JPH01242151A - Catalyst body for high temperature combustor and its production - Google Patents

Catalyst body for high temperature combustor and its production

Info

Publication number
JPH01242151A
JPH01242151A JP63070413A JP7041388A JPH01242151A JP H01242151 A JPH01242151 A JP H01242151A JP 63070413 A JP63070413 A JP 63070413A JP 7041388 A JP7041388 A JP 7041388A JP H01242151 A JPH01242151 A JP H01242151A
Authority
JP
Japan
Prior art keywords
catalyst
channels
channel
catalyst body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63070413A
Other languages
Japanese (ja)
Inventor
Mamoru Suyari
護 須鎗
Taku Aokata
青方 卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63070413A priority Critical patent/JPH01242151A/en
Publication of JPH01242151A publication Critical patent/JPH01242151A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly introduce mixed gas to a vapor-phase reaction area by forming a catalyst body by making channels carrying catalyst through a carrier on the inside surface of a supporter of honeycomb structure and, adjacently to channels, channels carrying no catalyst. CONSTITUTION:The catalyst body 1a is formed by making the channels 3X carrying catalyst through the carrier on the inside surface and, adjacently around the channels, other channels 3Y carrying no catalyst, in the supporter 2 of honeycomb structure, having channels, through holes. A gas turbine combustor 11 is constituted by inserting the catalyst body 1a in a combustor liner 13, together with arranging the combustor liner 13 in a cylindrical casing 12 to form a vacant space 14 as air passage around the combustor liner 13. With the device, the excessively high temp. of the catalyst body can be avoided due to cooling effect of the unreacted mixed gas in the channels carrying no catalyst.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はNOx低減を目的とした触媒燃焼方式の高温燃
焼器用触媒体およびその製造方法に関し、例えばガスタ
ービン燃焼器、a沸し器、熱風発生器等に適用されるも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a catalyst body for a high-temperature combustor of a catalytic combustion type for the purpose of reducing NOx, and a method for manufacturing the same, such as a gas turbine combustor, an a-boiler, a hot air boiler, etc. This applies to generators, etc.

(従来の技術) 従来、高温触媒燃焼方式である高温燃焼器用として、高
温下で耐熱性、耐久性を有する触媒体の開発が望まれて
いる。
(Prior Art) Conventionally, it has been desired to develop a catalyst body that has heat resistance and durability at high temperatures for use in high-temperature combustors that employ high-temperature catalytic combustion.

この方式によれば、触媒体に反応開始可能な温度の空気
/燃料混合気を供給して、燃料を燃焼させているが、触
媒体が混合気の燃焼を完結するのに十分な長さを有する
場合は、触媒体の出口温度は混合気の燃料濃度に対応し
て決まる。これに対して触媒体の長さを短くすると混合
気は完全に反応せずに、一部触媒体を未反応のまま通過
するようになり、この未反応分が使用条件により変化す
ることから触媒体の出口温度の予測か困難になる。
According to this method, the fuel is combusted by supplying the air/fuel mixture at a temperature that allows the catalyst to start a reaction, but the catalyst remains long enough to complete the combustion of the mixture. If so, the outlet temperature of the catalyst body is determined in accordance with the fuel concentration of the air-fuel mixture. On the other hand, if the length of the catalyst body is shortened, the air-fuel mixture will not react completely, but will pass through the catalyst body partially unreacted, and this unreacted portion will change depending on the usage conditions, so it will not be possible to It becomes difficult to predict the outlet temperature of the media.

また、混合気の反応を完結させて、即ち燃料を100%
燃焼させて、機器として必要な温度をi譜ようとすれば
触媒体の耐熱性、耐久性が問題となる。
In addition, the reaction of the mixture is completed, that is, the fuel is 100%
If we burn it to reach the temperature required for equipment, the heat resistance and durability of the catalyst become a problem.

そこで、特開昭61−1’26333号公報において予
燃焼領域、触媒入口側の予混合領域および触媒出口側の
気相燃焼領域に、それぞれ噴射弁と調整弁とを設けるこ
とにより、NOx低減を図ると同時に出力低下防止を図
ったガスタービン燃焼器の制御装置が提案されている。
Therefore, in Japanese Patent Application Laid-Open No. 61-1'26333, NOx reduction is achieved by providing an injection valve and a regulating valve in the pre-combustion region, the pre-mixing region on the catalyst inlet side, and the gas-phase combustion region on the catalyst outlet side, respectively. A control device for a gas turbine combustor has been proposed which aims at preventing a decrease in output at the same time.

