JPH0559527B2 - - Google Patents

Info

Publication number
JPH0559527B2
JPH0559527B2 JP57207392A JP20739282A JPH0559527B2 JP H0559527 B2 JPH0559527 B2 JP H0559527B2 JP 57207392 A JP57207392 A JP 57207392A JP 20739282 A JP20739282 A JP 20739282A JP H0559527 B2 JPH0559527 B2 JP H0559527B2
Authority
JP
Japan
Prior art keywords
wire
cusn
alloy
cores
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57207392A
Other languages
Japanese (ja)
Other versions
JPS5996608A (en
Inventor
Shigeru Okuda
Masayuki Nagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57207392A priority Critical patent/JPS5996608A/en
Publication of JPS5996608A publication Critical patent/JPS5996608A/en
Publication of JPH0559527B2 publication Critical patent/JPH0559527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は強磁場発生装置に用いられる極細多芯
化合物電導線およびその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrafine multicore compound conductive wire used in a strong magnetic field generator and a method for manufacturing the same.

Nb3Sn化合物超電導材料は臨界温度、臨界磁
界、臨界電流などの超電導特性が優れていること
から、高磁界発生用マグネツト巻線として実用化
されている。
Nb 3 Sn compound superconducting materials have excellent superconducting properties such as critical temperature, critical magnetic field, and critical current, and have been put into practical use as magnet windings for generating high magnetic fields.

その代表的な導体構造で第1のものは、第1図
に一例を示すようにテープ状のものである。図に
おいて1はNbの芯で、その周囲にNb3Sn化合物
超電導層2があり、更にその外側にCu層3が被
覆されている。このようなテープ状導体を用いて
マグネツトを作製した場合、フラツクスジヤンプ
の発生により材料の臨界電流値付近でマグネツト
を、安定に作動させることが困難となるため、こ
れを防ぐために特別な対策が必要になる。そこで
このフラツクジヤンプの起こらない本質的に安定
な極細多芯線化の研究が進められている。
The first typical conductor structure is a tape-shaped one, as shown in FIG. In the figure, 1 is a Nb core, surrounded by an Nb 3 Sn compound superconducting layer 2, and further coated with a Cu layer 3 on the outside. When a magnet is made using such a tape-shaped conductor, it becomes difficult to operate the magnet stably near the material's critical current value due to flux jumps, so special measures must be taken to prevent this. It becomes necessary. Therefore, research is underway to create ultra-fine multifilamentary wires that are essentially stable and do not cause this flux jump.

第2のものは、この極細多芯構造のもので、第
2図に一例を示すように、合金をマトリツクスと
する芯の表面に化合物超電導層を生成させたもの
の多芯より成るものである。図において、4は
Nbの芯で、5はCuSn合金で、6は生成した化合
物超電導層である。
The second type has this ultra-fine multicore structure, and as shown in FIG. 2, it consists of a multicore core with an alloy matrix and a compound superconducting layer formed on the surface of the core. In the figure, 4 is
In the Nb core, 5 is a CuSn alloy, and 6 is the generated compound superconducting layer.

さて超電導線の直径を細くしてゆくと、不安定
性がおきて発熱があつても、その部分だけの超電
導線の熱容量で、この熱を吸収して、且つ常電導
状態への転移に至らしめないような直径が存在し
うることが明らかにされた。この技術によつて本
質的な安定化が可能であると考えられている。本
質的安定化がなされるための超電導導体の直径は
数十μmといわれている。
Now, if the diameter of the superconducting wire is made thinner, even if instability occurs and heat is generated, the heat capacity of the superconducting wire in that part alone will absorb this heat and lead to the transition to the normal conducting state. It has been shown that there can be diameters that do not exist. It is believed that essential stabilization is possible with this technique. It is said that the diameter of a superconducting conductor to achieve essential stabilization is several tens of micrometers.

