JPH0561225B2 - - Google Patents

Info

Publication number
JPH0561225B2
JPH0561225B2 JP1336037A JP33603789A JPH0561225B2 JP H0561225 B2 JPH0561225 B2 JP H0561225B2 JP 1336037 A JP1336037 A JP 1336037A JP 33603789 A JP33603789 A JP 33603789A JP H0561225 B2 JPH0561225 B2 JP H0561225B2
Authority
JP
Japan
Prior art keywords
carbon
weight
carbonized
carbon fiber
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1336037A
Other languages
Japanese (ja)
Other versions
JPH03197359A (en
Inventor
Masaki Shimada
Nobuhiko Narita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1336037A priority Critical patent/JPH03197359A/en
Publication of JPH03197359A publication Critical patent/JPH03197359A/en
Publication of JPH0561225B2 publication Critical patent/JPH0561225B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、非常に高い硬度をもつ炭素繊維強化
炭素材およびその製造方法に関するものである。 [従来の技術] 現在、鉄、ガラス、セラミクスを製造する工程
において、多くの炭素材料特に高密度カーボン材
等(例えば特開昭52−81381号公報)が使用され
ている。これは、カーボンの耐熱性、寸法安定
性、耐薬品安定性等の優れた特性を利用したもの
である。また、高硬度のため耐摩耗性に優れてい
るにもかかわらず、相手材を傷つけないとゆうす
ばらしい特性がある。 しかしながら、これまでの高密度カーボン材
は、曲げ強度、衝撃強度が弱く使用に当たつては
注意深い取扱いを必要とされていた。また、強度
が高い炭素繊維強化炭素材は、密度が高くなりに
くいため高硬度になりにくく、この種の用途には
用いられていなかつた。 [発明が解決しようとする課題] 本発明は、高密度カーボン材にかわり用いるこ
とのできる高強度な炭素繊維強化炭素材であつ
て、非常に高い硬度をもつ炭素繊維強化炭素材お
よびその製造方法を提供しようとするものであ
る。 [課題を解決するための手段] 本発明は、補強用の炭素繊維と熱硬化性樹脂を
炭化した炭素質粉末を含有し、バインダーおよび
含浸剤を炭化してなるマトリツクスからなり、バ
インダーの炭化時に揮発する量を除いた残炭量
100重量部に対して、熱硬化性樹脂を炭化した
d002が0.36nm以上の炭素質粉末80〜120重量部の
割合で用いて炭化した高硬度炭素繊維強化炭素
材、また、補強用の炭素繊維と、バインダーの炭
化時に揮発する量を除いた残炭量100重量部に対
して、熱硬化性樹脂を炭化してなるd002が0.36n
m以上の炭素質粉末80〜120重量部の混合物を用
いて加熱成形した後、不活性ガス雰囲気中で800
〜1100℃で炭化した後、含浸炭化処理を施すこと
を特徴とする高硬度炭素繊維強化炭素材の製造方
法である。 以下、本発明の内容を詳細に説明する。 本発明に用いられる補強用の炭素繊維は、ポリ
アクリロトリル(PAN)系、レーヨン系、ピツ
チ系のいずれであつてもよく、また炭素質、黒鉛
質のいずれであつてもよい。炭素繊維の形態は、
長さ0.05〜50mm程度の短繊維であつても連続繊維
であつても使用できる。またクロスやフエルト、
マツトなどシート状等の炭素繊維構造物となつた
形態であつてもよい。上記炭素繊維は、マトリツ
クス中にそのままの状態で、または解繊された状
態で全くランダムな方向を向いていても良いし、
任意の特定の方向に向けて配向せしめられていて
もよい。 本発明で用いる炭素質粉末は、フエノール樹
脂、フラン樹脂等の熱硬化性樹脂を窒素、アルゴ
ン等の非酸化性ガス雰囲気中で炭化してなり、黒
鉛化度を示すd002が0.36nm以上のものが用いら
れる。d002が0.36未満の炭素質は、黒鉛化性が高
く炭素質粉末の硬さが柔らかくなるため適してお
らず、炭素繊維強化炭素材とした場合にも高硬度
のものが得られない。 d002は、黒鉛化性の指標となる炭素層間距離
であり、X線回折により測定できる。 d002が0.36nm以上の炭素質粉末は、フエノー
ル樹脂、フラン樹脂等の熱硬化性樹脂を窒素、ア
ルゴン等の非酸化性ガス雰囲気中で800〜1100℃
で約1時間炭化することにより得られる。 熱硬化性樹脂を炭化した後、軟質粉砕機を使用
し平均粒径数+μmの炭素質粉末にして用いる。
炭素質粉末の粒子が大きく例えば数百μmもある
と均一性が悪くなり、製品となる炭素繊維強化炭
素材の強度低下の原因となる。そのため、できる
だけ粒径は細かくし、均一にすることが望まし
い。 また、本発明の高硬度炭素繊維強化炭素材で
は、マトリツクスは、バインダーおよび後述する
含浸材を炭化した炭素から構成されている。炭素
質マトリツクスの原料となるバインダーとして
は、熱硬化性のフエノール樹脂、フラン樹脂で
も、熱可塑性のピツチ等でも良い。バインダーの
炭化時に揮発する量を除いた残炭量100重量部に
対して、前述の炭素質粉末は、80〜120重量部添
加する。炭素質粉末が120重量部超では、プレス
成形時にマトリツクスの粘度があがり成形が困難
となる。また80重量部未満では、硬度の高い炭素
材ができない。 バインダーの量は、たとえば、フエノール樹脂
は、揮発分が約50%あるので混合時のバインダー
量としては、200重量部ピツチは、揮発分が約20
%あるので、混合時のバインダー量としては、
125重量部となる。 炭素繊維、炭素質粉末およびバインダーをプレ
ス成形等を用いて用途、使用目的等に必要な形状
に加熱成形する。 この時、炭素繊維、炭素質粉末とバインダーと
を混合、付着させる方法としては、粉末混合法、
プリプレグ法等いかなる方法でもよい。 前記成形体において、炭素繊維または炭素繊維
構造物は、20〜90重量%、好ましくは40〜80重量
%含有されることが望ましい。炭素繊維が20重量
%未満では、得られる炭素繊維強化炭素材の補強
繊維が少なすぎる為、強度が低くなる。一方90重
量%を越えた場合には、マトリツクスを形成する
バインダーの含有量が少なすぎる為、層間におけ
るせん断強度が低下し、炭素繊維の補強効果が充
分に発揮されない。 この成形体を、窒素、アルゴン等の非酸化性ガ
ス雰囲気中で炭化する。炭化処理の際の温度とし
ては800℃以上、1100℃以下が用いられ、保持時
間は約1時間である。この場合、炭化時の昇温速
度が早すぎるとマトリツクスを形成するバインダ
ーの熱分解による収縮と、ガス発生が激しくな
り、大きな亀裂が発生しやすくなる。そのため昇
温速度は、通常100℃/hr以下、好ましくは20
℃/hr以下とすることが望ましい。 このようにして炭化処理されて得られた最初の
中間体は、いまだ気孔率が大きく、高密度、高強
度の炭素繊維強化炭素材を得るためにさらに、こ
の中間体にピツチまたは炭化可能な樹脂等の含浸
剤を含浸する含浸処理を施し、ふたたびアルゴン
等の非酸化性ガス雰囲気中で炭化処理を施す。含
浸剤は炭化処理により、バインダーを炭化した炭
