configuration of a first embodiment of a gas turbine combustor according to the present invention.

【図2】図1のA−A矢視方向から見た正面図。FIG. 2 is a front view seen from the direction of arrow AA in FIG.

【図3】この考案にかかるガスタービン燃焼器の第2実
施例の全体構成を示す概略図。
FIG. 3 is a schematic diagram showing the overall configuration of a second embodiment of a gas turbine combustor according to the present invention.

【図4】この考案にかかるガスタービン燃焼器によって
得られる触媒部の熱応力分布図。
FIG. 4 is a thermal stress distribution diagram of a catalyst portion obtained by the gas turbine combustor according to the present invention.

【図5】従来のガスタービン燃焼器の一例を示す概略
図。
FIG. 5 is a schematic diagram showing an example of a conventional gas turbine combustor.

【図6】従来のガスタービン燃焼器における触媒部の構
成を示す斜視図。
FIG. 6 is a perspective view showing a configuration of a catalyst portion in a conventional gas turbine combustor.

【図7】従来の触媒部の触媒反応温度分布図。FIG. 7 is a catalytic reaction temperature distribution chart of a conventional catalyst section.

【図8】従来の触媒部の熱応力分布図。FIG. 8 is a thermal stress distribution diagram of a conventional catalyst section.

【図9】従来のガスタービン燃焼器の他の例を示す概略
図。
FIG. 9 is a schematic view showing another example of a conventional gas turbine combustor.

【図10】図9のB−B矢視方向から見た正面図。10 is a front view seen from the direction of arrow BB in FIG.

【符号の説明】[Explanation of symbols]

1 シェル 2 予燃焼部 3 予混合部 4 触媒部 4a,4f 通口 4b 第1触媒部 4c 第2触媒部 4d,4e,17a 格子 5 気相燃焼部 17 介装体(ハニカム体) 18 前置体(前置ハニカム体) DESCRIPTION OF SYMBOLS 1 Shell 2 Pre-combustion part 3 Premixing part 4 Catalyst part 4a, 4f Passage port 4b 1st catalyst part 4c 2nd catalyst part 4d, 4e, 17a Lattice 5 Gas phase combustion part 17 Interposer (honeycomb body) 18 Preliminary Body (Honeycomb body in front)

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 シェル頭部から燃焼ガスの流れ方向に沿
って次順に予燃焼部、予混合部、触媒部および気相燃焼
部を形成し、上記触媒部を格子状とするとともに燃焼ガ
スの流れ方向に沿って分割構造としたガスタービン燃焼
器において、上記分割した触媒部間に、その触媒部の孔
よりも孔径が大きい多孔構造の介装体を設けたことを特
徴とするガスタービン燃焼器。
1. A pre-combustion section, a pre-mixing section, a catalyst section and a gas phase combustion section are formed in this order from the shell head along the flow direction of the combustion gas, and the catalyst section is formed in a lattice shape and the combustion gas In a gas turbine combustor having a divided structure along the flow direction, a gas turbine combustion characterized in that an interposed body having a porous structure having a hole diameter larger than the hole of the catalyst portion is provided between the divided catalyst portions. vessel.
【請求項2】 シェル頭部から燃焼ガスの流れ方向に沿
って次順に予燃焼部、予混合部、触媒部および気相燃焼
部を形成し、上記触媒部を格子状としたガスタービン燃
焼器において、上記触媒部の上流側に、上記触媒部の孔
よりも孔径が大きい多孔構造の前置体を設けたことを特
徴とするガスタービン燃焼器。
2. A gas turbine combustor in which a pre-combustion section, a pre-mixing section, a catalyst section and a gas-phase combustion section are formed in this order from the shell head along the flow direction of the combustion gas, and the catalyst section has a lattice shape. The gas turbine combustor according to claim 1, wherein a preform having a porous structure having a pore diameter larger than the pores of the catalyst portion is provided on the upstream side of the catalyst portion.
JP165892U 1992-01-21 1992-01-21 Gas turbine combustor Pending JPH0561668U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP165892U JPH0561668U (en) 1992-01-21 1992-01-21 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP165892U JPH0561668U (en) 1992-01-21 1992-01-21 Gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH0561668U true JPH0561668U (en) 1993-08-13

Family

ID=11507624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP165892U Pending JPH0561668U (en) 1992-01-21 1992-01-21 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH0561668U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164300A (en) * 2009-01-19 2010-07-29 General Electric Co <Ge> System and method employing catalytic reactor coating
CN108105801A (en) * 2017-11-03 2018-06-01 上海交通大学 A kind of soft combustion method of new catalysis
CN109751622A (en) * 2017-11-03 2019-05-14 广东电网有限责任公司电力科学研究院 A kind of compound soft catalytic combustion system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164300A (en) * 2009-01-19 2010-07-29 General Electric Co <Ge> System and method employing catalytic reactor coating
CN108105801A (en) * 2017-11-03 2018-06-01 上海交通大学 A kind of soft combustion method of new catalysis
CN109751622A (en) * 2017-11-03 2019-05-14 广东电网有限责任公司电力科学研究院 A kind of compound soft catalytic combustion system

Similar Documents

Publication Publication Date Title
US6887067B2 (en) Catalytically operating burner
JP4772269B2 (en) Rich ignition thin catalytic combustion hybrid combustor
EP0356092A1 (en) Gas turbine combustor
EP0453178A1 (en) Gas turbine catalytic combustor with preburner and low NOx emissions
US20010024774A1 (en) Burner configuration with primary and secondary pilot burners
JP2002507717A (en) Combustor, method of using the same, and method of reducing combustion vibration
JP2001503843A (en) Fuel combustion method and apparatus using air
US6712602B2 (en) Hybrid type high pressure combustion burner employing catalyst and CST combustion with staged mixing system
JP2006509990A (en) Gas turbine engine catalytic oxidation module
JPH0561668U (en) Gas turbine combustor
US5950434A (en) Burner, particularly for a gas turbine, with catalytically induced combustion
JPH01242151A (en) Catalyst body for high temperature combustor and its production
JPH11507433A (en) Burners especially for gas turbines
JP4063871B2 (en) Burner with catalyst-introduced combustion, especially for gas turbines
JPS5913829A (en) Combustor of gas turbine
JP4055659B2 (en) Catalytic combustor and operation method thereof
JPH0311588Y2 (en)
JPS58108332A (en) Combustor for gas turbine
JP3712838B2 (en) Combustion catalyst holding device
JPH0443726Y2 (en)
JP2607387Y2 (en) Gas turbine combustor
JP3174645B2 (en) Gas turbine low NOx combustor
JP2000146183A (en) Gas turbine combustor
JPH048686B2 (en)
JPS59219612A (en) Gas-fired duct burner