またNb3SnはNbとCuSnの約700℃での拡散反
応により得られたが第2図にオケルNb芯の大き
さが大きければ拡散反応に時間がかかり、Nb3Sn
の結晶粒の粗大化が起こり臨界電流密度が低下す
る。従つて熱処理前のNb芯の直径は、10μm以下
であることが望ましい。この2つの理由により
Nb芯を細くする必要があるが、電流の大きい線
材を作る場合には、数100本〜数1000本の超電導
線を束ねる必要がある。
In addition, Nb 3 Sn was obtained by a diffusion reaction between Nb and CuSn at about 700℃, but as shown in Figure 2, if the size of the Okel Nb core is large, the diffusion reaction takes time, and Nb 3 Sn
Coarsening of the crystal grains occurs and the critical current density decreases. Therefore, it is desirable that the diameter of the Nb core before heat treatment is 10 μm or less. For these two reasons
It is necessary to make the Nb core thinner, but in order to make a wire with a large current, it is necessary to bundle several hundred to several thousand superconducting wires.

これを実現するために採られている従来法では
CuSn合金に第3図のように複数個の穴をあけこ
れにNbを挿入し、両端にふたをし、電子ビーム
溶接で両端をとじる。これを熱間押出後、引伸加
工し、最後に6角ダイスに通し、CuSnマトリツ
クスNb多芯複合体の6角棒を作る。これをCuSn
でできた管に複数本挿入し、両端にふたをし、電
子ビーム溶接後、熱間押出をすることにより数
100本から数1000本のNb芯を得ることができる。
たとえばCuSnビレツトに19本の穴をあけ、Nbを
挿入しそれを引伸加工により61本の6角棒を作
り、それをCuSn管に入れ熱間押出をすることに
より1159本のNb芯を得ることができる。しかし
従来法においてCuSn合金に穴あけをする際、ド
リルの刃先がふれることなしに正確にあけられる
距離はたかだか10cmで、それ以上の深さをあける
と穴と穴の間隔が長くなつたり、短くなつたりし
てしまう。
The conventional method used to achieve this is
As shown in Figure 3, multiple holes are made in the CuSn alloy, Nb is inserted into the holes, both ends are capped, and both ends are closed using electron beam welding. After hot extrusion, this is stretched and finally passed through a hexagonal die to produce a hexagonal rod of CuSn matrix Nb multicore composite. Add this to CuSn
By inserting multiple tubes into a tube made of aluminum, capping both ends, electron beam welding, and hot extrusion, several
It is possible to obtain 100 to several thousand Nb cores.
For example, by drilling 19 holes in a CuSn billet, inserting Nb, and stretching them to make 61 hexagonal bars, inserting them into a CuSn tube and hot extrusion to obtain 1159 Nb cores. I can do it. However, when drilling holes in CuSn alloy using conventional methods, the distance that can be accurately drilled without touching the tip of the drill is at most 10 cm, and if you drill deeper than that, the distance between holes becomes longer or shorter. I end up doing something like that.

従つて従来法ではダルマ落とし法といわれる、
CuSn合金に複数本の穴をあけたものを2〜3個
つないでNb棒を通し、CuSn合金間を電子ビーム
溶接することにより熱間押出用ビレツトを作つて
いた。
Therefore, the conventional method is called the Daruma Otoshi method.
Billets for hot extrusion were made by punching multiple holes in CuSn alloy, connecting two or three of them, passing Nb rods through them, and electron beam welding between the CuSn alloys.