即ち、この装置は耐久性を考慮して触媒領域出口温度を
低く(但し、下流で気相反応可能な約800℃以上)保
ち、燃料の不足分を触媒領域出口に供給して気相反応で
高温に上昇させてゆく形式のものである。同様の考え方
により、また特開昭59−107119号公報では、触
媒燃焼方式によるガスタービンの燃焼方法において、セ
ラミック製の触媒充填部を通過させたパイプに燃料と空
気の混合気を供給し、充填部の出口部分に噴射させるこ
とにより、ガスタービンの負荷変動に出口以後の温度を
対応させるようにしたガスタービンの燃焼法が提案され
ている。
In other words, in consideration of durability, this device maintains the temperature at the outlet of the catalyst region at a low temperature (approximately 800 degrees Celsius or higher, which allows gas-phase reactions downstream), and supplies the insufficient amount of fuel to the outlet of the catalyst region to carry out gas-phase reactions. It is of the type that raises the temperature to a high temperature. Based on a similar idea, Japanese Patent Application Laid-Open No. 59-107119 discloses that in a gas turbine combustion method using a catalytic combustion method, a mixture of fuel and air is supplied to a pipe that passes through a ceramic catalyst filling part, and the fuel is filled. A gas turbine combustion method has been proposed in which the temperature after the outlet corresponds to the load fluctuation of the gas turbine by injecting the fuel into the outlet of the gas turbine.

ところで、例えば、燃焼器出口温度が1200℃のi器
の触媒体を考えると、100%反応すれば1200℃に
なる空気/燃料混合気であって、反応開始可能な温度の
混合気を供給した場合、この混合気が100%反応すれ
ば、触媒体出口温度は1200℃となり、支持体の耐熱
限度を超え、白金族触媒では揮散しまう。理想的な状態
は、触媒体出口で9006C〜1000°Cになる程度
に混合気が反応して、その残りの分は触媒体から未反応
状態で流出し、流出した所で完全に反応することである
が、このような触媒体の例は現在存在しない。
By the way, for example, if we consider the catalyst body of an i reactor with a combustor outlet temperature of 1200°C, the air/fuel mixture will reach 1200°C if 100% reaction occurs, and the air/fuel mixture is supplied at a temperature at which the reaction can start. In this case, if this mixture reacts 100%, the catalyst outlet temperature will be 1200° C., exceeding the heat resistance limit of the support, and the platinum group catalyst will volatilize. The ideal situation is for the mixture to react to a temperature of 9006°C to 1000°C at the outlet of the catalyst, and the remaining amount to flow out from the catalyst in an unreacted state, where it is completely reacted. However, there are currently no examples of such catalysts.

(発明が解決しようとする課題) 上記特開昭61−126333号公報に記載のガスター
ビン燃焼器の制御装置では、燃料を3カ所から供給する
事および触媒体保護と気相反応維持の為高温の触媒体出
口温度を計測するように形成しである。このため、燃料
の流量制御が複雑となるだけでなく、制御の信頼性とい
う点で実用的でないという問題がある。
(Problems to be Solved by the Invention) In the control device for a gas turbine combustor described in the above-mentioned Japanese Patent Application Laid-open No. 61-126333, fuel is supplied from three locations and the temperature is high to protect the catalyst and maintain the gas phase reaction. It is designed to measure the temperature at the outlet of the catalyst body. For this reason, there is a problem that not only does fuel flow rate control become complicated, but also that the control is impractical in terms of reliability.

また、特開昭59−107119号公報に記載の燃焼法
では、セラミック触媒体の中へパイプを通すため、耐久
性が損われる可能性があるという問題がある。
Furthermore, in the combustion method described in JP-A-59-107119, since a pipe is passed through the ceramic catalyst body, there is a problem that durability may be impaired.

本発明は、斯る従来の問題点を課題としてなされたもの
で、耐久性、耐熱性が良好で、装置の構造を複雑にする
ことなく、触媒体出口温度を予測可能とし、混合気を均
一に、気相反応領域に導入する高温燃焼器用触媒体およ
びその製造方法を提供しようとするものである。
The present invention has been developed to address these conventional problems, and has good durability and heat resistance, and makes it possible to predict the catalyst outlet temperature without complicating the structure of the device, and to maintain a uniform air-fuel mixture. Another object of the present invention is to provide a catalyst body for a high-temperature combustor that is introduced into a gas phase reaction region, and a method for manufacturing the same.

(課題を解決するための手段) 上記従来の課題を解決するために、第1発明は、内表面
に担体を介して触媒を担持させた触媒担持チャネルと、
これに隣接させた触媒を担持させない触媒無担持チャネ
ルとを設けて形成した。
(Means for Solving the Problems) In order to solve the above-mentioned conventional problems, the first invention provides a catalyst-carrying channel in which a catalyst is supported on the inner surface via a carrier;
A catalyst-free channel in which no catalyst is supported was provided adjacent to this channel.

また、第2発明は、多数のチャネルを有するハニカム構
造体からなる支持体の上記チャネルの内面に担体をウォ
ッシュコートした後、多数の孔を備え、かつ上記支持体
の端面に密着した状態で、上記チャネルのうちで端面を
閉じたチャネルに隣接するチャネルの端面に上記孔が位
置する形状の多孔パツキンを上記支持体の一方または両
側の端面に密着させて、触媒を含んだ液を多孔パツキン
の孔を介して、この孔の位置のチャネル内に含浸させ、
含浸後の支持体に熱処理を施すようにした。
Further, the second invention provides a method in which, after wash-coating a carrier on the inner surface of the channels of a support made of a honeycomb structure having a large number of channels, the support is provided with a large number of holes and in close contact with the end surface of the support. A porous packing having a shape in which the holes are located on an end face of a channel adjacent to a channel with a closed end among the channels is brought into close contact with one or both end faces of the support, and a liquid containing a catalyst is poured into the porous packing. impregnated through the pore and into the channel at the location of the pore;
The support was subjected to heat treatment after impregnation.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

第1図、第2図は、第1発明に係る触媒体1aを示し、
)隻数の貫通孔であるチャネルを有するハニカム構造の
支持体2に、内表面に図示しない担体を介して触媒を担
持させた触媒担持チャネル(第2図中凶で示す。)3X
と、この周囲に隣接させた触媒を担持させない触媒無担
持チャネル(第2図中口で示す。)3Yとを設けて形成
しである。
1 and 2 show a catalyst body 1a according to the first invention,
) Catalyst carrying channel (indicated by black in FIG. 2) 3X in which a catalyst is supported on the inner surface of a honeycomb-structured support 2 having channels, which are through-holes, through a carrier (not shown).
and a catalyst-free channel (indicated by the opening in the middle of FIG. 2) 3Y adjacent to which no catalyst is supported.

ここで支持体2の材質としては、例えばコージェライト
のようなセラミックが適しており、担体としては例えば
γ−アルミナのような表面積の大きいセラミックが適し
ている。また、触媒には、混合気の燃焼促進作用が良好
な白金族金属が好ましい。
Here, a suitable material for the support 2 is, for example, a ceramic such as cordierite, and a suitable material for the support is a ceramic having a large surface area, such as γ-alumina. Further, the catalyst is preferably a platinum group metal that has a good effect of promoting combustion of the air-fuel mixture.

第3図は、上記構成からなる触媒体1aを使用した機器
の例よしてガスタービン燃焼器11を示し、筒状のケー
シング12内に同じく筒状の燃焼器ライナ13を配置し
て、燃焼器ライナ13の周囲に空気流路としての空隙部
I4を形成するとともに、燃焼器ライナ13内に触媒体
1aが嵌挿しである。また、ケーシング12外から燃焼
器ライナ13内に燃料供給可能に燃料噴射弁15および
燃料噴射弁16を設ける一方、燃焼器ライナ13内に空
気を流入させるために、燃焼器ライナ13の側壁部の触
媒体1aより右側の部分に空気流通孔17Xおよび燃料
噴射弁16より左側の部分に空気流通孔+7Y、I7Z
を形成し、さらに燃料噴射弁15の周囲に旋回羽根(ス
ワラ−)18を取付けることにより、燃焼器ライナ13
内にプリバーナ部+9.燃料混合部20および気相反応
部21が形成しである。
FIG. 3 shows a gas turbine combustor 11 as an example of a device using the catalyst body 1a having the above-mentioned configuration. A gap I4 serving as an air flow path is formed around the liner 13, and a catalyst body 1a is inserted into the combustor liner 13. Further, while a fuel injection valve 15 and a fuel injection valve 16 are provided so as to be able to supply fuel into the combustor liner 13 from outside the casing 12, in order to allow air to flow into the combustor liner 13, the side wall of the combustor liner 13 is Air circulation holes 17X are provided on the right side of the catalyst body 1a, and air circulation holes +7Y and I7Z are provided on the left side of the fuel injection valve 16.
By forming a swirler 18 around the fuel injection valve 15, the combustor liner 13
Pre-burner part inside +9. A fuel mixing section 20 and a gas phase reaction section 21 are formed.

そして、図示しない圧縮機より空隙部14に導いた高圧
空気の一部を第3図中一番台側の空気流通孔17Xから
直接気相反応部21の後流に導き、即ちプリバーナ部1
9.燃料混合部20をバイパスさせて、この気相反応部
21の後流から下記するように燃焼ガスとともに図示し
ないガスタービンへと送り出している。このバイパスさ
せる空気量は、運転条件の変化に応じて適宜制御する。
Then, a part of the high-pressure air introduced into the cavity 14 from a compressor (not shown) is directly introduced into the downstream of the gas phase reaction section 21 from the air circulation hole 17X on the first stage side in FIG.
9. The fuel mixing section 20 is bypassed, and the combustion gas is sent from the wake of the gas phase reaction section 21 to a gas turbine (not shown) together with the combustion gas, as described below. The amount of air to be bypassed is appropriately controlled according to changes in operating conditions.

一方、空気流通孔17Xを経由しない残りの空気は空気
流通孔+7Y、17Zからプリバーナ部19内に流入さ
せて、ここで燃料噴射弁15からの燃料の燃焼によって
予熱した後、燃料噴射弁■6からの燃料とともに燃料混
合部20に導くよう、 になっている。燃料噴射弁15
からの燃料が燃焼する際、旋回羽根18より流入させる
空気が旋回して火炎を安定化させている。また、燃料混
合部20は燃料と空気とを混合させる領域であって、こ
こでは、即ち触媒体1aの入口までは混合気の燃焼はさ
せず、触媒体1aの入口での混合気の温度は、燃料の種
類および使用する触媒の種類により異なるが、触媒体l
a内で着火可能な温度以上になるように、燃料噴射弁1
5による燃焼量を制御する。
On the other hand, the remaining air that does not pass through the air circulation holes 17X flows into the preburner section 19 through the air circulation holes +7Y and 17Z, where it is preheated by combustion of the fuel from the fuel injection valve 15, and then is injected into the fuel injection valve ■6. It is designed such that it is guided to the fuel mixing section 20 together with the fuel from the fuel tank. Fuel injection valve 15
When the fuel is combusted, the air introduced from the swirling vanes 18 swirls to stabilize the flame. Further, the fuel mixing section 20 is a region where fuel and air are mixed, and here, in other words, the air-fuel mixture is not combusted up to the inlet of the catalyst body 1a, and the temperature of the air-fuel mixture at the inlet of the catalyst body 1a is , varies depending on the type of fuel and the type of catalyst used, but the catalyst body l
The fuel injector 1 is heated so that the temperature within
5 to control the amount of combustion.

ついで、混合気を触媒体Ia内の各チャネルに流入させ
て、触媒担持チャネル3x内では着火、燃焼させ、触媒
無担持チャネル3Y内では着火させずに、即ち未反応で
、通過させている。そして、この未反応の混合気を触媒
担持チャネル3Xからの燃焼している混合気とともに気
相反応部21に流入させここで完全燃焼させるとともに
、燃焼ガスを空気流通孔17Xからの空気とを混合して
、所望のタービン人口温度にして上記ガスタービンに供
給するように形成されている。
Next, the air-fuel mixture is caused to flow into each channel in the catalyst body Ia, and is ignited and burned in the catalyst-carrying channel 3x, and is allowed to pass through the catalyst-free channel 3Y without being ignited, that is, without any reaction. This unreacted air-fuel mixture is then flowed into the gas phase reaction section 21 together with the burning air-fuel mixture from the catalyst carrying channel 3X, where it is completely combusted, and the combustion gas is mixed with air from the air circulation hole 17X. The gas turbine is configured to supply the gas turbine with a desired turbine population temperature.

上述のように、触媒体1aの各触媒担持チャネル3Xは
触媒無担持チャネル3Yにより取囲まれており、触媒担
持チャネル3xでは混合気か燃焼しても、触媒無担持チ
ャネル3Yては混合気は未反応のまま通過する。このた
め、触媒無担持チャネル3Yは触媒担持チャネル3Xに
対して冷却作用を及ぼし、触媒体1aの過度な温度上昇
を抑制して触媒体を守っている。
As described above, each catalyst carrying channel 3X of the catalyst body 1a is surrounded by the catalyst-free channel 3Y, and even if the mixture is combusted in the catalyst-carrying channel 3x, the mixture is not being burned in the catalyst-free channel 3Y. Passes through unreacted. Therefore, the catalyst-free channel 3Y exerts a cooling effect on the catalyst-supported channel 3X, suppressing an excessive temperature rise in the catalyst body 1a, and protecting the catalyst body.

また、このように2種類のチャネルを設けることにより
、触媒体1aを出た気相反応部にて、即ち空気と燃料と
をよく混合した状態で、かつ高温の状態で混合気の未反
応分の燃焼が行われる。
In addition, by providing two types of channels in this way, unreacted portions of the air-fuel mixture are removed in the gas phase reaction section after exiting the catalyst body 1a, that is, in a state where air and fuel are well mixed and at a high temperature. combustion takes place.

なお、上記実施例では触媒担持チャネル3Xの周囲を、
対角線上の部分も含めて触媒無担持チャネル3Yで取囲
み、また両チャネルが同一断面形状のものを示したが本
発明はこれに限るものでなく、この他例えば以下に示す
形状のものも含まれる。
In addition, in the above embodiment, the area around the catalyst supporting channel 3X is
Although the diagonal line is surrounded by the catalyst-free channel 3Y and both channels have the same cross-sectional shape, the present invention is not limited to this, and includes other shapes as shown below, for example. It will be done.

第4図は各チャネルの対角線と平行方向に同種のチャネ
ルを配設した触媒体1bで、第5図は断面積の大きい触
媒担持チャネル3xの周囲を断面積の小さい触媒無担持
チャネル3Yで取囲ませた触媒体1cを示したものであ
る。
Figure 4 shows a catalyst body 1b in which channels of the same type are arranged parallel to the diagonal of each channel, and Figure 5 shows a catalyst body 1b in which a catalyst-supported channel 3x with a large cross-sectional area is surrounded by a catalyst-free channel 3Y with a small cross-sectional area. This figure shows the enclosed catalyst body 1c.

次に、触媒体の各チャネルの軸方向距離(+nm)と温
度(℃)との関係についての計算結果を第6図(横軸:
軸方向距離(mm)、縦軸:温度(℃))に示す。
Next, the calculation results regarding the relationship between the axial distance (+nm) of each channel of the catalyst body and the temperature (°C) are shown in Figure 6 (horizontal axis:
Axial distance (mm), vertical axis: temperature (°C)).

なお、計算条件は以下の通りである。Note that the calculation conditions are as follows.

触媒の種類: パラジウム セルピッチ(同種チャネルの配置間隔):5.5mm1
W圧、空気流m:  30 Nm3/hr空燃比   
 :40 UREF(人口平均流速):  9〜I Om/sec
人口温度   : 320°C また、第6図中曲線1〜■は本発明の実施例の場合を示
し、曲線■は従来の場合、即ち触媒担持チャネルだけを
有する触媒体の場合を示し、さらに、このうち曲線Iは
触媒無担持チャネルのガス温度、曲線Vは触媒担持チャ
ネルのガス温度、曲線■は、第1図、第2図に示す触媒
体1a(無担持率δ=75%)のチャネル壁温、曲線■
は第5図に示す触媒体1c(無担持率δ−30%)のチ
ャネル壁温、曲線■は第4図に示す触媒体1b(無担持
率δ−50%)のチャネル壁温を示している。
Catalyst type: Palladium Cell pitch (spacing of similar channels): 5.5mm1
W pressure, air flow m: 30 Nm3/hr air-fuel ratio
:40 UREF (population average flow velocity): 9~I Om/sec
Population temperature: 320°C In addition, curves 1 to ■ in FIG. 6 show the cases of the embodiments of the present invention, and curve ■ shows the case of the conventional case, that is, the case of a catalyst body having only catalyst supporting channels, and further, Curve I is the gas temperature of the catalyst-free channel, curve V is the gas temperature of the catalyst-supported channel, and curve ■ is the channel of the catalyst body 1a (unsupported ratio δ = 75%) shown in FIGS. 1 and 2. Wall temperature, curve■
indicates the channel wall temperature of the catalyst body 1c (unsupported ratio δ-30%) shown in FIG. 5, and the curve ■ represents the channel wall temperature of the catalyst body 1b (unsupported ratio δ-50%) shown in FIG. There is.

なお、無担持率δ−0%のデータとして、電力中央研究
所報告“285071”(福澤ら)の実験結果を使用し
た。
In addition, the experimental results of the Central Research Institute of Electric Power Industry report "285071" (Fukuzawa et al.) were used as the data for the unsupported rate δ-0%.

ここで、無担持率δとは、例えば第2図に示すものと同
一の第7図に示す触媒体1aの例で説明すると以下のよ
うに定義するものである。即ち、任意のlっの触媒担持
チャネル3X(A)を中心として、これとこの周囲の触
媒担持チャネル3x(B、−、r)との間にある触媒無
担持チャネル3Yの中心を結んだ線で囲まれた矩形a、
b、c、dの面積を81.矩形a、b、c、dから中心
の触媒担持チャネル3X(A)の断面を除いた触媒無担
持チャネル3Yの部分だけの面積をS、とすると、 δ=(S t/s l)X 100 である。
Here, the unsupported ratio δ is defined as follows, for example, using the example of the catalyst body 1a shown in FIG. 7, which is the same as that shown in FIG. That is, a line connecting any one catalyst-supported channel 3X (A) to the center of the catalyst-free channel 3Y between this and the surrounding catalyst-supported channels 3x (B, -, r). A rectangle a surrounded by
The areas of b, c, and d are 81. If S is the area of only the portion of the catalyst-free channel 3Y, which is obtained by removing the cross section of the center catalyst-supported channel 3X (A) from rectangles a, b, c, and d, then δ=(S t/s l)X 100 It is.

この計算結果によれば、本発明に係るいずれの場合も各
チャネルの壁温の温度上昇は非常に少な、 くなってお
り、触媒体が劣化せずに長期運転が可能となり、特に曲
線■、■の場合における温度上昇抑制効果は顕著であり
、触媒無担持チャネル3Y同志の隔壁22が触媒担持チ
ャネル3Xに対して放熱用のフィンとして有効に働いて
いることが分かる。これに対して、第8図に示すように
触媒担持チャネル3X同志を隣接させた配置は、この隣
接チャネル間の隔壁23が高温になり損傷を受は易いの
で避けるべきである。
According to the calculation results, in all cases according to the present invention, the temperature rise in the wall temperature of each channel is very small, and long-term operation is possible without deterioration of the catalyst, especially curves The temperature rise suppression effect in case (2) is remarkable, and it can be seen that the partition walls 22 of the catalyst-free channels 3Y function effectively as heat radiation fins for the catalyst-supported channels 3X. On the other hand, the arrangement in which the catalyst carrying channels 3X are adjacent to each other as shown in FIG. 8 should be avoided because the partition walls 23 between the adjacent channels become high in temperature and are easily damaged.

また、本発明に係る触媒体の場合でも、担持チャネルを
通過して来るガス温度(曲線V)は、全てが、触媒担持
チャネルの従来タイプの場合のガス温度(曲線■)に比
べて差程低下しないため、気相反応に悪影響が生じるこ
ともない。なお、曲線Iの温度上昇分は曲線■の温度低
下分に対応している。
In addition, even in the case of the catalyst body according to the present invention, the temperature of the gas passing through the supporting channel (curve V) is all different from the gas temperature (curve ■) in the case of the conventional type of catalyst supporting channel. Since it does not decrease, there is no adverse effect on the gas phase reaction. Note that the temperature increase in curve I corresponds to the temperature decrease in curve (2).

以上より、触媒体が同一断面形状のものからなる場合は
、無担持率δ−50%以上、特に50〜75%が好まし
く、第5図に示す如く、異種断面形状のものからなる場
合は無担持率δ=約25%以上が好ましい。
From the above, when the catalyst bodies are made of the same cross-sectional shape, the unsupported ratio δ-50% or more, especially 50 to 75% is preferable, and when the catalyst bodies are made of different cross-sectional shapes as shown in FIG. The supporting rate δ is preferably about 25% or more.

また、上記の何れの場合も、無担持率δを大きくして行
けば、触媒面積が減って来るので、無担持率δの上限値
は要求される触媒反応量と触媒体の許容サイズとの両者
を考慮して決めればよい。
In addition, in any of the above cases, as the unsupported ratio δ increases, the catalyst area decreases, so the upper limit of the unsupported ratio δ is determined by the relationship between the required catalytic reaction amount and the allowable size of the catalyst body. You can decide by considering both.

次に、上記構成からなる触媒体の製造方法に係る第2発
明の第1実施例について説明する。
Next, a first embodiment of the second invention relating to a method for manufacturing a catalyst body having the above structure will be described.

第9図は、−例として触媒体1bの製造方法を示し、担
体、例えばγ−アルミナのような表面積の大きいセラミ
ックをウォッシュコートしたハニカム構造の多数のチャ
ネルを有する支持体2の両端面に、本実施例の場合は市
松模様に多数の孔をあけ、かっ番孔の位置および寸法を
支持体2の各チャネル断面位置、形状に合わせた、例え
ばゴム。
FIG. 9 shows, by way of example, a method for producing a catalyst body 1b, in which a carrier, for example a ceramic with a large surface area, such as γ-alumina, is wash-coated on both end faces of a support 2 with a large number of channels in a honeycomb structure. In the case of this embodiment, a large number of holes are formed in a checkered pattern, and the positions and dimensions of the guard holes are matched to the cross-sectional position and shape of each channel of the support 2, such as rubber.

テフロン等の軟質プラスチックからなる多孔パツキン4
を当接させる。さらに、この当接させた両多孔パツキン
4の外側から環状の押え金具5にて、多孔パツキン4の
周縁部を押え付けて、支持体2の両端面に多孔パツキン
4を密着させ、この状態でボルト等で全体を一体的に固
定する。
Porous packing 4 made of soft plastic such as Teflon
bring it into contact. Furthermore, the peripheral edge of the porous packing 4 is pressed down from the outside of both of the porous packings 4 which have been brought into contact with each other using an annular presser metal fitting 5, and the porous packing 4 is brought into close contact with both end surfaces of the support body 2. Fix the whole thing together with bolts, etc.

この一体化したしの触媒活性成分を含む液中に浸して、
多孔パツキン4の孔部分に連通したチャネル内にだけ液
を含浸させた後、この一体化したものから支持体2を取
外す。そして、この取外した支持体2に空気雰囲気下8
00−1100’cで熱処理を施すと、上述した触媒担
持チャネル3Xと触媒無担持チャネル3Yとを備えた触
媒体1bが製造される。
This integrated insulator is immersed in a liquid containing catalytically active components,
After impregnating only the channels communicating with the holes of the porous packing 4 with the liquid, the support 2 is removed from this integrated structure. Then, the removed support 2 is placed under an air atmosphere.
When the heat treatment is performed at 00-1100'c, the catalyst body 1b including the above-mentioned catalyst-supported channel 3X and catalyst-unsupported channel 3Y is manufactured.

第10図は、第2発明の第2実施例に係る触媒体の製造
方法を示し、第1実施例の場合と同様に担体をウォソソ
ユコートした支持体2の一方の端面に上記同様の市松模
様の多孔パツキン4を密着させ、多孔パツキン4側を上
にして、例えば水槽6上に保持する。
FIG. 10 shows a method for manufacturing a catalyst body according to a second embodiment of the second invention, in which a checkered pattern similar to that described above is formed on one end surface of a support 2 coated with a carrier in the same manner as in the first embodiment. The porous packing 4 is brought into close contact and held on, for example, a water tank 6 with the porous packing 4 side facing up.

そして、上方のノズル7から触媒活性成分を含む液を多
孔パツキン4上に流下させて、多孔パツキン4の孔部分
に連通したチャネル内にだけ液を含浸させた後、この支
持体2に空気雰囲気下800〜1100℃で熱処理を施
すと、上記同様触媒体1bか製造される。
Then, the liquid containing the catalytically active component is caused to flow down from the upper nozzle 7 onto the porous packing 4 to impregnate only the channels communicating with the pores of the porous packing 4, and then the support 2 is placed in an air atmosphere. When heat treatment is performed at a temperature of 800 to 1100° C., a catalyst body 1b is produced in the same manner as above.

なお、本発明に、適用する支持体のチャネル断面形状、
多孔パツキンの庇形状、孔パターンは上記実施例に限定
されるものでないことは勿論である。
In addition, the channel cross-sectional shape of the support body applied to the present invention,
It goes without saying that the eaves shape and hole pattern of the porous packing are not limited to the above embodiments.

(効果) 以上の説明より、第1発明によれば、複数のチャネルを
有するハニカム構造の支持体に、内表面に担体を介して
触媒を担持させた触媒担持チャネルと、これに隣接させ
た触媒を担持させない触媒無担持チャネルとを設けて形
成しである。
(Effects) From the above explanation, according to the first invention, a honeycomb structure support having a plurality of channels has a catalyst supporting channel in which a catalyst is supported on the inner surface via a carrier, and a catalyst adjacent to the catalyst supporting channel. It is formed by providing a catalyst-free channel in which no catalyst is supported.

このため、これを高温燃焼器に使用した場合、触媒無担
持チャネル内の反応しない混合気の冷却作用により触媒
体の過度の高温化は避けられ、触媒体の耐久性を向上さ
せることが出来る。
Therefore, when this is used in a high-temperature combustor, excessive heating of the catalyst body can be avoided due to the cooling effect of the unreacted air-fuel mixture in the catalyst-free channel, and the durability of the catalyst body can be improved.

また、触媒体の平均温度を低くしても触媒担持チャネル
を通過して来るガスは高温になっており、かつ触媒無担
持チャネルにより空気とよく混合された混合気が触媒体
出口に供給されるので気…反応を促進させることが出来
る。燃料供給ステージの段数の減少が可能となり、運転
を簡単化することが出来る。
Furthermore, even if the average temperature of the catalyst body is lowered, the gas passing through the catalyst-carrying channel remains at a high temperature, and the air-fuel mixture well mixed with air is supplied to the catalyst body outlet through the catalyst-free channel. Therefore, Qi can accelerate the reaction. It is possible to reduce the number of fuel supply stages, and operation can be simplified.

さらに、燃焼完結性の良い触媒と十分長い触媒体チャネ
ルの組合せで使用すると触媒担持チャネルの数と触媒無
担持チャネルの数の比から、任意の人口条件に対し、出
口平均温度および支持体の温度予測が出来、触媒体の性
能に依存する割合が低下させることが出来るという効果
を奏する。
Furthermore, when using a combination of a catalyst with good combustion completion and a sufficiently long catalyst channel, the ratio of the number of catalyst-supported channels to the number of non-catalyst-supported channels indicates that the average exit temperature and the support temperature will vary for any population condition. This has the effect that it can be predicted and the ratio depending on the performance of the catalyst can be reduced.

また、第2発明によれば、複数のチャネルを有するハニ
カム構造体からなる支持体の上記チャネルの内面に担体
をウオツソユコートした後、多数の孔を備え、かつ上記
支持体の端面に密着した状態で、上記チャネルのうちで
端面を閉じたチャネルに隣接するチャネルの端面に上記
孔が位置する形状の多孔パツキンを上記支持体の一方ま
たは両側の端面に密着させて、触媒を含んだ液を多孔ツ
ク・ソキンの孔を介して、この孔の位置のチャネル内に
含浸させ、含浸後の支持体に熱処理を施すようにしであ
る。
Further, according to the second invention, after coating the inner surface of the channels of the support made of a honeycomb structure having a plurality of channels with a carrier, the support is provided with a large number of holes and is in close contact with the end surface of the support. In this state, a porous packing having a shape in which the holes are located on an end face of a channel adjacent to a channel with a closed end face is brought into close contact with one or both end faces of the support, and a liquid containing a catalyst is poured into the support. The material is impregnated into the channel at the position of the hole through the hole of the porous support, and the support after impregnation is heat-treated.

このため、上記第1発明の効果を有する触媒体、即ち、
適宜パターンにしたがって、選択的に触媒担持チャネル
とした触媒体を容易に形成することが出来るという効果
を奏する。
Therefore, a catalyst having the effect of the first invention, that is,
This has the effect that it is possible to easily form a catalyst body in which catalyst-supporting channels are selectively formed according to an appropriate pattern.

【図面の簡単な説明】 第1図は第1発明に係る触媒体の斜視図、第2図は第1
図に示す触媒体の端面の部分拡大正面図、第3図は第1
図に示す触媒体を適用したガスタービン燃焼器の断面図
、第4図、第5図は第1図に示す触媒体とは異なる第1
発明の変形例を示す部分拡大正面図、第6図は各種触媒
体におけろ軸方向距離と温度との関係の計算結果を示す
図、第7図は第2図と同一の部分を示す部分拡大正面図
、第8図は従来の触媒体の端面の部分拡大正面図、第9
図は第2発明の第1実施例に係る製造方法を示す分解斜
視図、第10図は第2発明の第2実施例を示す概略断面
図である。 Ia、Ib、Ic・・・触媒体、2・・・支持体、3X
・・・触媒担持チャネル、3Y・・触媒無担持チャネル
、4・・・多孔パツキン。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  前出 葆 はか1名WJ6図 策7図 第9図 第10図
[Brief Description of the Drawings] Fig. 1 is a perspective view of the catalyst body according to the first invention, and Fig. 2 is a perspective view of the catalyst body according to the first invention.
Figure 3 is a partially enlarged front view of the end face of the catalyst body shown in Figure 1.
4 and 5 are cross-sectional views of a gas turbine combustor to which the catalyst body shown in the figure is applied.
A partially enlarged front view showing a modification of the invention, FIG. 6 is a diagram showing calculation results of the relationship between axial distance and temperature in various catalyst bodies, and FIG. 7 is a part showing the same part as FIG. 2. An enlarged front view, FIG. 8 is a partially enlarged front view of the end face of a conventional catalyst body, and FIG.
The figure is an exploded perspective view showing the manufacturing method according to the first embodiment of the second invention, and FIG. 10 is a schematic sectional view showing the second embodiment of the second invention. Ia, Ib, Ic...Catalyst, 2...Support, 3X
...Catalyst supported channel, 3Y...Catalyst not supported channel, 4...Porous packing. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney 1 person WJ6 Plan 7 Figure 9 Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)複数のチャネルを有するハニカム構造の支持体に
、内表面に担体を介して触媒を担持させた触媒担持チャ
ネルと、これに隣接させた触媒を担持させない触媒無担
持チャネルとを設けて形成したことを特徴とする高温燃
焼器用触媒体。
(1) Formed by providing a honeycomb-structured support having multiple channels with a catalyst-supported channel in which a catalyst is supported on the inner surface via a carrier, and a catalyst-free channel in which no catalyst is supported adjacent to the channel. A catalyst body for a high-temperature combustor, which is characterized by the following.
(2)複数のチャネルを有するハニカム構造体からなる
支持体の上記チャネルの内面に担体をウォッシュコート
した後、多数の孔を備え、かつ上記支持体の端面に密着
した状態で、上記チャネルのうちで端面を閉じたチャネ
ルに隣接するチャネルの端面に上記孔が位置する形状の
多孔パッキンを上記支持体の一方または両側の端面に密
着させて、触媒を含んだ液を多孔パッキンの孔を介して
、この孔の位置のチャネル内に含浸させ、含浸後の支持
体に熱処理を施すことを特徴とする高温燃焼器用触媒体
の製造方法。
(2) After wash-coating the carrier on the inner surface of the channels of the support consisting of a honeycomb structure having a plurality of channels, one of the channels has a large number of holes and is in close contact with the end surface of the support. A porous packing having a shape in which the holes are located on the end face of the channel adjacent to the channel whose end face is closed is brought into close contact with one or both end faces of the support, and a liquid containing the catalyst is passed through the pores of the porous packing. , a method for producing a catalyst body for a high-temperature combustor, characterized by impregnating it into channels at the positions of the holes, and heat-treating the support after impregnation.
JP63070413A 1988-03-22 1988-03-22 Catalyst body for high temperature combustor and its production Pending JPH01242151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070413A JPH01242151A (en) 1988-03-22 1988-03-22 Catalyst body for high temperature combustor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070413A JPH01242151A (en) 1988-03-22 1988-03-22 Catalyst body for high temperature combustor and its production

Publications (1)

Publication Number Publication Date
JPH01242151A true JPH01242151A (en) 1989-09-27

Family

ID=13430762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070413A Pending JPH01242151A (en) 1988-03-22 1988-03-22 Catalyst body for high temperature combustor and its production

Country Status (1)

Country Link
JP (1) JPH01242151A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009365A1 (en) * 1990-11-26 1992-06-11 Catalytica, Inc. A catalyst structure having integral heat exchange (ii)
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
JP2010164300A (en) * 2009-01-19 2010-07-29 General Electric Co <Ge> System and method employing catalytic reactor coating
CN113758018A (en) * 2021-09-06 2021-12-07 广东超人节能厨卫电器有限公司 Fan device and water heater

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009365A1 (en) * 1990-11-26 1992-06-11 Catalytica, Inc. A catalyst structure having integral heat exchange (ii)
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JP2010164300A (en) * 2009-01-19 2010-07-29 General Electric Co <Ge> System and method employing catalytic reactor coating
CN113758018A (en) * 2021-09-06 2021-12-07 广东超人节能厨卫电器有限公司 Fan device and water heater
CN113758018B (en) * 2021-09-06 2022-10-28 广东超人节能厨卫电器有限公司 Fan device and water heater

Similar Documents

Publication Publication Date Title
US4047877A (en) Combustion method and apparatus
US6887067B2 (en) Catalytically operating burner
US4081958A (en) Low nitric oxide emission combustion system for gas turbines
CA1318509C (en) Multiple venturi tube gas fuel injector for catalytic combustor
US4966001A (en) Multiple venturi tube gas fuel injector for catalytic combustor
US5826429A (en) Catalytic combustor with lean direct injection of gas fuel for low emissions combustion and methods of operation
US4072007A (en) Gas turbine combustor employing plural catalytic stages
EP1205712B1 (en) Catalytic combustor flow conditioner for providing a uniform gas velocity distribution
EP0356092A1 (en) Gas turbine combustor
US7934925B2 (en) Catalyzer
JPH01242151A (en) Catalyst body for high temperature combustor and its production
JPH09196307A (en) Contact combustion system by multistage fuel injection
JP3139978B2 (en) Gas turbine combustor
JPH11507433A (en) Burners especially for gas turbines
JP4055659B2 (en) Catalytic combustor and operation method thereof
JPH0311588Y2 (en)
JPH0415410A (en) Catalytic burner
WO1998012479A1 (en) Method for the catalytic combustion of a fossil fuel in an incinerator and arrangement for carrying out said method
JPH0561668U (en) Gas turbine combustor
JPH062850A (en) Catalytic combustion apparatus
JP2000234722A (en) Combustor and combustion method
JPH08159421A (en) Catalytic combustor
Fujii et al. High pressure test results of a catalytic combustor for gas turbine
Bröckerhoff et al. Use of natural gas in a catalytic radiant burner for low-emission heat production
JPH062849A (en) Catalytic combustion apparatus