素とともにマトリツクスの一部を形成することに
なる。炭化処理の際の温度は、800℃以上、1100
℃以下が好ましい。含浸処理、炭化処理は、炭素
繊維強化炭素材の細孔がうまり、密度がほぼ一定
になるまで繰り返すことが望ましい。 以下、実施例に従つて、本発明を説明する。 [実施例] 実施例 1 フエノール樹脂を窒素中、1000℃で1時間炭化
した後、軟質粉砕機を使用し平均粒径10μmの炭
素質粉末とした。この炭素質粉末は、X線回折に
より測定したところ、d002=0.37nmであつた。 バインダーとして平均粒度10μm、軟化点240
℃のピツチ125重量部(揮発分量を除いた残炭量
では100重量部)と、上記の炭素質粉末100重量部
を混合したものと、ピツチ系炭素繊維を30mmに切
断したものを金型に入れ温度600℃、圧力100Kg/
cm2でプレス成形し120×120×8mmの板をつくつ
た。 このとき成形体の炭素繊維含有率が50%になる
ように前記混合物量を調整した。 この成形体を窒素雰囲気中にて10℃/hrの昇温
速度で1000℃まで昇温し、1時間保持する炭化処
理を行つた。さらに、この炭化した最初の中間体
に含浸用ピツチを真空下、200℃で含浸した後、
含浸処理を施した中間体を窒素雰囲気下にて10
℃/hrの昇温速度で1000℃まで昇温し含浸したピ
ツチを完全に炭化させた。続いて、前記と同様の
含浸、炭化工程をさらに3回繰り返して炭素繊維
強化炭素材を得た。 比較例 1 実施例1のフエノール樹脂を炭化した炭素質粉
末の代わりに、平均粒径10μmの生コークス粉末
(d002=0.35)を用いて、実施例1と同じ方法で
炭素繊維強化炭素材を得た。 実施例 2 バインダーのフエノール樹脂溶液200重量部
(揮発分量を除いた残炭量では100重量部)と、実
施例1で用いたフエノール樹脂を炭化した炭素質
粉末100重量部を混合し、これとPAN系炭素繊維
でロービングプリプレグを作つた。 このプリプレグを30mmに切断したものを金型に
入れ温度160℃、圧力50Kg/cm2でプレス成形し120
×120×8mmの板をつくつた。 このとき成形体の炭素繊維含有率が50%になる
ように前記混合溶液を水溶媒で希釈してプリプレ
グを調整した。 この成形体を窒素雰囲気中10℃/hrの昇温速度
で1000℃まで昇温し、1時間保持する炭化処理を
行つた。さらに、この炭化した最初の中間体に含
浸用ピツチを真空下、200℃で含浸した後、含浸
処理を施した中間体を窒素雰囲気下にて10℃/hr
の昇温速度で1000℃まで昇温し含浸したピツチを
完全に炭化させた。続いて、前記と同様の含浸、
炭化工程をさらに3回繰り返して炭素繊維強化炭
素材を得た。 比較例 2 実施例2のフエノール樹脂を炭化した炭素質粉
末の代わりに、平均粒度10μmの天然黒鉛粉末
(d002=0.345)を用いて、実施例2と同じ方法で
炭素繊維強化炭素材を得た。 比較例 3 現在、ガラス製造用に使用されている高密度カ
ーボン材についても、比較のため後述の性能評価
をおこなつた。結果を第1表に示す。 得られた炭素繊維強化炭素材について、摩耗試
験機を用いて下記条件による性能評価を行つた。
この時、炭素繊維強化炭素材の摩耗量は、ガラス
丸棒によつて削られた溝の深さによつて評価し
た。 また、曲げ強度は、JIS R 1601に準じて行つ
た。 [試験条件] 荷重:1.5Kg 相手材:ガラス丸棒 摺動幅:20mm 摺動回数:1000回 摺動速度:21m:sec 試験片40×20×8mm 試験結果を第1表に示す。
[Industrial Application Field] The present invention relates to a carbon fiber-reinforced carbon material having extremely high hardness and a method for producing the same. [Prior Art] Currently, many carbon materials, particularly high-density carbon materials, etc. (for example, Japanese Patent Application Laid-open No. 81381/1983) are used in the processes of manufacturing iron, glass, and ceramics. This utilizes carbon's excellent properties such as heat resistance, dimensional stability, and chemical resistance stability. Furthermore, although it has excellent wear resistance due to its high hardness, it has excellent properties in that it does not damage the mating material. However, conventional high-density carbon materials have low bending strength and low impact strength and require careful handling when used. Furthermore, carbon fiber-reinforced carbon materials, which have high strength, have not been used for this type of application because they do not have high density and therefore do not have high hardness. [Problems to be Solved by the Invention] The present invention provides a high-strength carbon fiber-reinforced carbon material that can be used in place of high-density carbon materials and has extremely high hardness, and a method for producing the same. This is what we are trying to provide. [Means for Solving the Problems] The present invention comprises a matrix containing reinforcing carbon fibers and a carbonaceous powder obtained by carbonizing a thermosetting resin, and a matrix obtained by carbonizing a binder and an impregnating agent. Amount of remaining coal excluding the amount that evaporates
Carbonized thermosetting resin per 100 parts by weight
High-hardness carbon fiber-reinforced carbon material carbonized using 80 to 120 parts by weight of carbonaceous powder with d002 of 0.36 nm or more, carbon fiber for reinforcement, and residual carbon excluding the amount that evaporates during carbonization of the binder. d002 made by carbonizing thermosetting resin is 0.36n per 100 parts by weight.
After heating and forming a mixture of 80 to 120 parts by weight of carbonaceous powder with a diameter of 80 to 120 parts by weight in an inert gas atmosphere,
This is a method for producing a high-hardness carbon fiber-reinforced carbon material, which is characterized by carbonizing at ~1100°C and then performing an impregnation carbonization treatment. Hereinafter, the content of the present invention will be explained in detail. The reinforcing carbon fiber used in the present invention may be polyacrylotrile (PAN)-based, rayon-based, or pitch-based, and may be carbonaceous or graphitic. The form of carbon fiber is
Both short fibers and continuous fibers having a length of about 0.05 to 50 mm can be used. In addition, cross and felt,
It may also be in the form of a sheet-like carbon fiber structure such as a mat. The carbon fibers may be oriented in completely random directions in the matrix as they are or in a defibrated state,
It may be oriented in any particular direction. The carbonaceous powder used in the present invention is obtained by carbonizing thermosetting resin such as phenol resin or furan resin in a non-oxidizing gas atmosphere such as nitrogen or argon, and has a d002 indicating the degree of graphitization of 0.36 nm or more. is used. Carbonaceous materials with d002 of less than 0.36 are not suitable because they have high graphitizability and the hardness of the carbonaceous powder becomes soft, and even when used as a carbon fiber reinforced carbon material, high hardness cannot be obtained. d002 is the distance between carbon layers, which is an index of graphitizability, and can be measured by X-ray diffraction. For carbonaceous powders with d002 of 0.36 nm or more, thermosetting resins such as phenolic resins and furan resins are heated at 800 to 1100°C in a non-oxidizing gas atmosphere such as nitrogen or argon.
It is obtained by carbonizing for about 1 hour. After carbonizing the thermosetting resin, it is used as a carbonaceous powder with an average particle size of several + μm using a soft grinder.
If the particles of the carbonaceous powder are large, for example, several hundred micrometers, the uniformity will deteriorate, causing a decrease in the strength of the carbon fiber-reinforced carbon material that becomes the product. Therefore, it is desirable to make the particle size as fine and uniform as possible. Furthermore, in the high-hardness carbon fiber-reinforced carbon material of the present invention, the matrix is composed of carbon obtained by carbonizing a binder and an impregnating material to be described later. The binder serving as a raw material for the carbonaceous matrix may be a thermosetting phenolic resin, a furan resin, or a thermoplastic pitch. 80 to 120 parts by weight of the above-mentioned carbonaceous powder is added to 100 parts by weight of the remaining carbon amount excluding the amount that evaporates during carbonization of the binder. If the carbonaceous powder exceeds 120 parts by weight, the viscosity of the matrix increases during press molding, making molding difficult. Moreover, if it is less than 80 parts by weight, a carbon material with high hardness cannot be obtained. As for the amount of binder, for example, phenolic resin has a volatile content of about 50%, so if the amount of binder at the time of mixing is 200 parts by weight, the volatile content is about 20%.
%, so the amount of binder when mixing is:
125 parts by weight. Carbon fibers, carbonaceous powder, and a binder are heated and molded into a shape required for the purpose of use, etc. using press molding or the like. At this time, methods for mixing and adhering carbon fibers, carbonaceous powder, and binder include powder mixing method,
Any method such as prepreg method may be used. In the molded article, it is desirable that the carbon fiber or carbon fiber structure is contained in an amount of 20 to 90% by weight, preferably 40 to 80% by weight. If the carbon fiber content is less than 20% by weight, the resulting carbon fiber-reinforced carbon material will have too few reinforcing fibers, resulting in low strength. On the other hand, if it exceeds 90% by weight, the content of the binder forming the matrix is too small, so the shear strength between the layers decreases, and the reinforcing effect of the carbon fibers is not fully exhibited. This compact is carbonized in a non-oxidizing gas atmosphere such as nitrogen or argon. The temperature used during the carbonization treatment is 800°C or higher and 1100°C or lower, and the holding time is about 1 hour. In this case, if the temperature increase rate during carbonization is too fast, the binder forming the matrix will shrink due to thermal decomposition and gas generation will be intense, making it easy for large cracks to occur. Therefore, the temperature increase rate is usually 100℃/hr or less, preferably 20℃/hr or less.
It is desirable to keep it below °C/hr. The first intermediate obtained by carbonization in this way still has a high porosity, and in order to obtain a high-density, high-strength carbon fiber-reinforced carbon material, this intermediate is further coated with a pitch or carbonizable resin. An impregnation treatment is performed to impregnate the material with an impregnating agent such as, and then a carbonization treatment is performed again in a non-oxidizing gas atmosphere such as argon. Due to the carbonization process, the impregnating agent forms part of the matrix together with the carbonized binder. The temperature during carbonization treatment is 800℃ or higher, 1100℃
℃ or less is preferable. It is desirable to repeat the impregnation treatment and the carbonization treatment until the pores of the carbon fiber reinforced carbon material are filled and the density becomes approximately constant. The present invention will be described below with reference to Examples. [Examples] Example 1 A phenolic resin was carbonized in nitrogen at 1000° C. for 1 hour, and then made into carbonaceous powder with an average particle size of 10 μm using a soft pulverizer. When this carbonaceous powder was measured by X-ray diffraction, d002 was 0.37 nm. As a binder, average particle size is 10μm, softening point is 240
A mixture of 125 parts by weight of pitch at ℃ (100 parts by weight in terms of residual carbon content excluding volatile matter), 100 parts by weight of the above carbonaceous powder, and pitch-based carbon fiber cut into 30 mm pieces were put into a mold. Pour temperature 600℃, pressure 100Kg/