しかし、この方法により穴あけをすると、穴の
個数はたかだか40個までで、それ以上穴をあける
とNb棒の挿入が非常にむずかしくなるという欠
点があり、大容量導体において数10000本のNb芯
が必要な場合、第1回目の押出ビレツトにおいて
Nb芯の数が少ない場合、押出を3度することが
必要な場合がある。押出における歩どまりは約70
%であり、3度の押出により最終的な歩どまりは
34%になつてしまい高価なNbを使用しているの
で、工業生産における問題は大きい。また穴あけ
したCuSn合金のブロツクを複数個使うダルマ落
とし法では、精度よく穴あけ加工してもブロツク
間に穴の段差ができてしまい、この段差が熱間押
出後、引伸加工時に断線の原因となる場合が多
い。以上のようにCuSn合金に穴あけ加工する従
来法では、挿入するNbの本数が限られることお
よび、複数個のビレツトをつなぐことにより断線
が多発するという欠点がある。
However, when drilling holes using this method, the number of holes is at most 40, and if more holes are drilled, it becomes extremely difficult to insert the Nb rods. If necessary, in the first extrusion billet
If the number of Nb cores is small, it may be necessary to extrude three times. Yield in extrusion is approximately 70
%, and the final yield after 3 extrusions is
34% and uses expensive Nb, which poses a major problem in industrial production. In addition, in the Daruma-otoshi method, which uses multiple drilled blocks of CuSn alloy, even if the holes are drilled with high precision, there are steps between the holes, and these steps can cause wire breakage during hot extrusion and stretching. There are many cases. As described above, the conventional method of drilling holes in CuSn alloys has the drawbacks that the number of Nb pieces that can be inserted is limited and that disconnections occur frequently due to connecting multiple billets.

またCuを5〜10重量%含むSn合金線とNb線を
撚合せ又は束ね、それを引伸加工することにより
NbとSnの多芯線を得、それを熱処理することに
よりNb3Sn化合物超電導線を得る従来例もある
が、Sn合金は強度が低く、第4図のようにSn合
金線とNb線の強度差の為、Sn線とNb線の経が
それぞれ30μm以下に引伸加工することができな
いので、拡散熱処理に時間がかかり、それにより
Nb3Snの結晶粒の粗大化が起こり臨界電流密度の
低下がおこるし、Sn合金線の融点は約200℃で低
い為、熱間押出ができないのでパイプ中に嵌合し
それをそのまま引伸加工するパイプ嵌合法では、
単重がたかだか5Kgであり工業生産上問題があ
る。
In addition, by twisting or bundling Sn alloy wires containing 5 to 10% by weight of Cu and Nb wires and stretching them,
There is a conventional example of obtaining a Nb 3 Sn compound superconducting wire by obtaining a multifilamentary wire of Nb and Sn and heat-treating it, but the strength of the Sn alloy is low, and as shown in Figure 4, the strength of the Sn alloy wire and the Nb wire is Because of the difference, it is not possible to stretch the Sn wire and Nb wire to a warp of 30 μm or less, so diffusion heat treatment takes time, and
The crystal grains of Nb 3 Sn become coarse and the critical current density decreases, and the melting point of the Sn alloy wire is low at about 200°C, so hot extrusion is not possible, so it is fitted into a pipe and then stretched as it is. In the pipe fitting method,
The unit weight is at most 5 kg, which poses a problem in industrial production.

本発明は従来例の欠点を解消する為に考案され
(1)NbまたはNb合金線のまわりに、Snの含有量
が10〜13.5重量%を含むCu−Sn合金線を配置し
た複数本の前記Cu−Sn合金線と複数本の前記Nb
またはNb合金線を混合して密に束ねるか又は撚
合せて成るものに熱処理によりNb3Sn化合物超電
導層を生成せしめて成ることを特徴とするNb3Sn
化合物超電導線の製造方法に関するものである。
ここで、Snの含有量が10〜13.5重量%としたの
は、10重量%未満では、熱処理によりNb3Snが生
成しにくく、13.5重量%を越えると、Cu−Sn合
金に金属間化合物が析出し減面加工が不可能にな
るからである。以下実施例を用いて本発明を説明
する。
The present invention was devised to eliminate the drawbacks of the conventional example.
(1) A plurality of the above-mentioned Cu-Sn alloy wires and a plurality of the above-mentioned Nb alloy wires in which Cu-Sn alloy wires containing 10 to 13.5% by weight of Sn are arranged around the Nb or Nb alloy wires.
Or Nb 3 Sn characterized by forming a Nb 3 Sn compound superconducting layer by heat treating a mixture of Nb alloy wires and tightly bundling or twisting them.
The present invention relates to a method for manufacturing a compound superconducting wire.
Here, the reason why the Sn content is 10 to 13.5% by weight is because if it is less than 10% by weight, Nb 3 Sn will be difficult to form during heat treatment, and if it exceeds 13.5% by weight, intermetallic compounds will form in the Cu-Sn alloy. This is because surface reduction processing becomes impossible due to precipitation. The present invention will be explained below using Examples.

