JPH0559503A - Manufacture of cryogenic oxygen free copper - Google Patents

Manufacture of cryogenic oxygen free copper

Info

Publication number
JPH0559503A
JPH0559503A JP22006691A JP22006691A JPH0559503A JP H0559503 A JPH0559503 A JP H0559503A JP 22006691 A JP22006691 A JP 22006691A JP 22006691 A JP22006691 A JP 22006691A JP H0559503 A JPH0559503 A JP H0559503A
Authority
JP
Japan
Prior art keywords
free copper
oxygen free
copper
oxygen
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22006691A
Other languages
Japanese (ja)
Inventor
Muneo Kodaira
宗男 小平
Hajime Abe
元 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22006691A priority Critical patent/JPH0559503A/en
Publication of JPH0559503A publication Critical patent/JPH0559503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a cryogenic oxygen free copper capable of remarkably reducing residual resistivity. CONSTITUTION:In the manufacturing processing of the cryogenic oxygen free copper, it is subjected to plastic working, is thereafter annealed at 400 to 600 deg.C and is gradually cooled at the rate of <=100 deg.C/h. In such a manner, the residual resistivity of the oxygen-free copper can remarkably be reduced, and by improving the heat treatment for the conventional oxygen free copper, effects can be obtd., its profitability is improved and good influence can be given to its productivity, as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超伝導用の素材等に使
用する極低温用無酸素銅の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing cryogenic oxygen-free copper used as a material for superconductivity.

【0002】[0002]

【従来の技術】近年、超伝導用安定化銅材等について
は、残留抵抗の小さい無酸素銅の需要が次第に増大して
いる。
2. Description of the Related Art In recent years, as for stabilized copper materials for superconductivity and the like, demand for oxygen-free copper having a small residual resistance is gradually increasing.

【0003】これらの材料には、Fe、As等を分離除
去した電解精製銅あるいは再電解精製銅が原料として用
いられており、この電解精製銅は、塑性加工終了後、4
00〜600℃にて、約1時間不活性ガス中で焼鈍さ
れ、加工歪を除去して、製品化される。ただし、冷却速
度は自然放冷のままであった。
For these materials, electrolytically refined copper from which Fe, As, etc. have been separated and removed, or reelectrolytically refined copper is used as a raw material.
The product is annealed in an inert gas at 00 to 600 ° C. for about 1 hour to remove work strain, and commercialized. However, the cooling rate remained as it was.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、電解精
製銅には電解液(硫酸)に起因する硫黄(S)が混入す
ることは避けられない。このSは、焼鈍工程終了後にも
銅中に固溶しており、精製銅の残留抵抗を増加させる原
因となっていた。
However, it is unavoidable that sulfur (S) resulting from the electrolytic solution (sulfuric acid) is mixed in the electrolytically refined copper. This S remained in solid solution in copper even after the annealing step was completed, which was a cause of increasing the residual resistance of the refined copper.

【0005】本発明の目的は、前記した従来技術の欠点
を解消し、残留抵抗を大幅に減少させることができる新
規な極低温用無酸素銅の製造方法を提供することにあ
る。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a novel method for producing oxygen-free copper for cryogenic temperatures, which can greatly reduce the residual resistance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の極低温用無酸素銅の製造方法の構成は、極低
温用無酸素銅の製造工程で、無酸素銅の塑性加工後に4
00〜600℃で焼鈍し、焼鈍後の冷却は100℃/h
以下の速度で徐冷するようにしたことである。
The structure of the method for producing oxygen-free copper for cryogenic use according to the present invention to solve the above-mentioned problems is as follows: Four
Annealed at 00-600 ° C, cooling after annealing is 100 ° C / h
That is, the slow cooling was performed at the following rate.

【0007】[0007]

【作用】本発明の要旨は、Sを含有した銅を焼鈍後、徐
冷することにより、Sを粒界に析出させて、残留抵抗に
対して無害化させることにあり、これによって残留抵抗
を大幅に減少させようとするものである。
The gist of the present invention is to anneal copper containing S and then gradually cool it to precipitate S at grain boundaries and render it harmless to the residual resistance. It is intended to be greatly reduced.

【0008】残留抵抗に影響を与える不純物は、Cu中
に固溶しているS成分のみであり、粒界等へ析出してい
るものは無関係である。SのCu中への固溶限は極めて
小さく、また温度依存性があることから、焼鈍温度から
徐冷することで、不純物濃度レベルのSでも粒界等へ析
出させることができる。
Impurities that affect the residual resistance are only the S component that is solid-soluted in Cu, and those that are precipitated at grain boundaries are irrelevant. Since the solid solubility limit of S in Cu is extremely small and there is temperature dependence, it is possible to precipitate S even at the impurity concentration level at grain boundaries by gradually cooling from the annealing temperature.

【0009】焼鈍温度は500℃以上が好ましく、50
0℃以下では加工歪を十分に取り除くことができず、物
理的な欠陥に起因する残留抵抗が残ることになる。
The annealing temperature is preferably 500 ° C. or higher, and 50
If the temperature is 0 ° C. or lower, the processing strain cannot be sufficiently removed, and residual resistance due to physical defects remains.

【0010】冷却速度は、100℃/h以下が望まし
く、100℃/hより速い場合には、Sの析出量が著し
く少なくなる。すなわち、冷却速度はできるだけ遅い方
が望ましい。
The cooling rate is preferably 100 ° C./h or less, and when the cooling rate is higher than 100 ° C./h, the amount of precipitated S is remarkably reduced. That is, it is desirable that the cooling rate is as slow as possible.

【0011】また、400℃より低温では、Sの析出速
度がかなり小さくなり、徐冷の効果は期待できなくな
る。
Further, at a temperature lower than 400 ° C., the precipitation rate of S becomes considerably small, and the effect of slow cooling cannot be expected.

【0012】焼鈍工程中の雰囲気は、Ar、N2等の不
活性ガス、還元性ガス、真空中等いずれでもよい。
The atmosphere during the annealing process may be an inert gas such as Ar or N 2 , a reducing gas, or a vacuum.

【0013】[0013]

【実施例】以下本発明にかかる実施例を表1を用いて説
明する。
EXAMPLES Examples of the present invention will be described below with reference to Table 1.

【0014】電解精製銅を原料とした無酸素銅を1mm
φ×200mmに伸線加工して(加工度90%)、これ
をAr雰囲気中で1時間焼鈍した後、各冷却速度で、徐
冷した。この時の焼鈍温度は400〜700℃まで変化
させた。これらの各例について、液体ヘリウム中で四端
子法により残留抵抗(Ωcm)を測定した。これらの結
果を表1に示す。
1 mm of oxygen-free copper made from electrolytically refined copper
The wire was drawn to φ × 200 mm (working degree 90%), annealed in Ar atmosphere for 1 hour, and then gradually cooled at each cooling rate. The annealing temperature at this time was changed to 400 to 700 ° C. For each of these examples, the residual resistance (Ωcm) was measured in liquid helium by the four-terminal method. The results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から判るように、実施例1〜3におい
ては、残留抵抗は5.0〜5.9×10~9の範囲である
が、比較例1は焼鈍温度400℃で低温のため、残留抵
抗は8.6×10~9、また比較例2は冷却速度400℃
/hのように速すぎるため、残留抵抗が7.8×10~9
となり、実施例1〜3に比してかなり大きな値を示して
いる。
As can be seen from Table 1, in Examples 1 to 3, the residual resistance was in the range of 5.0 to 5.9 × 10 to 9 , but in Comparative Example 1, the annealing temperature was 400 ° C. and the temperature was low. , The residual resistance is 8.6 × 10 9 and the cooling rate is 400 ° C. in Comparative Example 2.
/ H is too fast, so the residual resistance is 7.8 × 10 ~ 9
Which is considerably larger than those of Examples 1 to 3.

【0017】[0017]

【発明の効果】本発明によれば、焼鈍後に徐冷すること
により、不純物のSを結晶粒界に析出させることができ
るので、残留抵抗を大幅に減少させた極低温用無酸素銅
を容易に製造することができるようになった。
EFFECTS OF THE INVENTION According to the present invention, the impurity S can be precipitated at the crystal grain boundaries by annealing and then slowly cooling it. Can now be manufactured.

【0018】また、従来の電解精製銅を原料として使用
し、製造工程の熱処理条件を改善することで、特別な設
備の新設なしに、所期の製品が得られるので経済的効果
が著しい。
Further, by using the conventional electrolytically refined copper as a raw material and improving the heat treatment conditions in the manufacturing process, the desired product can be obtained without the need to install special equipment, so that the economical effect is remarkable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】極低温用無酸素銅の製造工程で、無酸素銅
の塑性加工後に400〜600℃で焼鈍し、焼鈍後10
0℃/h以下の冷却速度で徐冷することを特徴とする極
低温用無酸素銅の製造方法。
1. A process for producing oxygen-free copper for cryogenic use, which comprises annealing at 400 to 600 ° C. after plastic working of oxygen-free copper, and annealing 10 after annealing.
A method for producing oxygen-free copper for cryogenic use, which comprises gradually cooling at a cooling rate of 0 ° C./h or less.
JP22006691A 1991-08-30 1991-08-30 Manufacture of cryogenic oxygen free copper Pending JPH0559503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22006691A JPH0559503A (en) 1991-08-30 1991-08-30 Manufacture of cryogenic oxygen free copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22006691A JPH0559503A (en) 1991-08-30 1991-08-30 Manufacture of cryogenic oxygen free copper

Publications (1)

Publication Number Publication Date
JPH0559503A true JPH0559503A (en) 1993-03-09

Family

ID=16745410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22006691A Pending JPH0559503A (en) 1991-08-30 1991-08-30 Manufacture of cryogenic oxygen free copper

Country Status (1)

Country Link
JP (1) JPH0559503A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214217A1 (en) * 2009-03-29 2016-07-28 Montana Instruments Corporation Low Vibration Cryocooled System for Low Temperature Microscopy and Spectroscopy Applications
US10451529B2 (en) 2016-03-11 2019-10-22 Montana Instruments Corporation Cryogenic systems and methods
US10775285B1 (en) 2016-03-11 2020-09-15 Montana Intruments Corporation Instrumental analysis systems and methods
US11125663B1 (en) 2016-03-11 2021-09-21 Montana Instruments Corporation Cryogenic systems and methods
US11956924B1 (en) 2020-08-10 2024-04-09 Montana Instruments Corporation Quantum processing circuitry cooling systems and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214217A1 (en) * 2009-03-29 2016-07-28 Montana Instruments Corporation Low Vibration Cryocooled System for Low Temperature Microscopy and Spectroscopy Applications
US9821421B2 (en) * 2009-03-29 2017-11-21 Montana Instruments Corporation Low vibration cryocooled system for low temperature microscopy and spectroscopy applications
US10451529B2 (en) 2016-03-11 2019-10-22 Montana Instruments Corporation Cryogenic systems and methods
US10775285B1 (en) 2016-03-11 2020-09-15 Montana Intruments Corporation Instrumental analysis systems and methods
US11125663B1 (en) 2016-03-11 2021-09-21 Montana Instruments Corporation Cryogenic systems and methods
US11378499B2 (en) 2016-03-11 2022-07-05 Montana Instruments Corporation Instrumental analysis systems and methods
US11956924B1 (en) 2020-08-10 2024-04-09 Montana Instruments Corporation Quantum processing circuitry cooling systems and methods

Similar Documents

Publication Publication Date Title
US2842438A (en) Copper-zirconium alloys
TWI429766B (en) Copper alloy and its use of copper products, electronic parts and connectors, and copper alloy manufacturing methods
CN113564408B (en) High-strength high-conductivity rare earth copper alloy Cu-Cr-Zr-Y and preparation method thereof
JP2002241873A (en) High strength and highly electrically conductive copper alloy and method for producing copper alloy material
JPH06264202A (en) Production of high strength copper alloy
JPH0559503A (en) Manufacture of cryogenic oxygen free copper
JP2012097305A (en) Titanium-copper for electronic component
KR102210703B1 (en) Method for manufacturing copper alloy sheet for automobile or electrical and electronic parts with excellent strength and bending workability and copper alloy sheet manufactured therefrom
US4059437A (en) Oxygen-free copper product and process
JP5628712B2 (en) Titanium copper for electronic parts
JPH0673515A (en) Production of high strength and high conductivity copper alloy
CN112080673A (en) Production process for improving conductivity of aluminum alloy plate
JPH0790430A (en) Copper wire for extra fine wire and its production
JP2970852B2 (en) Manufacturing method of aluminum alloy foil for cathode of electrolytic capacitor
JP2651932B2 (en) Aluminum alloy foil for anode of electrolytic capacitor and method for producing the same
CN111979445B (en) Rare earth microalloyed copper alloy and preparation method thereof
JPS6241303B2 (en)
JP3325639B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JP2006097113A (en) Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
CN110306078B (en) High-strength high-conductivity free-cutting C97 alloy material and preparation method thereof
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JP7311651B1 (en) Copper alloys for electronic materials and electronic parts
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0747809B2 (en) Manufacturing method of high-purity copper wire consisting of coarse crystal grains
JP3325638B2 (en) Method for producing high-strength high-conductivity copper alloy