A plate measuring 120 x 120 x 8 mm was made by press forming with cm2 . At this time, the amount of the mixture was adjusted so that the carbon fiber content of the molded body was 50%. This molded body was subjected to a carbonization treatment in which the temperature was raised to 1000°C at a rate of 10°C/hr in a nitrogen atmosphere and held for 1 hour. Furthermore, after impregnating this carbonized first intermediate with an impregnation pitch under vacuum at 200°C,
The impregnated intermediate was heated under nitrogen atmosphere for 10
The impregnated pitch was completely carbonized by raising the temperature to 1000°C at a heating rate of °C/hr. Subsequently, the same impregnation and carbonization steps as above were repeated three more times to obtain a carbon fiber-reinforced carbon material. Comparative Example 1 A carbon fiber-reinforced carbon material was obtained in the same manner as in Example 1, using raw coke powder (d002 = 0.35) with an average particle size of 10 μm instead of the carbonaceous powder obtained by carbonizing the phenolic resin in Example 1. Ta. Example 2 200 parts by weight of a phenolic resin solution as a binder (100 parts by weight in terms of residual carbon content excluding the volatile content) and 100 parts by weight of the carbonaceous powder obtained by carbonizing the phenolic resin used in Example 1 were mixed. Roving prepreg was made from PAN-based carbon fiber. This prepreg was cut into 30mm pieces and put into a mold and press-molded at a temperature of 160℃ and a pressure of 50Kg/ cm2 .
I made a board of x120 x 8mm. At this time, the mixed solution was diluted with a water solvent so that the carbon fiber content of the molded article was 50% to prepare a prepreg. This molded body was heated to 1000° C. at a rate of 10° C./hr in a nitrogen atmosphere, and carbonized by holding the temperature for 1 hour. Furthermore, after impregnating this carbonized first intermediate with an impregnating pitch at 200℃ under vacuum, the impregnated intermediate was heated at 10℃/hr under a nitrogen atmosphere.
The impregnated pitch was completely carbonized by raising the temperature to 1000℃ at a heating rate of . Subsequently, the same impregnation as above,
The carbonization process was repeated three more times to obtain a carbon fiber reinforced carbon material. Comparative Example 2 A carbon fiber-reinforced carbon material was obtained in the same manner as in Example 2, using natural graphite powder (d002 = 0.345) with an average particle size of 10 μm instead of the carbonaceous powder obtained by carbonizing the phenolic resin in Example 2. . Comparative Example 3 For comparison, the performance evaluation described below was also performed on high-density carbon materials currently used for glass manufacturing. The results are shown in Table 1. The performance of the obtained carbon fiber-reinforced carbon material was evaluated using an abrasion tester under the following conditions.
At this time, the amount of wear of the carbon fiber-reinforced carbon material was evaluated based on the depth of the groove cut by the glass round rod. Further, bending strength was measured according to JIS R 1601. [Test conditions] Load: 1.5Kg Counterpart material: Glass round bar Sliding width: 20mm Number of sliding movements: 1000 times Sliding speed: 21m:sec Test piece 40 x 20 x 8 mm The test results are shown in Table 1.

【表】 本発明の炭素繊維強化炭素材は、現在の高密度
カーボン材よりも強度が高くかつ炭素繊維強化炭
素材では硬度が高い。またガラス丸棒によつて削
られた溝の深さが浅いことより耐摩耗特性にすぐ
れていることがわかる。 [発明の効果] 本発明は、高密度カーボン材により高強度な炭
素繊維強化炭素材を使用し、かつ非常に高い硬度
をもつ炭素繊維強化炭素材を提供することにより
高温部材としてのカーボンの特性を持つたまま
で、ガラス製造用治具等に必要な耐摩耗特性をも
つた材料を製造することが出来る。
[Table] The carbon fiber-reinforced carbon material of the present invention has higher strength and hardness than current high-density carbon materials. Furthermore, the shallow depth of the groove cut by the glass round rod indicates that it has excellent wear resistance. [Effects of the Invention] The present invention improves the characteristics of carbon as a high-temperature member by using a carbon fiber-reinforced carbon material with high strength due to a high-density carbon material and by providing a carbon fiber-reinforced carbon material with extremely high hardness. It is possible to manufacture materials with wear resistance properties necessary for glass manufacturing jigs, etc., while holding the glass.

Claims (1)

【特許請求の範囲】 1 補強用の炭素繊維と熱硬化性樹脂を炭化した
炭素質粉末を含有し、バインダーおよび含浸剤を
炭化してなるマトリツクスからなり、バインダー
の炭化時に揮発する量を除いた残炭量100重量部
に対して、熱硬化性樹脂を炭化したd002が0.36n
m以上の炭素質粉末80〜120重量部の割合で用い
て炭化した高硬度炭素繊維強化炭素材。 2 補強用の炭素繊維と、バインダーの炭化時に
揮発する量を除いた残炭量100重量部に対して熱
硬化性樹脂を炭化してなるd002が0.36nm以上の
炭素質粉末80〜120重量部の混合物を用いて加熱
成形した後、不活性ガス雰囲気中で800〜1100℃
で炭化した後、含浸炭化処理を施すことを特徴と
する高硬度炭素繊維強化炭素材の製造方法。
[Claims] 1. Consisting of a matrix consisting of carbonized carbon fibers for reinforcement and carbonized thermosetting resin, and a carbonized binder and impregnating agent, excluding the amount that volatilizes when the binder is carbonized. d002, which is carbonized thermosetting resin, is 0.36n per 100 parts by weight of residual carbon.
A high-hardness carbon fiber-reinforced carbon material carbonized using 80 to 120 parts by weight of carbonaceous powder having a particle size of 1.5 m or more. 2 80 to 120 parts by weight of carbonaceous powder with d002 of 0.36 nm or more, which is obtained by carbonizing a thermosetting resin, based on 100 parts by weight of the remaining carbon after excluding the carbon fiber for reinforcement and the amount that evaporates during carbonization of the binder. After heating and molding using a mixture of 800-1100℃ in an inert gas atmosphere
1. A method for producing a high-hardness carbon fiber-reinforced carbon material, which comprises carbonizing the material and then subjecting it to an impregnation carbonization treatment.
JP1336037A 1989-12-25 1989-12-25 Carbon fiber-reinforced carbon material having high hardness and its production Granted JPH03197359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336037A JPH03197359A (en) 1989-12-25 1989-12-25 Carbon fiber-reinforced carbon material having high hardness and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336037A JPH03197359A (en) 1989-12-25 1989-12-25 Carbon fiber-reinforced carbon material having high hardness and its production

Publications (2)

Publication Number Publication Date
JPH03197359A JPH03197359A (en) 1991-08-28
JPH0561225B2 true JPH0561225B2 (en) 1993-09-03

Family

ID=18295055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336037A Granted JPH03197359A (en) 1989-12-25 1989-12-25 Carbon fiber-reinforced carbon material having high hardness and its production

Country Status (1)

Country Link
JP (1) JPH03197359A (en)

Also Published As

Publication number Publication date
JPH03197359A (en) 1991-08-28

Similar Documents

Publication Publication Date Title
EP0402915B1 (en) Hybrid carbon/carbon composite material
EP0636428A1 (en) Process for the recycling of carbon fiber composites
US4671907A (en) Method of manufacturing carbon materials
JPH03150266A (en) Production of carbon/carbon composite material
JPH0561225B2 (en)
DE3203659A1 (en) Process for producing a sintered body
JPH0456789B2 (en)
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JPH05330915A (en) Production of carbon/carbon composite material
JP3128097B2 (en) Sliding material made of carbon-carbon composite material
KR0143615B1 (en) A method for manufacturing c/c composites of high thermal conductivity
JPS62212263A (en) Manufacture of carbon-carbon fiber composite material
KR970008693B1 (en) Process for the preparation of carbon composite material
JPH07215775A (en) Production of carbon-carbon composite material
JPS6153104A (en) Production of high-strength carbon material
KR950011212B1 (en) Caron composite material for friction article
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH01145375A (en) Production of carbon fiber-reinforced carbonaceous composite
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JPH068215B2 (en) Manufacturing method of carbon fiber reinforced carbon material
JP3244279B2 (en) Manufacturing method of jig material for glass container manufacturing
JPH06321633A (en) Shock-resistant carbon-carbon composite material and its production
KR970010355B1 (en) Method for preparing carbon fiber reinforced carbon composites

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees