JPH0561484B2 - - Google Patents

Info

Publication number
JPH0561484B2
JPH0561484B2 JP59134593A JP13459384A JPH0561484B2 JP H0561484 B2 JPH0561484 B2 JP H0561484B2 JP 59134593 A JP59134593 A JP 59134593A JP 13459384 A JP13459384 A JP 13459384A JP H0561484 B2 JPH0561484 B2 JP H0561484B2
Authority
JP
Japan
Prior art keywords
vibration
vehicle body
engine
signal
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59134593A
Other languages
Japanese (ja)
Other versions
JPS6112435A (en
Inventor
Yoshio Furuishi
Kyoshi Muto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13459384A priority Critical patent/JPS6112435A/en
Publication of JPS6112435A publication Critical patent/JPS6112435A/en
Publication of JPH0561484B2 publication Critical patent/JPH0561484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1283Adjustable supports, e.g. the mounting or the characteristics being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は車輌のエンジンからの変動トルク外
乱によつて励起される車体振動を抑制する車輌の
振動制御装置に関するものである。 〔従来技術〕 自動車等の車輌の重要な技術課題の一つに振動
に関して乗心地等の快適車輌の追求がある。従
来、乗心地の向上に関連して車体を支持するシヨ
ツクアブソーバの減衰力制御装置の装着、さらに
はエンジンを支持するマウント機構に振動吸収機
能を付与する等の工夫を施こして車体振動の低減
を図つている。ところが横置きエンジンFF(フロ
ントエンジン、フロントドライブ)方式では特に
エンジンの駆動反トルクが大きくなり、その方向
が車体の振動方向と一致するためにエンジンから
の変動トルクがエンジンマウントを介して伝達さ
れ、車体の振動が過大に励起される問題が表面化
する。エンジンマウントはエンジンと車体の接点
で、設計時には多くの検討課題があり、次のよう
な相反する条件を満足しなければならない。すな
わち、駆動反トルクが大きい領域ではエンジンお
よびマフラー等の排気系の変位を制限するため、
エンジンマウントは剛性にする必要があり、アイ
ドリングおよび中高回転域における比較的トルク
が小さい領域では振動絶縁を主目的としてマウン
トは低剛性にする必要がある。これら相反する条
件を高次元に実現する手段は極めて艱難で、また
車体の曲げモード振動の固有振動数がアイドリン
グ回転数域に近接ないしは一致する場合、車体の
振動が極めて大きくなり、乗心地が低下する問題
がある。これはエンジンマウントを含めて車体振
動の低減は車輌の乗心地、快適性の向上を図る上
で重要な技術課題である。特に横置きエンジンで
FF駆動方式を採用する車輌では、アイドリング
回転数領域に車体の固有振動数が近接ないしは存
在すること、さらには変動トルクの方向が車体の
振動の方向と一致するなどによつて車体には過度
の振動が励起され、乗心地や快適性などの低下に
は著しいものがあつた。 第1図は車輌の車体振動の発生メカニズムを示
すもので、図において、1はエンジン、2,3は
エンジン1の前方および後方部を弾性的には支持
するフロントエンジンマウントと、リアーエンジ
ンマウント、4は車体で、エンジン1が上記両エ
ンジンマウント2,3を介して車体4に装着され
る。5は車体4上に設置される座席である。 上記横置きエンジン車でのエンジン1のシリン
ダは複数個あり、その配列は車体4に対して横断
する方向すなわち長手方向に直角方向に配列され
る。このためエンジンを駆動させると、エンジン
1の挙動は第1図の矢印で示すようにシリンダの
圧力変動に伴なうトルクを受けて駆動軸を回転中
心とするロツキング振動の励起が卓越する。一
方、車体4の振動特性には第1図の破線で示すよ
うに車体全体が曲げ変形する弾性モードで振動す
る固有振動数(通常は約25Hz)が存在する。特に
エンジン1のロツクング振動の周波数と、車体4
の固有振動数とが近接ないしは一致する。アイド
リング回転数領域では、車体4は共振現象によつ
て過度の振動が励起され、車体4上に設置される
座席5に振動が伝達されることになり、乗心地や
快適性が低下し、乗員に肉体的、精神的な苦痛を
与える。 第2図に従来の振動低減装置を示す。図におい
て、6は車体4な装着するアクチユエータ、7は
フロントエンジンマウント2と車体4間に装着し
た荷重変換器で、この荷重変換部7はエンジン1
から発生しフロントエンジンマウント2を介して
車体4へ伝達される変動トルク外乱を検出するも
のである。8は荷重変換器7からほ検出信号にも
とずいてアクチユエータ6を駆動させるための制
御回路である。第3図はエンジ1と荷重変換器7
と車体4の構成を示す詳細図で、21はゴムやエ
ラストマー等からなる弾性マウント、22はこの
弾性マウント21を保持するホルダーで、エンジ
ン1は弾性マウント21、ホルダー22を介して
荷重変換器7に固着し、荷重変換器7は車体4に
装着する。第4図は上記制御回路8のブロツク図
で、81は荷重検出回路、82は位相調節器、8
3は駆動回路である。荷重変換器7は圧電素子あ
るいはひずみゲージ等で構成されるもので、エン
ジン1から車体4に伝達される変動トルク外乱を
直接検出し、変動トルク外乱に対応する電気信号
として取出す。この電気信号は荷重検出回路81
へ伝送され所要の利得をもつ信号に増幅され、位
相調節器82に入力される。位相調節器82はア
クチユエータ6の発生する制振力と車体4に印加
する変動トルク外乱との位相関係を調節するもの
で、変動トルク外乱を相殺あるいは軽減するのに
必要な制振力の位相特性を有している。そして駆
動回路83はアクチユエータ6を駆動する電力を
供給するものである。上記の構成によりアクチユ
エータ6で発生する制振力で変動トルク外乱を打
消す方向に作用させることで車体4に印加される
加振力を軽減し、振動の低減を図る。第5図は上
記振動制御方式のブロツク図である。 次に、アクチユエータ6に付加マスの慣性力を
利用した導電型リニアアクチユエータを適用した
実施例を第6図に示す。図中、61は永久磁石、
62は円筒状のヨーク、63はコイル、64はコ
イル63を支持するコイルサポート、65はヨー
ク62の上下端部に配設されヨーク62を保持す
る支持ばね、66はヨーク62を貫通したガイド
棒、67はヨーク62の上下端部に固着したスラ
イドベアリングで、ガイド溝66に沿つて摺動
し、ヨーク62は上下方向にリニアに駆動され
る。68はケーシングである。上記のリニアアク
チユエータの動作について説明すると、永久磁石
61は半径方向に着磁されてヨーク62に固着さ
れ、磁気回路を形成してコイル62が挿入される
空隙では所定の磁束密度が生ずる。これによりコ
イル62に駆動回路83より駆動電流が供給され
ると、電磁気学作用によつてコイル63と永久磁
石61との間には電磁力が発生する。この時、作
用、反作用の原理に基づきコイル63に生じた電
磁力はコイルサポート64を介して車体4に固着
されるケーシング68へ伝達され車体4に作用す
る。一方、永久磁石61に発生する電磁力はヨー
ク62を支持する支持ばね65の復元力とヨーク
62と永久磁石61の慣性力との和とつり合う。 上記の力学的モデルを第7図に示す。11はヨ
ーク62と永久磁石61の質量の和の付加マス
で、支持ばね65はばね定数Rdである。またU
はコイル63と永久磁石61との間に働く電磁力
で、車体4には電磁力Uと支持ばね65の復元力
とが加算された制振力Tが作用する。また支持ば
ね65はヨーク62の中立位置を確保する役割を
果す。 従来の振動制御装置は以上のように構成したた
め、アクチユエータ6の発生する制振力は車体4
に印加される変動トルク外乱を軽減する。しなわ
ち、加振入力を小さくすることによつて車体振動
の低減を図つており、加振振動数全領域にわたつ
て振動低減効果はあるが、車体4のダイビングが
小さく、かつ変動トルク外乱の周波数と車体の固
有振動数が常に一致あるいは接近する共振現象で
は加振入力の軽減による振動低減効果は半減して
いた。 〔発明の概要〕 この発明は、かかる欠点を改善する目的でなさ
れたもので、車体の振動を検出して車体のダンピ
ング特性を向上させる制御ループを付加すること
により、共振時においても十分な振動低減効果を
図ることができ、又、車体の啓経時変化にも十分
対応することができる車輌の振動制御装置を提供
するもとである。 〔発明の実施例〕 以下この発明の一実施例を図について説明す
る。第8図において、第1図の同一部分は同一符
号を付して説明は省略する。9は車体4に固着し
た振動センサで、10は制御回路である。、第9
図は制御回路10のブロツク図で、振動センサ9
によつて検出される車体振動信号は振動検出回路
10aで所要の利得に増幅する。振動検出回路1
0aからの伝送される信号は演算回路10bに入
力される。演算回路10bでは振動センサ9から
の信号を車体4の振動速度に対応する信号に変換
する。演算回路10bで得られた振動速度信号は
加算器10cで従来での荷重変換器7からの変動
トルク外乱に対応する信号と重ね合される。その
御、駆動回路83を介してアクチユエータ6を駆
動し、車体4に制振力を印加する。第10図は従
来例の振動制御方式(第5図)と明確にするため
にこの発明での制御ブロツク図を示し、第5図の
ものと比べて車体4の振動検出の制御ループが付
加されている。 以下に振動低減の原理を説明する。この発明に
よる装置の振動低減は、車体4にエジン1からの
変動トルク外乱と制振力が作用したときに成立す
る。下記の車体振動の力のつり合い式を前提とす
る。 Ms X¨s+Ks Xs=F−U ……(1) ただし、 Ms:車体4の等価質量 Ks:車体4の等価剛性 Xs:車体4の振動変位 F:変動トルウ外乱 U:制振力 上記(1)式において、機械力学的考察から制振力
Uを変動トルク外乱Fを軽減するように作用させ
ると車体4の振動を減少させることができる。こ
の方式は従来例に対応する。また、この発明のよ
うに制振力Uの構成に変動トルク外乱にもとずく
成分と車体の振動速度X〓sにもとずく成分を付加
することにより、車体の振動減衰特性も制御して
改善することができる。すなわち、変動トルク外
乱にもとずく制振力をFcそし、振動速度X〓sに比
例する制振力は制御ゲインをCsとすると、CaX〓s
で与えられ、これらの和の制振力Uは次式で表わ
される。 U=Fc−Cs X〓s ……(2) (2)式を(1)式に代入すると、 Ms X〓s+Cs X〓s+Ks Xs=F−Fc
……(3) となる。(3)式から解るようにFcは変動トルク外
乱Fを軽減し、Cs X〓sは車体のダイピングを与え
る。 第11図に従来例とこの発明での車体4の変動
トルク外乱に対する振動特性を模式的に表す。図
中、実線が非制御での車体の振動応答で、一点鎖
線が従来例の応答、破線がこの発明での応答であ
る。つまり、従来例では変動トルク外乱が軽減さ
れる分、車体振動は小さくなる。しかしながら、
車体4の振動減衰特性は何ら改善する制御ループ
はないため、車体の固有振動数Wn(≒
[Technical Field of the Invention] The present invention relates to a vehicle vibration control device that suppresses vehicle body vibrations excited by fluctuating torque disturbances from a vehicle engine. [Prior Art] One of the important technical issues for vehicles such as automobiles is the pursuit of comfortable vehicles such as ride quality with regard to vibration. Conventionally, in order to improve ride comfort, efforts have been made to reduce vehicle body vibration by installing damping force control devices for the shock absorbers that support the vehicle body, and by adding vibration absorption functions to the mount mechanism that supports the engine. We are trying to However, in the horizontal engine FF (front engine, front drive) system, the driving reaction torque of the engine is particularly large, and because its direction matches the vibration direction of the vehicle body, the fluctuating torque from the engine is transmitted through the engine mount. This brings up the problem of excessive vibration in the vehicle body. The engine mount is the point of contact between the engine and the vehicle body, and there are many issues to consider when designing it, and the following conflicting conditions must be satisfied. In other words, in the region where the drive reaction torque is large, the displacement of the engine and exhaust system such as the muffler is limited.
The engine mount needs to be rigid, and in the idling and mid-to-high rotation ranges where the torque is relatively low, the mount needs to have low rigidity mainly for vibration isolation. It is extremely difficult to achieve these conflicting conditions at a high level, and if the natural frequency of the bending mode vibration of the car body is close to or coincides with the idling speed range, the vibration of the car body will become extremely large and the ride comfort will deteriorate. There is a problem. Reducing vehicle body vibration, including the engine mount, is an important technical issue in improving vehicle ride comfort and comfort. Especially with a transverse engine
In vehicles that use the FF drive system, the natural frequency of the vehicle body is close to or exists in the idling speed region, and furthermore, the direction of fluctuating torque coincides with the direction of vibration of the vehicle body, which causes excessive stress on the vehicle body. Vibrations were excited, and ride quality and comfort were significantly reduced. Figure 1 shows the mechanism by which body vibrations occur in a vehicle. In the figure, 1 is an engine, 2 and 3 are a front engine mount that elastically supports the front and rear parts of the engine 1, a rear engine mount, 4 is a vehicle body, and the engine 1 is mounted on the vehicle body 4 via both engine mounts 2 and 3. 5 is a seat installed on the vehicle body 4. The engine 1 in the horizontal engine vehicle has a plurality of cylinders, and the cylinders are arranged in a direction transverse to the vehicle body 4, that is, in a direction perpendicular to the longitudinal direction. For this reason, when the engine is driven, the behavior of the engine 1, as shown by the arrows in FIG. 1, is dominated by the excitation of rocking vibrations about the drive shaft as the center of rotation in response to torque due to pressure fluctuations in the cylinder. On the other hand, the vibration characteristics of the vehicle body 4 include a natural frequency (usually about 25 Hz) at which the entire vehicle body vibrates in an elastic mode in which it bends and deforms, as shown by the broken line in FIG. In particular, the frequency of engine 1's locking vibration and the car body's 4
are close to or coincide with the natural frequency of In the idling speed range, excessive vibrations are excited in the vehicle body 4 due to the resonance phenomenon, and the vibrations are transmitted to the seats 5 installed on the vehicle body 4, resulting in a decrease in riding comfort and comfort for the occupants. cause physical and mental pain. FIG. 2 shows a conventional vibration reduction device. In the figure, 6 is an actuator mounted on the vehicle body 4, 7 is a load converter mounted between the front engine mount 2 and the vehicle body 4, and this load converter 7 is connected to the engine 1.
This detects the fluctuating torque disturbance generated from the front engine mount 2 and transmitted to the vehicle body 4 via the front engine mount 2. 8 is a control circuit for driving the actuator 6 based on a detection signal from the load converter 7. Figure 3 shows engine 1 and load converter 7.
21 is an elastic mount made of rubber or elastomer, etc.; 22 is a holder for holding the elastic mount 21; and the engine 1 is connected to the load converter 7 via the elastic mount 21 and the holder 22. The load converter 7 is attached to the vehicle body 4. FIG. 4 is a block diagram of the control circuit 8, in which 81 is a load detection circuit, 82 is a phase adjuster, and 8 is a block diagram of the control circuit 8.
3 is a drive circuit. The load converter 7 is composed of a piezoelectric element, a strain gauge, or the like, and directly detects the fluctuating torque disturbance transmitted from the engine 1 to the vehicle body 4, and extracts it as an electrical signal corresponding to the fluctuating torque disturbance. This electrical signal is transmitted to the load detection circuit 81
The signal is amplified into a signal with a required gain and input to the phase adjuster 82. The phase adjuster 82 adjusts the phase relationship between the damping force generated by the actuator 6 and the fluctuating torque disturbance applied to the vehicle body 4, and adjusts the phase characteristics of the damping force necessary to offset or reduce the fluctuating torque disturbance. have. The drive circuit 83 supplies power to drive the actuator 6. With the above configuration, the damping force generated by the actuator 6 acts in a direction to cancel out the fluctuating torque disturbance, thereby reducing the excitation force applied to the vehicle body 4 and reducing vibration. FIG. 5 is a block diagram of the vibration control method described above. Next, FIG. 6 shows an embodiment in which the actuator 6 is a conductive linear actuator that utilizes the inertial force of an additional mass. In the figure, 61 is a permanent magnet;
62 is a cylindrical yoke, 63 is a coil, 64 is a coil support that supports the coil 63, 65 is a support spring that is disposed at the upper and lower ends of the yoke 62 and holds the yoke 62, and 66 is a guide rod that passes through the yoke 62. , 67 are slide bearings fixed to the upper and lower ends of the yoke 62, and slide along the guide groove 66, so that the yoke 62 is linearly driven in the vertical direction. 68 is a casing. To explain the operation of the above-mentioned linear actuator, the permanent magnet 61 is radially magnetized and fixed to the yoke 62, forming a magnetic circuit, and a predetermined magnetic flux density is generated in the gap into which the coil 62 is inserted. As a result, when a drive current is supplied to the coil 62 from the drive circuit 83, an electromagnetic force is generated between the coil 63 and the permanent magnet 61 due to electromagnetic action. At this time, the electromagnetic force generated in the coil 63 based on the principle of action and reaction is transmitted to the casing 68 fixed to the vehicle body 4 via the coil support 64 and acts on the vehicle body 4. On the other hand, the electromagnetic force generated in the permanent magnet 61 is balanced by the sum of the restoring force of the support spring 65 that supports the yoke 62 and the inertial force of the yoke 62 and the permanent magnet 61. The above mechanical model is shown in FIG. 11 is an additional mass that is the sum of the masses of the yoke 62 and the permanent magnet 61, and the support spring 65 has a spring constant Rd. Also U
is an electromagnetic force acting between the coil 63 and the permanent magnet 61, and a damping force T, which is the sum of the electromagnetic force U and the restoring force of the support spring 65, acts on the vehicle body 4. Further, the support spring 65 serves to ensure the neutral position of the yoke 62. Since the conventional vibration control device is configured as described above, the vibration damping force generated by the actuator 6 is
reduce the fluctuating torque disturbance applied to the In other words, the vehicle body vibration is reduced by reducing the excitation input, and although there is a vibration reduction effect over the entire excitation frequency range, the dive of the vehicle body 4 is small and the fluctuation torque disturbance is In resonance phenomena where the frequency of the vehicle and the natural frequency of the vehicle body always match or approach each other, the vibration reduction effect by reducing the excitation input was halved. [Summary of the Invention] The present invention was made with the aim of improving the above drawbacks, and by adding a control loop that detects the vibration of the vehicle body and improves the damping characteristics of the vehicle body, sufficient vibration can be suppressed even during resonance. It is an object of the present invention to provide a vehicle vibration control device which can achieve a reduction effect and can sufficiently cope with changes in the vibration of the vehicle body over time. [Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. In FIG. 8, the same parts as those in FIG. 1 are given the same reference numerals, and the description thereof will be omitted. 9 is a vibration sensor fixed to the vehicle body 4, and 10 is a control circuit. , No. 9
The figure is a block diagram of the control circuit 10, and the vibration sensor 9
The vehicle body vibration signal detected by the vibration detection circuit 10a is amplified to a required gain. Vibration detection circuit 1
The signal transmitted from 0a is input to the arithmetic circuit 10b. The arithmetic circuit 10b converts the signal from the vibration sensor 9 into a signal corresponding to the vibration speed of the vehicle body 4. The vibration velocity signal obtained by the arithmetic circuit 10b is superimposed on the signal corresponding to the variable torque disturbance from the conventional load converter 7 in the adder 10c. Under the control, the actuator 6 is driven via the drive circuit 83 to apply a damping force to the vehicle body 4. FIG. 10 shows a control block diagram of the present invention in order to clarify the vibration control method of the conventional example (FIG. 5). ing. The principle of vibration reduction will be explained below. The vibration reduction of the device according to the present invention is realized when the variable torque disturbance and damping force from the engine 1 act on the vehicle body 4. Assuming the following balance equation for vehicle body vibration forces. Ms X¨s+Ks ), the vibration of the vehicle body 4 can be reduced by applying the damping force U to reduce the fluctuating torque disturbance F based on mechanical considerations. This method corresponds to the conventional example. Furthermore, as in this invention, by adding a component based on the fluctuating torque disturbance and a component based on the vehicle body vibration speed It can be improved. In other words, the damping force based on the fluctuating torque disturbance is Fc, and the damping force proportional to the vibration speed X〓s is CaX〓s, where the control gain is Cs.
The sum of these damping forces U is expressed by the following equation. U=Fc−Cs X〓s ……(2) Substituting equation (2) into equation (1), Ms
...(3) becomes. As can be seen from equation (3), Fc reduces the fluctuating torque disturbance F, and Cs X〓s gives the car body dipping. FIG. 11 schematically shows the vibration characteristics of the vehicle body 4 in response to fluctuating torque disturbances in the conventional example and in the present invention. In the figure, the solid line is the vibration response of the vehicle body without control, the dashed line is the response of the conventional example, and the broken line is the response of the present invention. In other words, in the conventional example, the vibration of the vehicle body is reduced by the amount that the fluctuating torque disturbance is reduced. however,
Since there is no control loop to improve the vibration damping characteristics of the car body 4, the natural frequency Wn (≒

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればエンジンから
の変動トルク外乱を受けて振動が生じる車体へ装
着され、車体へ直接制振力を作動させるアクチユ
エータと、エンジンマウント部に装着され、エン
ジンから車体へ伝達される変動トルク外乱を検出
する荷重変換器と、アクチユエータの制振力と上
記変動トルク外乱との位相関係を調整する手段
と、車体の振動を検出する振動センサと、この振
動センサからの信号を車体の振動速度に比例する
信号に変換する手段と、位相調整された変動トル
ク外乱信号と振動速度信号とを加算する手段と、
この加算信号に応じてアクチユエータを駆動する
手段を備えたので、車体の振動抑制は勿論のこ
と、固有振動数で振動する共振現像に対しても著
しい振動低減を図ることができ、又、車体の経時
変化が発生しても十分に対応でき正確な制御を行
うことができる車輌の振動制御装置を提供するこ
とが可能になる。
As described above, according to the present invention, there is an actuator that is attached to a vehicle body that generates vibrations due to fluctuating torque disturbances from the engine and that applies a vibration damping force directly to the vehicle body, and an actuator that is attached to the engine mount and that transmits vibrations from the engine to the vehicle body. A load converter that detects the fluctuating torque disturbance to be transmitted, means for adjusting the phase relationship between the damping force of the actuator and the fluctuating torque disturbance, a vibration sensor that detects vibration of the vehicle body, and a signal from the vibration sensor. means for converting the signal into a signal proportional to the vibration speed of the vehicle body; and means for adding the phase-adjusted variable torque disturbance signal and the vibration speed signal;
Since a means for driving the actuator according to this addition signal is provided, it is possible to not only suppress vibrations of the car body, but also to significantly reduce vibrations caused by resonance development that vibrates at the natural frequency. It becomes possible to provide a vibration control device for a vehicle that can sufficiently cope with changes over time and perform accurate control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は車輌の振動発生メカニズムの図、第2
図は従来の振動制御装置の構成図、第3図は従来
のエンジンマウントの断面図、第4図は同じく制
御回路のブロツク図、第5図は制御方式のブロツ
ク図、第6図はアクチユエータの断面図、第7図
はアクチユエータの力学的モデル図、第8図はこ
の発明の一実施例を示す振動制御装置の構成図、
第9図は制御回路のブロツク図、第10図は制御
方式のブロツク図、第11図は従来例とこの発明
との振動特性図である。 1……エンジン、4……車体、6……アクチユ
エータ、7……荷重変換器、8……制御回路、9
……振動センサ、10……制御回路、10a……
振動検出回路、10b……演算回路、10c……
加算器、81……荷重検出回路。なお、図中、同
一号符号は同一又は相当部分を示す。
Figure 1 is a diagram of the vibration generation mechanism of a vehicle, Figure 2
The figure is a block diagram of a conventional vibration control device, Figure 3 is a sectional view of a conventional engine mount, Figure 4 is a block diagram of the control circuit, Figure 5 is a block diagram of the control system, and Figure 6 is a diagram of the actuator. A sectional view, FIG. 7 is a mechanical model diagram of the actuator, and FIG. 8 is a configuration diagram of a vibration control device showing an embodiment of the present invention.
FIG. 9 is a block diagram of the control circuit, FIG. 10 is a block diagram of the control system, and FIG. 11 is a vibration characteristic diagram of the conventional example and the present invention. DESCRIPTION OF SYMBOLS 1... Engine, 4... Vehicle body, 6... Actuator, 7... Load converter, 8... Control circuit, 9
...Vibration sensor, 10...Control circuit, 10a...
Vibration detection circuit, 10b... Arithmetic circuit, 10c...
Adder, 81...Load detection circuit. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンからの変動トルク外乱を受けて振動
が生じる車体へ装着され、車体へ直接制振力を作
動させるアクチユエータと、エンジンマウント部
に装着され、エンジンから車体へ伝達される変動
トルク外乱を検出する荷重変換器と、アクチユエ
ータの制振力と上記変動トルク外乱との位相関係
を調整する手段と、車体の振動を検出する振動セ
ンサと、この振動センサからの信号を車体の振動
速度に比例する信号に変換する手段と、位相調整
された変動トルク外乱信号と振動速度信号とを加
算する手段と、この加算信号に応じてアクチユエ
ータを駆動する手段を具えたことを特徴とする車
輌の振動制御装置。
1. An actuator that is attached to the vehicle body that generates vibrations due to fluctuating torque disturbances from the engine and applies vibration damping force directly to the vehicle body, and an actuator that is attached to the engine mount to detect fluctuating torque disturbances that are transmitted from the engine to the vehicle body. a load converter, a means for adjusting the phase relationship between the damping force of the actuator and the variable torque disturbance, a vibration sensor for detecting vibration of the vehicle body, and a signal for converting the signal from the vibration sensor into a signal proportional to the vibration speed of the vehicle body. 1. A vibration control device for a vehicle, comprising: means for converting the variable torque disturbance signal into a vibration velocity signal; means for adding the phase-adjusted variable torque disturbance signal and the vibration velocity signal; and means for driving an actuator in accordance with the added signal.
JP13459384A 1984-06-27 1984-06-27 Vehicle vibration controlling equipment Granted JPS6112435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13459384A JPS6112435A (en) 1984-06-27 1984-06-27 Vehicle vibration controlling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13459384A JPS6112435A (en) 1984-06-27 1984-06-27 Vehicle vibration controlling equipment

Publications (2)

Publication Number Publication Date
JPS6112435A JPS6112435A (en) 1986-01-20
JPH0561484B2 true JPH0561484B2 (en) 1993-09-06

Family

ID=15132010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13459384A Granted JPS6112435A (en) 1984-06-27 1984-06-27 Vehicle vibration controlling equipment

Country Status (1)

Country Link
JP (1) JPS6112435A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797855B2 (en) * 1987-09-29 1995-10-18 株式会社日立製作所 Magnetic recording / playback device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460656A (en) * 1977-10-24 1979-05-16 Agency Of Ind Science & Technol Vibration preventing system by phase control drive system
JPS56116519A (en) * 1980-02-20 1981-09-12 Nissan Motor Co Ltd Engine mount of car
JPS58109744A (en) * 1981-12-23 1983-06-30 Toyota Motor Corp Vibration absorption system for vehicle
JPS5933774A (en) * 1982-08-19 1984-02-23 富士通株式会社 Composite connector
JPS60252835A (en) * 1984-05-28 1985-12-13 Mitsubishi Motors Corp Car body vibration reducing device
JPS60263740A (en) * 1984-06-11 1985-12-27 Mitsubishi Motors Corp Car body vibration reducing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992236U (en) * 1982-12-13 1984-06-22 日産自動車株式会社 Engine vibration suppression device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460656A (en) * 1977-10-24 1979-05-16 Agency Of Ind Science & Technol Vibration preventing system by phase control drive system
JPS56116519A (en) * 1980-02-20 1981-09-12 Nissan Motor Co Ltd Engine mount of car
JPS58109744A (en) * 1981-12-23 1983-06-30 Toyota Motor Corp Vibration absorption system for vehicle
JPS5933774A (en) * 1982-08-19 1984-02-23 富士通株式会社 Composite connector
JPS60252835A (en) * 1984-05-28 1985-12-13 Mitsubishi Motors Corp Car body vibration reducing device
JPS60263740A (en) * 1984-06-11 1985-12-27 Mitsubishi Motors Corp Car body vibration reducing device

Also Published As

Publication number Publication date
JPS6112435A (en) 1986-01-20

Similar Documents

Publication Publication Date Title
US8827250B2 (en) Vibration reduction device
KR101140925B1 (en) Damper for automobiles for reducing vibration of automobile body
US20140137830A1 (en) Anti-vibration device for vehicle
US20050023092A1 (en) Vehicle mount apparatus having asymmetrical variable stiffness
GB2228551A (en) Motor vehicle engine mounting
JPH0561484B2 (en)
JPH0369728B2 (en)
JPH06312616A (en) Vibration control supporting device
JPH0541453B2 (en)
JPH11325165A (en) Control engine mount
JPS61218427A (en) Vibration control device in vehicle
JPH0541452B2 (en)
JPS61220926A (en) Vibration control device for vehicle
JPS61218429A (en) Vibration control device in vehicle
JP2005106192A (en) Cylindrical engine mount
JPS61220925A (en) Vibration control device for vehicle
JPS6112436A (en) Vehicle vibration controlling equipment
JPS61220924A (en) Vibration control device for vehicle
JPS60244622A (en) Vibration control device for vehicle
GB2552236B (en) Suspension system of a vehicle and method of operation
JPS60248436A (en) Vibration controlling device for car
JPS61116140A (en) Vibration controller for vehicles
JPS60244623A (en) Vibration control device for vehicle
JPS61207212A (en) Vibration controller for vehicles
JP2508331B2 (en) Vehicle engine support method