実施例 1 CuSn合金とNbをそれぞれ0.5mmまで伸線加
工し、CuSn線を42個のリール、Nb線を13個のリ
ールにまきとり、第5図の配置で撚線を行なう。
この撚線をさらに7個のリールにわけてとり、撚
線を行ないこれを40cmの長さに37本切断する。
Example 1 A CuSn alloy and a Nb wire were each drawn to a thickness of 0.5 mm, and the CuSn wire was wound on 42 reels and the Nb wire on 13 reels, and the wires were twisted in the arrangement shown in FIG.
This stranded wire is further divided into seven reels, twisted, and cut into 37 reels of 40 cm in length.

これを内径85、外径89のCuSn管に挿入し両
端にふたをし、電子ビーム溶接後、押出機にて30
cmに押出をする。この押出材の中には、3367本
のNb芯が含まれているより、これを0.7mmまで
断線なしに伸線でき7μmのNb芯3367本がはい
つたCuSnとNbの複合体が得られ、これを720℃
で50時間熱処理することによりNb3Sn化合物超電
導線が得られる。
Insert this into a CuSn tube with an inner diameter of 85 and an outer diameter of 89, cover both ends, and after electron beam welding, use an extruder to
Extrude to cm. Since this extruded material contains 3,367 Nb cores, it can be drawn to 0.7 mm without breaking, resulting in a CuSn and Nb composite containing 3,367 7 μm Nb cores. , this at 720℃
A Nb 3 Sn compound superconducting wire is obtained by heat treatment for 50 hours.

このように一度の押出により従来せいぜい40本
のNb芯しかえられなかつたが、本発明により一
度の押し出しにより多数本のNb芯が得られる。
また3367本のNb芯でも不足する大容量導体の場
合、これを束ねて2度目の押出しすることによ
り、従来3回押出しをしなければならなかつた多
数本のNb芯が得られる。これによりNbの歩とま
りは約30%向上し、高価なNbを節約できた工業
的価値は大きい。
As described above, conventionally only 40 Nb cores could be obtained by one extrusion, but according to the present invention, a large number of Nb cores can be obtained by one extrusion.
Furthermore, in the case of a large-capacity conductor for which even 3367 Nb cores are insufficient, by bundling them together and extruding them a second time, a large number of Nb cores, which conventionally required extrusion three times, can be obtained. This improved the yield of Nb by about 30%, and the industrial value of saving expensive Nb was significant.

実施例 2 CuSn棒、Nb棒を引伸加工後対辺距離3mm6角
ダイスに通し、それを約20cmに切断し200本のNb
棒と600本のCuSn棒を得る。これを外径84、内
径80のCuSnパイプに第6図にようなNb棒と
CuSn棒の配置で挿入し両端をCuSnでふたをした
後電子ビーム溶接後熱間押出をすることにより、
200本のNb芯をもつCuSnマトリツクスの複合線
を得る。これに引伸加工をして最後に対辺距離3
mmの6角ダイスに通したが伸線性はきわめて良好
で、これを800本束ねCuSn管に挿入し、2回目の
熱間押出により160000本のNb芯を得ることがで
き、従来法では3回の押出でしか得ることができ
なかつた本数のNb芯を2回の押出で得られ伸線
性も向上した。
Example 2 After stretching CuSn rods and Nb rods, pass them through a hexagonal die with a distance across flats of 3 mm, cut them into approximately 20 cm pieces, and cut them into 200 Nb rods.
Obtain a rod and 600 CuSn rods. This is attached to a CuSn pipe with an outer diameter of 84 mm and an inner diameter of 80 mm, and a Nb rod as shown in Figure 6.
By inserting CuSn rods and capping both ends with CuSn, hot extrusion after electron beam welding.
A composite wire of CuSn matrix with 200 Nb cores is obtained. After enlarging this, the distance across the sides is 3.
The wire was passed through a mm hexagonal die, but the drawability was very good. 800 of these were bundled together and inserted into a CuSn tube, and 160,000 Nb cores were obtained by the second hot extrusion, compared to the 3 times the conventional method. The number of Nb cores that could only be obtained by extrusion was obtained by two extrusions, and the wire drawability was also improved.

以上実施例にて、本発明を説明したが、本発明
はNbまたはNb合金線のまわりに、Snの含有量
が10〜13.5重量%を含むCu−Sn合金線を配置し
た複数本の前記Cu−Sn合金線と複数本の前記Nb
またはNb合金線を混合して密に束ねるか又は撚
合せて成るものに熱処理によりNb3Sn化合物超電
導層を生成せしめてなることを特徴とするNb3Sn
化合物超電導線の製造方法に関するものであり、
従来法では多数の極細Nb芯を得るのに押出を多
数回繰返し、歩どまりが悪化していたものを、本
発明により、より少ない押出の回数により多数本
のNb芯が得られることができ、歩どまりが大幅
に向上し、高価なNbの節約ができ、しかも伸線
による断線の恐れもなくなり、工業生産における
生産性が大幅に向上した。
Although the present invention has been described in the above embodiments, the present invention relates to a plurality of Cu-Sn alloy wires having a Sn content of 10 to 13.5% by weight arranged around Nb or Nb alloy wires. −Sn alloy wire and multiple Nb
Or, Nb 3 Sn characterized by forming a Nb 3 Sn compound superconducting layer by heat treating a mixture of Nb alloy wires and tightly bundling or twisting them.
It relates to a method for manufacturing compound superconducting wire,
In the conventional method, extrusion was repeated many times to obtain a large number of ultra-fine Nb cores, resulting in poor yield, but with the present invention, a large number of Nb cores can be obtained with fewer extrusions. Yields were significantly improved, expensive Nb was saved, and there was no fear of wire breakage due to wire drawing, resulting in a significant increase in productivity in industrial production.

また本発明によるNb3Sn化合物超電導線のまわ
りに拡散障壁としてNbもしくはTaを、安定化材
としてCuもしくはAlを配置することが可能であ
る。
Further, it is possible to arrange Nb or Ta as a diffusion barrier and Cu or Al as a stabilizing material around the Nb 3 Sn compound superconducting wire according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテープ状Nb3Sn超電導導体の横断面
図、第2図はNb3Sn極細多芯線の横断面図、第3
図は従来法でのCuSn合金にドリルで穴をあけた
図、第4図はNbとSn合金の加工硬化曲線図、第
5図は本発明におけるCuSn線とNb線の配置図、
第6図は本発明におけるCuSn棒とNb棒の配置図
である。 図中、1,4,11,13はNb、2,5は
Nb3Sn、3,6,7,12,14はCuSn、8は
穴、9はNbの引張り強さ特性、10はCuSnの引
張り強さ特性、を示す。
Figure 1 is a cross-sectional view of a tape-shaped Nb 3 Sn superconducting conductor, Figure 2 is a cross-sectional view of a Nb 3 Sn ultrafine multifilamentary wire, and Figure 3 is a cross-sectional view of a tape-shaped Nb 3 Sn superconducting conductor.
The figure is a diagram of drilling a hole in a CuSn alloy using the conventional method, Figure 4 is a work hardening curve diagram of Nb and Sn alloys, and Figure 5 is a diagram of the arrangement of CuSn wires and Nb wires in the present invention.
FIG. 6 is a layout diagram of CuSn rods and Nb rods in the present invention. In the figure, 1, 4, 11, 13 are Nb, 2, 5 are
Nb 3 Sn, 3, 6, 7, 12, 14 are CuSn, 8 is a hole, 9 is the tensile strength characteristic of Nb, and 10 is the tensile strength characteristic of CuSn.

Claims (1)

【特許請求の範囲】[Claims] 1 NbまたはNb合金線のまわりに、Snの含有
量が10〜13.5重量%を含むCu−Sn合金線を配置
した複数本の前記Cu−Sn合金線と複数本の前記
NbまたはNb合金線を混合して密に束ねるか又は
撚合せて成るものに熱処理によりNb3Sn化合物超
電導層を生成せしめて成ることを特徴とするNb3
Sn化合物超電動線の製造方法。
1 A plurality of the above-mentioned Cu-Sn alloy wires in which a Cu-Sn alloy wire containing 10 to 13.5% by weight of Sn is arranged around the Nb or Nb alloy wire and a plurality of the above-mentioned Cu-Sn alloy wires.
Nb 3 characterized by forming a Nb 3 Sn compound superconducting layer by heat treatment on a mixture of Nb or Nb alloy wires, tightly bundled or twisted.
Method for manufacturing Sn compound superelectric wire.
JP57207392A 1982-11-25 1982-11-25 Method of producing nb3sn compound superconductive wire Granted JPS5996608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207392A JPS5996608A (en) 1982-11-25 1982-11-25 Method of producing nb3sn compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207392A JPS5996608A (en) 1982-11-25 1982-11-25 Method of producing nb3sn compound superconductive wire

Publications (2)

Publication Number Publication Date
JPS5996608A JPS5996608A (en) 1984-06-04
JPH0559527B2 true JPH0559527B2 (en) 1993-08-31

Family

ID=16538976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207392A Granted JPS5996608A (en) 1982-11-25 1982-11-25 Method of producing nb3sn compound superconductive wire

Country Status (1)

Country Link
JP (1) JPS5996608A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074330A (en) * 2010-09-30 2012-04-12 Hitachi Ltd Manufacturing method of superconducting wire material and the superconducting wire material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126205A (en) * 1980-03-07 1981-10-03 Sumitomo Electric Industries Compound superconductive wire and method of producing same
JPS5767222A (en) * 1980-10-15 1982-04-23 Sumitomo Electric Industries Method of producing muticore nb3sn superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126205A (en) * 1980-03-07 1981-10-03 Sumitomo Electric Industries Compound superconductive wire and method of producing same
JPS5767222A (en) * 1980-10-15 1982-04-23 Sumitomo Electric Industries Method of producing muticore nb3sn superconductor

Also Published As

Publication number Publication date
JPS5996608A (en) 1984-06-04

Similar Documents

Publication Publication Date Title
US20050178472A1 (en) Method for producing (Nb, Ti)3Sn wire by use of Ti source rods
US3910802A (en) Stabilized superconductors
US3930903A (en) Stabilized superconductive wires
US4378330A (en) Ductile alloy and process for preparing composite superconducting wire
JP4227143B2 (en) Nb3Sn superconducting wire and precursor therefor
JPS62170111A (en) Manufacture of multicore fine wire super conductor
US4489219A (en) A-15 Superconducting composite wires and a method for making
JP2003217370A (en) Magnesium diboride superconductive wire
JP2007214002A (en) Method of manufacturing nb3sn superconductive wire rod and precursor for it
US4094059A (en) Method for producing composite superconductors
JPH0559527B2 (en)
JPS60199522A (en) Manufacture of superconductive alloy wire
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JP5557086B2 (en) Nb3Al superconducting wire
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
Pyon et al. Development of Nb/sub 3/Sn conductors for fusion and high energy physics
RU2101792C1 (en) Process of manufacture of ribbon superconductive cable
JP3127181B2 (en) Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil
JP4214200B2 (en) Powder method Nb3Sn superconducting wire
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP3018663B2 (en) Nb-Ti alloy superconducting wire
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JP2931020B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire