JPH0558788A - Production of high resistance silicon wafer - Google Patents

Production of high resistance silicon wafer

Info

Publication number
JPH0558788A
JPH0558788A JP24515291A JP24515291A JPH0558788A JP H0558788 A JPH0558788 A JP H0558788A JP 24515291 A JP24515291 A JP 24515291A JP 24515291 A JP24515291 A JP 24515291A JP H0558788 A JPH0558788 A JP H0558788A
Authority
JP
Japan
Prior art keywords
quartz glass
silicon
single crystal
synthetic quartz
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24515291A
Other languages
Japanese (ja)
Other versions
JP2732967B2 (en
Inventor
Hiroyuki Watabe
弘行 渡部
Masatoshi Takita
政俊 滝田
Mitsuo Matsumura
光男 松村
Hiroshi Matsui
宏 松井
Shinichi Furuse
信一 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Quartz Products Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3245152A priority Critical patent/JP2732967B2/en
Publication of JPH0558788A publication Critical patent/JPH0558788A/en
Application granted granted Critical
Publication of JP2732967B2 publication Critical patent/JP2732967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce high resistance silicon wafers having >=10,000OMEGAcm resistivity by an MCZ method. CONSTITUTION:A silicon polycrystal is melted in a synthetic quartz glass crucible, a magnetic field is applied to the resulting melt and a silicon single crystal is immersed in the melt and pulled to form a silicon single crystal. This single crystal is sliced to obtain the objective high resistance silicon wafers having >=10,000OMEGAcm resistivity. These are the feature of this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高抵抗シリコンウエハ−
の製造方法、特には抵抗率が10,000Ωcm以上である大口
径のシリコンウエハ−を低コストで製造する方法に関す
るものである。
FIELD OF THE INVENTION The present invention relates to a high resistance silicon wafer.
In particular, it relates to a method for manufacturing a large-diameter silicon wafer having a resistivity of 10,000 Ωcm or more at low cost.

【0002】[0002]

【従来の技術】シリコン単結晶の製造は多結晶シリコン
棒を上部および下部からゾ−ンメルトして単結晶化する
FZ法、多結晶体シリコンを石英ルツボ中で溶融し、この
融液に種結晶を浸漬し、回転させながら単結晶を引上げ
るCZ法、このCZ法において融液に磁場を印加し、シリコ
ン融液の対流を制御して単結晶を引上げる方法(以下MC
Z 法と略記する)で行なわれており、これらの方法には
引上げられた単結晶にそれぞれ特徴がある。
2. Description of the Related Art In the production of silicon single crystals, a polycrystalline silicon rod is zone-melted from the upper and lower parts to form single crystals.
FZ method, polycrystalline silicon is melted in a quartz crucible, a seed crystal is immersed in this melt, and a single crystal is pulled while rotating, and a magnetic field is applied to the melt in this CZ method to melt the silicon. Method of pulling single crystal by controlling liquid convection (MC
Abbreviated as Z method), and each of these methods is characterized by the pulled single crystal.

【0003】例えばCZ法ではたくさんの酸素を単結晶に
取り込むことができるので高集積度回路製造プロセスに
おけるイントリンシック・ゲッタリング(IG)効果が期待
できるし、MCZ 法では磁場の強さを変えることによって
単結晶に溶けこむ酸素量を制御することができ、FZ法で
はルツボを使用しないので酸素を含まない、非常に高抵
抗のシリコンウエハ−を得ることができるが、このFZ法
には原料としての多結晶シリコン棒の成長や大口径化な
どにコスト的にマイナスの面がある。
For example, since a large amount of oxygen can be incorporated into a single crystal in the CZ method, an intrinsic gettering (IG) effect can be expected in a highly integrated circuit manufacturing process, and in the MCZ method, the strength of a magnetic field can be changed. The amount of oxygen dissolved in the single crystal can be controlled by the FZ method, and since a crucible is not used in the FZ method, a very high resistance silicon wafer containing no oxygen can be obtained. There is a cost side to the growth of the polycrystalline silicon rod and the increase in diameter.

【0004】[0004]

【発明が解決しようとする課題】しかし、このMCZ 法で
シリコン単結晶を製造し、これをスライスしてシリコン
ウエハ−を作る場合にはルツボより溶け込む不純物のた
めにシリコンウエハ−を抵抗率が10,000Ωcm以上の高抵
抗のものとすることができず、この対策が問題とされて
いる。
However, when a silicon single crystal is manufactured by the MCZ method and sliced to form a silicon wafer, the silicon wafer has a resistivity of 10,000 due to impurities dissolved in the crucible. Since it cannot be made to have a high resistance of Ωcm or more, this countermeasure is considered a problem.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不利
を解決した高抵抗シリコンウエハ−の製造方法に関する
ものであり、これはシリコン多結晶を合成石英ガラス製
ルツボ中で融解し、この融液に磁場を与え、ここにシリ
コン種結晶を浸漬し引上げてシリコン単結晶を作り、こ
のシリコン単結晶をスライスして抵抗率が10,000Ωcm以
上のシリコンウエハ−を得ることを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a high-resistivity silicon wafer which has solved such disadvantages, in which a silicon polycrystal is melted in a synthetic quartz glass crucible, A magnetic field is applied to the liquid, a silicon seed crystal is immersed therein and pulled up to form a silicon single crystal, and this silicon single crystal is sliced to obtain a silicon wafer having a resistivity of 10,000 Ωcm or more. ..

【0006】すなわち、本発明者らは抵抗率が10,000Ω
cm以上であるシリコンウエハ−をMCZ 法で作る方法につ
いて種々検討した結果、従来法において高抵抗のシリコ
ンウエハ−が得られなかったのはシリコン単結晶の引上
げ時に使用されるルツボに金属不純物が含まれているた
めで、これは特には従来使用されているルツボには3価
の不純物であるAlが多量に含まれており、これがシリコ
ン単結晶の引上げ時にシリコン単結晶に取り入れられる
ためであり、したがってルツボをこのような不純物の少
ない合成石英ガラス製のものとすれば高抵抗のシリコン
ウエハ−の得られることを見出し、この合成石英ガラス
製ルツボにつていの研究を進めて本発明を完成させた。
以下にこれをさらに詳述する。
That is, the present inventors have a resistivity of 10,000 Ω.
As a result of various studies on the method of producing a silicon wafer having a size of cm or more by the MCZ method, the high resistance silicon wafer could not be obtained by the conventional method because the crucible used for pulling the silicon single crystal contains metal impurities. This is because the conventionally used crucible contains a large amount of trivalent impurity Al, which is incorporated into the silicon single crystal when the silicon single crystal is pulled, Therefore, it was found that a silicon wafer having high resistance can be obtained by using a synthetic quartz glass having a small amount of impurities as the crucible, and research on the synthetic quartz glass crucible was advanced to complete the present invention. It was
This will be described in more detail below.

【0007】[0007]

【作用】本発明は高抵抗シリコンウエハ−の製造方法に
関するものであり、これはシリコン多結晶を合成石英ガ
ラス製ルツボ中で融解し、この融液からシリコン単結晶
をMCZ 法で引上げ、このシリコン単結晶をスライスして
抵抗率が10,000Ωcm以上の高抵抗のシリコンウエハ−を
製造するものである。
The present invention relates to a method for producing a high-resistivity silicon wafer, in which a silicon polycrystal is melted in a synthetic quartz glass crucible and a silicon single crystal is pulled from this melt by the MCZ method. The single crystal is sliced to produce a high resistance silicon wafer having a resistivity of 10,000 Ωcm or more.

【0008】本発明による高抵抗シリコンウエハ−の製
造は、高純度のシリコン多結晶を合成石英ガラス製ルツ
ボ中で融解し、この融液からシリコン単結晶をMCZ 法で
引上げ、このようにして得たシリコン単結晶をスライス
することによって行なわれる。ここに使用される合成石
英ガラス製ルツボは例えばメチルシリケ−トのようなア
ルコキシシランをアンモニアを用いて加水分解重縮合
し、乾燥後閉孔化し、ガラス化するという、いわゆるゾ
ル−ゲル法によって得られた合成石英ガラスから作られ
たものとすればよいが、この合成石英ガラスはコロイダ
ルシリカの焼結体からなる非晶質のものである。
The high-resistance silicon wafer according to the present invention is manufactured by melting high-purity silicon polycrystal in a synthetic quartz glass crucible and pulling a silicon single crystal from this melt by the MCZ method. It is carried out by slicing a silicon single crystal. The synthetic quartz glass crucible used here is obtained by a so-called sol-gel method in which an alkoxysilane such as methyl silicate is hydrolyzed and polycondensed with ammonia, dried, closed, and vitrified. The synthetic quartz glass may be made of synthetic quartz glass, which is an amorphous material made of a sintered body of colloidal silica.

【0009】なお、この合成石英ガラスの製造について
は従来公知の四塩化けい素を酸水素火炎で火炎加水分解
してシリカ微粒子とし、これを溶融して合成石英ガラス
とする方法もあるが、この方法で得られる合成石英ガラ
スはOH基量が1,000ppm以上のものとなって高温粘性の低
いものとなるし、真空中の高温で変形、発泡するという
不利があるために本発明には使用することができず、上
記したゾル−ゲル法による場合でもこのシリカをゲルと
するとこのものは細孔が小さくて低い温度で閉孔化する
ためにこれがガスや水を含んだものとなるので、結晶化
によって脱ガスや脱水をするのであるが、この結晶化工
程で不純物が混入するためにこれも本発明には使用でき
ない。
As for the production of this synthetic quartz glass, there is also a method in which conventionally known silicon tetrachloride is subjected to flame hydrolysis with an oxyhydrogen flame to give silica fine particles, which are then melted to obtain synthetic quartz glass. The synthetic quartz glass obtained by the method has an OH group content of 1,000 ppm or more and has low viscosity at high temperature, and is disadvantageous in that it deforms and foams at a high temperature in a vacuum, and is therefore used in the present invention. Even if it is not possible to use the sol-gel method described above, if this silica is used as a gel, it will contain gas or water because it has small pores and will be closed at a low temperature. Degassing and dehydration are carried out by crystallization, but this cannot be used in the present invention because impurities are mixed in in the crystallization step.

【0010】しかし、このシリカをコロイダルシリカか
らなるものとすると、このものは細孔が大きく、加熱に
より容易に脱水、脱ガスができるので結晶化は不要で不
純物の入ることもなく、この金属不純物量も原料として
のアルコキシシランを充分精製すればこの不純物として
のAlを100ppb以下とすることができるし、さらにはこの
ものは1,400 ℃における粘性値が1010ポイズ以上のもの
とすることができるので、本発明におけるルツボ製造用
に有利に使用することができる。
However, if this silica is made of colloidal silica, it has large pores and can be easily dehydrated and degassed by heating, so that crystallization is not necessary and no impurities are introduced. The amount of Al as the impurity can be reduced to 100 ppb or less by sufficiently purifying the alkoxysilane as a raw material, and further, the viscosity of this substance at 1,400 ° C can be 10 10 poise or more. Can be advantageously used for manufacturing the crucible in the present invention.

【0011】この合成石英ガラス製ルツボは上記したゾ
ル−ゲル法で得られたコロイダルシリカの非晶質焼結体
からなる合成石英ガラス粉末を成形用金型に供給して型
内に粉末層を形成させたのち、これをア−ク放電で溶融
させて型内に合成石英ガラスからなる透明層を形成させ
ることによって製造することができるが、これは公知の
天然石英ガラス製のルツボの内面に合成石英ガラス層を
形成させたものであつてもよい。
In this synthetic quartz glass crucible, synthetic quartz glass powder consisting of an amorphous sintered body of colloidal silica obtained by the sol-gel method is supplied to a molding die to form a powder layer in the die. After being formed, it can be produced by melting it by arc discharge to form a transparent layer made of synthetic quartz glass in a mold, which is formed on the inner surface of a known natural quartz glass crucible. It may be formed with a synthetic quartz glass layer.

【0012】しかしこの合成石英ガラス製ルツボが天然
石英ガラス製ルツボの内面に合成石英ガラス層を形成さ
せたものであるときには部分的にも天然石英ガラス層が
露出しているとシリコン単結晶がこの天然石英ガラスと
の接触で汚染されるので、この合成石英ガラス層は内面
より0.5mm 以上の厚さで形成されることが必要とされる
が、これはシリコン単結晶引上げ後も0.3mm 程度残って
いるようにすることがよいので、好ましくはルツボ全体
を合成石英ガラスで作ったものとすることがよい。
However, when this synthetic quartz glass crucible has a synthetic quartz glass layer formed on the inner surface of a natural quartz glass crucible, the silicon single crystal is partially exposed if the natural quartz glass layer is partially exposed. This synthetic quartz glass layer needs to be formed with a thickness of 0.5 mm or more from the inner surface because it is contaminated by contact with natural quartz glass, but this remains about 0.3 mm after pulling the silicon single crystal. Therefore, the whole crucible is preferably made of synthetic quartz glass.

【0013】このようにして作られた合成石英ガラス製
ルツボはこの合成石英ガラスに含有されている金属不純
物量が上記したように少ないものであることから、これ
も当然金属不純物含有量の少ないものとなるけれども、
これがAlを100ppb以上含んだものであると、このシリコ
ン単結晶をスライスして得られるシリコンウエハ−が抵
抗率が低いものとなるので、Alが100ppb以下のものとす
ることが必要とされる。
Since the synthetic quartz glass crucible thus produced has a small amount of metal impurities contained in the synthetic quartz glass as described above, it naturally has a small amount of metal impurities. However,
If this contains 100 ppb or more of Al, the silicon wafer obtained by slicing this silicon single crystal has a low resistivity. Therefore, it is necessary to set Al to 100 ppb or less.

【0014】本発明における高抵抗シリコンウエハ−の
製造はこのような合成石英ガラス製ルツボ中でシリコン
多結晶を融解し、この融解に磁場を与えてMCZ 法でシリ
コン単結晶を引上げ、このシリコン単結晶をスライスす
ることによって行なわれるが、このMCZ 法を行なうため
の磁場の大きさは1,000〜3,000 Gとすればよく、これ
によれば湯面の変動がないので連続チャ−ジが可能とな
り、長時間の引上げができるし、面内残留酸素濃度が調
節されるので、このシリコン単結晶をスライスして得ら
れるシリコンウエハ−は抵抗率が10,000Ωcm以上の高抵
抗のものになるという有利性が与えられる。
In the production of the high-resistivity silicon wafer according to the present invention, a silicon polycrystal is melted in such a synthetic quartz glass crucible, and a magnetic field is applied to this melting to pull up the silicon single crystal by the MCZ method. It is performed by slicing a crystal, and the magnitude of the magnetic field for performing the MCZ method may be 1,000 to 3,000 G. According to this, there is no fluctuation in the molten metal surface, and continuous charging becomes possible. Since it can be pulled for a long time and the in-plane residual oxygen concentration is adjusted, the silicon wafer obtained by slicing this silicon single crystal has the advantage that it has a high resistivity of 10,000 Ωcm or more. Given.

【0015】[0015]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例 1)合成石英ガラス製ルツボの製造 5リットルのSUS 製丸型連続フラスコの内面をテトラフ
ルオロエチレン樹脂でコ−ティングした反応器に、アン
モニア水27リットル/時とメチルシリケ−ト24.5リット
ル/時とを滴下してコロイダルシリカを生成させ、この
シリカを遠心脱水器で脱水してから超純水で4回洗浄し
た。
EXAMPLES Next, examples of the present invention and comparative examples will be given. Example 1) Production of crucible made of synthetic quartz glass In a reactor in which the inner surface of a 5 liter SUS round continuous flask was coated with tetrafluoroethylene resin, 27 liters / hour of ammonia water and 24.5 liters / hour of methyl silicate were placed. Was added dropwise to form colloidal silica, and the silica was dehydrated with a centrifugal dehydrator and then washed with ultrapure water four times.

【0016】ついでこのシリカを石英ルツボに入れ、電
気炉中で室温より昇温して 300℃3時間、 800℃3時
間、1,000 ℃3時間、各温度への昇温時間はそれぞれ0.
5、4、2として空気中で加熱処理したのち、これをカ−
ボン型に入れ、減圧下に室温より昇温して1,200 ℃2時
間、1,500 ℃3時間、1,750 ℃1時間、各温度への昇温
時間をそれぞれ2,2,2時間として昇温加熱して合成
石英ガラスとし、得られたインゴットを20重量%のHFで
1時間洗浄し、乾燥後ジョ−クラッシャ−とデスクミル
で粉砕し、篩別して45〜60メッシュに調製したのち、20
重量HCl で酸洗浄し、パイン油で浮遊選鉱してから5重
量%のHFで15分間洗浄し、1,050 ℃で加熱処理し、磁力
選鉱機にかけて合成石英ガラス粉とした。
Then, this silica is put into a quartz crucible and heated from room temperature in an electric furnace to 300 ° C. for 3 hours, 800 ° C. for 3 hours, 1,000 ° C. for 3 hours, and the temperature rising time to each temperature is 0.
Heat treatment in air as 5, 4 and 2 and then heat this
Put in a bon mold and raise the temperature from room temperature under reduced pressure to 1,200 ° C for 2 hours, 1,500 ° C for 3 hours, 1,750 ° C for 1 hour, and increase the temperature to 2,2 and 2 hours respectively. Synthetic quartz glass was used, and the obtained ingot was washed with 20% by weight of HF for 1 hour, dried, crushed with a jaw crusher and a desk mill, and sieved to prepare a 45-60 mesh.
After acid cleaning with HCl by weight, floating separation with pine oil, cleaning with HF at 5% by weight for 15 minutes, heat treatment at 1,050 ° C., and magnetic silica separation to obtain synthetic quartz glass powder.

【0017】つぎにこの合成石英ガラス粉を回転する成
形用型内に供給して厚さ14mmの粉体層を形成させ、ア−
ク放電によって内部から溶融させ、15分後にさらにこの
型内に合成石英ガラス粉を供給して内面に厚さ1mmの透
明層を形成させて直径18インチのルツボを作り、この外
壁未溶融部を除去し、カッティングにより高さを揃えて
合成石英ガラス製ルツボを作ったが、このルツボにおけ
る各金属の分析結果は表1に示したとおりであった。
Next, this synthetic quartz glass powder is fed into a rotating molding die to form a powder layer having a thickness of 14 mm, and
It is melted from the inside by electric discharge, and after 15 minutes, synthetic quartz glass powder is further fed into this mold to form a transparent layer with a thickness of 1 mm on the inner surface to form a crucible with a diameter of 18 inches. A crucible made of synthetic quartz glass was made by removing and arranging the heights by cutting. The analysis results of each metal in this crucible are as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】2)シリコン単結晶の製造 上記のようにして得た18インチの合成石英ガラス製ルツ
ボをアンモニア一過酸化水素溶液およびフッ酸水溶液で
洗浄したのち、充分超純水で洗浄してから引上げ機に設
置し、このルツボの中にシリコン単結晶引上げ用原料と
しての高純度多結晶シリコン60kgを装入し、アルゴンガ
ス雰囲気の常圧下にこの多結晶シリコンを融解したの
ち、この融液に3,000 Gの磁場をかけてシリコン種単結
晶を接触させてノンド−プ<100 >6"φのシリコン単結
晶を引上げ、得られたシリコン単結晶を厚さ0.5mm にス
ライスしてシリコンウエハ−を作り、このウエハ−中の
金属不純物の量を測定したところ、表1に示したとおり
の結果が得られたが、このシリコンウエハ−についての
抵抗率を4探針法でしらべたところ、これは表2に示し
たように10,000〜60,000Ωcmであった。
2) Production of silicon single crystal The 18-inch synthetic quartz glass crucible obtained as described above was washed with an ammonia-hydrogen peroxide solution and an aqueous hydrofluoric acid solution, and then sufficiently washed with ultrapure water. Installed in a pulling machine, 60 kg of high-purity polycrystalline silicon as a raw material for pulling a silicon single crystal was charged into this crucible, and the polycrystalline silicon was melted under normal pressure of an argon gas atmosphere, and then melted into this melt. A silicon seed single crystal is brought into contact with a magnetic field of 3,000 G to pull up a non-dope <100> 6 "φ silicon single crystal, and the obtained silicon single crystal is sliced to a thickness of 0.5 mm to obtain a silicon wafer. When the amount of metallic impurities in this wafer was measured, the results shown in Table 1 were obtained. When the resistivity of this silicon wafer was examined by the 4-probe method, it was found that table Was 10,000~60,000Ωcm as shown in.

【0020】比較例 実施例で使用した合成石英ガラス製ルツボをその金属含
有量が表1に示したとおりである天然石英ガラス製のル
ツボとしたほかは実施例と同じ方法でN型シリコン単結
晶の引上げを行ない、これからシリコンウエハ−をスラ
イスしてこのウエハ−の金属成分をしらべたところ、こ
れは表1に示したとおりであり、このウエハ−について
の抵抗率をしらべたところ、これは表2に示したように
1,000 〜4,000 Ωcmであった。
Comparative Example N-type silicon single crystal was prepared in the same manner as in Example except that the synthetic quartz glass crucible used in the Example was replaced with a natural quartz glass crucible having a metal content shown in Table 1. When the silicon wafer was sliced and the metal components of this wafer were examined, the results are shown in Table 1. The resistivity of this wafer was examined. As shown in 2
It was 1,000 to 4,000 Ωcm.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明は高抵抗シリコンウエハ−の製造
方法に関するものであり、これは前記したようにシリコ
ン多結晶を合成石英ガラス製ルツボ中で融解し、この融
液に磁場を与え、ここにシリコン単結晶を浸漬して引上
げてシリコン単結晶を作り、こシリコン単結晶をスライ
スしてシリコンウエハ−を得ることを特徴とするもので
あるが、これによればここに使用される合成石英ガラス
製ルツボが金属不純物としてのAlの含有量が100ppb以下
とされていることから得られるシリコン単結晶、これを
スライスして得られるシリコンウエハ−がAl含量の少な
いものとなるし、このシリコン単結晶の引上げがMCZ 法
で行なわれるので、このシリコンウエハ−は抵抗率が1
0,000Ωcm以上の高抵抗のものになるという有利性が与
えられる。
As described above, the present invention relates to a method for producing a high-resistivity silicon wafer, in which a silicon polycrystal is melted in a synthetic quartz glass crucible and a magnetic field is applied to the melt. It is characterized in that a silicon single crystal is dipped in and pulled up to make a silicon single crystal, and this silicon single crystal is sliced to obtain a silicon wafer. According to this, the synthetic quartz used here is used. A silicon single crystal obtained from the glass crucible having an Al content of 100 ppb or less as a metal impurity, and a silicon wafer obtained by slicing the crucible has a low Al content. Since the crystal pulling is performed by the MCZ method, this silicon wafer has a resistivity of 1
The advantage is given that it has a high resistance of more than 0,000 Ωcm.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年11月22日[Submission date] November 22, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】この合成石英ガラス製ルツボは上記したゾ
ルーゲル法で得られたコロイダルシリカの非晶質焼結体
からなる合成石英ガラス粉末を成形用金型に供給して型
内に粉末層を形成させたのち、これをアーク放電で溶融
させて型内に合成石英ガラスからなる透明層を形成させ
ることによって製造することができるが、これは公知の
天然石英ガラス製のルツボの内面に台成石英ガラス層を
形成させたものであてもよい。
In this synthetic quartz glass crucible, synthetic quartz glass powder consisting of an amorphous sintered body of colloidal silica obtained by the sol-gel method is supplied to a molding die to form a powder layer in the die. After that, it can be manufactured by melting it by arc discharge to form a transparent layer made of synthetic quartz glass in a mold. This is a well-known natural quartz glass crucible. may be Tsu der those obtained by forming a layer.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】ついでこのシリカを石英ルツボに入れ、電
気炉中で室温より昇温して300℃3時間、800℃3
時間、1,000℃3時間、各温度への昇温時間はそれ
ぞれ0.5,4、2として空気中で加熱処理したのち、
これをカーボン型に入れ、減圧下に室温より昇温して
1,200℃2時間、1,500℃3時間、1,750
℃1時間、各温度への昇温時間をそれぞれ2,2,2時
間として昇温加熱して合成石英ガラスとし、得られたイ
ンゴットを20重量%のHFで1時間洗浄し、乾燥後ジ
ョークラッシャーとデスクミルで粉砕し、篩別して45
〜60メッシュに調製したのち、20重量%のHC1で
酸洗浄し、パイン油で浮遊選鉱してから5重量%のHF
で15分間洗浄し、1,050℃で加熱処理し、磁力選
鉱機にかけて合成石英ガラス粉とした。
Then, this silica was put into a quartz crucible and heated from room temperature in an electric furnace to 300 ° C. for 3 hours and 800 ° C. for 3 hours.
Time, 1,000 ° C. for 3 hours, heating time to each temperature is 0.5, 4 and 2, respectively, and after heat treatment in air,
This was placed in a carbon mold, and the temperature was raised from room temperature under reduced pressure to 1,200 ° C. for 2 hours, 1,500 ° C. for 3 hours, 1,750 ° C.
℃ 1 hour, each temperature was raised to 2, 2 and 2 hours to make synthetic quartz glass by heating. The obtained ingot was washed with 20 wt% HF for 1 hour, dried and then jaw crusher. And crush with a desk mill and sieve to 45
~ 60 mesh, then acid washed with 20 wt % HC1, and float-separated with pine oil, then 5 wt% HF
For 15 minutes, heat-treated at 1,050 ° C., and subjected to a magnetic separator to obtain synthetic quartz glass powder.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】2)シリコン単結晶の製造 上記のようにして得た18インチの合成石英ガラス製ル
ツボをアンモニア二過酸化水素溶液およびフッ酸水溶液
で洗浄したのち、充分超純水で洗浄してから引上げ機に
設置し、このルツボの中にシリコン単結晶引上げ用原料
としての高純度多結晶シリコン60kgを装入し、アル
ゴンガス雰囲気の常圧下にこの多結晶シリコンを融解し
たのち、この融液に3,000Gの磁場をかけてシリコ
ン種単結晶を接触させてノンドープ<100>6″φの
シリコン単結晶を引上げ、得られたシリコン単結晶を厚
さ0.5mmにスライスしてシリコンウエハーを作り、
このウエハー中の金属不純物の量を測定したところ、表
1に示したとおりの結果が得られたが、このシリコンウ
エハーについての抵抗率を4探針法でしらべたところ、
これは表2に示したように10,000〜60,000
Ωcmであった。
2) Production of silicon single crystal The 18-inch synthetic quartz glass crucible obtained as described above was washed with an ammonia dihydrogen peroxide solution and a hydrofluoric acid aqueous solution, and then sufficiently washed with ultrapure water. Installed in a pulling machine, 60 kg of high-purity polycrystalline silicon as a raw material for pulling a silicon single crystal was charged into the crucible, and the polycrystalline silicon was melted under an atmospheric pressure of an argon gas atmosphere. A silicon seed single crystal is brought into contact with a magnetic field of 3,000 G to pull up a non-doped <100> 6 ″ φ silicon single crystal, and the obtained silicon single crystal is sliced to a thickness of 0.5 mm to make a silicon wafer. ,
When the amount of metal impurities in this wafer was measured, the results shown in Table 1 were obtained. When the resistivity of this silicon wafer was examined by the 4-probe method,
This is 10,000 to 60,000 as shown in Table 2.
It was Ωcm.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】[0022]

【発明の効果】本発明は高抵抗シリコンウエハーの製造
方法に関するものであり、これは前記したようにシリコ
ン多結晶を合成石英ガラス製ルツボ中で融解し、この融
液に磁場を与え、ここにシリコン単結晶を浸漬して引上
げてシリコン単結晶を作り、こシリコン単結晶をスラ
イスしてシリコンウエハーを得ることを特徴とするもの
であるが、これによればここに使用される合成石英ガラ
ス製ルツボが金属不純物としてのA1の含有量が100
ppb以下とされていることから得られるシリコン単結
晶、これをスライスして得られるシリコンウエハーがA
1含量の少ないものとなるし、このシリコン単結晶の引
上げがMCZ法で行なわれるので、このシリコンウエハ
ーは抵抗率が10,000Ωcm以上の高抵抗のものに
なるという有利性が与えられる。
Industrial Applicability The present invention relates to a method for producing a high resistance silicon wafer, which, as described above, melts a silicon polycrystal in a synthetic quartz glass crucible and applies a magnetic field to the melt. the silicon single crystal immersed in making the silicon single crystal Te pulling, but is characterized in that to obtain a silicon wafer by slicing a silicon single crystal of this synthetic quartz glass used herein according to this The crucible made contains 100 A1 as a metal impurity.
A silicon single crystal obtained because it is less than or equal to ppb, a silicon wafer obtained by slicing this is
Since the content of 1 is small and the pulling of the silicon single crystal is carried out by the MCZ method, the silicon wafer has an advantage that it has a high resistivity of 10,000 Ωcm or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 弘行 新潟県中頚城郡頚城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内 (72)発明者 滝田 政俊 新潟県中頚城郡頚城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内 (72)発明者 松村 光男 福井県武生市北府2丁目13番60号 信越石 英株式会社武生工場内 (72)発明者 松井 宏 福井県武生市北府2丁目13番60号 信越石 英株式会社武生工場内 (72)発明者 古瀬 信一 福島県西白河郡西郷村小田倉字大平150番 地 信越半導体株式会社白河工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Watanabe, Inventor Hiroyuki Watanabe 1 at 28, Nishi-Fukushima, Chugiki-mura, Nakakubiki-gun, Niigata Prefecture Synthetic Technology Laboratory, Shin-Etsu Chemical Co., Ltd. (72) Masatoshi Takita, Kubiki-mura, Nakakubiki-gun, Niigata Prefecture 1 at 28 Fukushima Nishi Fukushima Shin-Etsu Chemical Co., Ltd. Synthetic Technology Laboratory (72) Inventor Mitsuo Matsumura 2-13-60 Kitafu, Takefu-shi, Fukui Prefecture Shin-Etsuishi Hideshi Takefu Factory (72) Inventor Hiroshi Matsui 2-13-60 Kitafu, Takefu City, Fukui Prefecture Shin-Etsu Ishihide Takefu Factory Co., Ltd. (72) Inventor Shinichi Furuse 150 Odaira, Odakura, Saigo-mura, Nishishirakawa-gun, Fukushima Shin-Etsu Semiconductor Co., Ltd. Shirakawa Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリコン多結晶を合成石英ガラス製ルツボ
中で融解し、この融液に磁場を与え、ここにシリコン種
結晶を浸漬し引上げてシリコン単結晶を作り、このシリ
コン単結晶をスライスして抵抗率が10,000Ωcm以上のシ
リコンウエハ−を得ることを特徴とする高抵抗シリコン
ウエハ−の製造方法。
1. A polycrystal of silicon is melted in a crucible made of synthetic quartz glass, a magnetic field is applied to this melt, a silicon seed crystal is immersed therein and pulled up to make a silicon single crystal, and this silicon single crystal is sliced. A silicon wafer having a resistivity of 10,000 Ωcm or more is obtained.
【請求項2】合成石英ガラス製ルツボを構成する合成石
英ガラスがアルコキシシランの加水分解重縮合によって
得たコロイダルシリカの焼結物で非晶質のものである請
求項1に記載した高抵抗シリコンウエハ−の製造方法。
2. The high resistance silicon according to claim 1, wherein the synthetic quartz glass constituting the synthetic quartz glass crucible is a sintered product of colloidal silica obtained by hydrolytic polycondensation of alkoxysilane and is amorphous. Wafer manufacturing method.
【請求項3】合成石英ガラス製ルツボの表面および合成
層における金属不純物としてのAlの含有量が100ppb以下
であり、その合成石英ガラス層が内面より少なくとも0.
5mmあるものである請求項1に記載した高抵抗シリコン
ウエハ−の製造方法。
3. The content of Al as a metal impurity on the surface of the synthetic quartz glass crucible and the synthetic layer is 100 ppb or less, and the synthetic quartz glass layer is at least 0.
The method for producing a high resistance silicon wafer according to claim 1, wherein the high resistance silicon wafer has a thickness of 5 mm.
JP3245152A 1991-08-30 1991-08-30 Method for manufacturing high-resistance silicon wafer Expired - Fee Related JP2732967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3245152A JP2732967B2 (en) 1991-08-30 1991-08-30 Method for manufacturing high-resistance silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3245152A JP2732967B2 (en) 1991-08-30 1991-08-30 Method for manufacturing high-resistance silicon wafer

Publications (2)

Publication Number Publication Date
JPH0558788A true JPH0558788A (en) 1993-03-09
JP2732967B2 JP2732967B2 (en) 1998-03-30

Family

ID=17129396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3245152A Expired - Fee Related JP2732967B2 (en) 1991-08-30 1991-08-30 Method for manufacturing high-resistance silicon wafer

Country Status (1)

Country Link
JP (1) JP2732967B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025717A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
WO2002025716A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Method of producing silicon wafer and silicon wafer
US6544656B1 (en) 1999-03-16 2003-04-08 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
WO2006125069A2 (en) * 2005-05-19 2006-11-23 Memc Electronic Materials, Inc. A high resistivity silicon structure and a process for the preparation thereof
JP2010132470A (en) * 2008-12-02 2010-06-17 Sumco Techxiv株式会社 Method for producing silicon single crystal by fz method
KR20160094961A (en) 2013-12-06 2016-08-10 신에쯔 한도타이 가부시키가이샤 Single-crystal production method
KR20170046130A (en) 2014-08-19 2017-04-28 신에쯔 한도타이 가부시키가이샤 Single crystal growth apparatus and single crystal growth method using apparatus
KR20200088285A (en) 2017-11-21 2020-07-22 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal
KR20210040993A (en) 2018-08-29 2021-04-14 신에쯔 한도타이 가부시키가이샤 Single crystal growing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026382A (en) * 1988-06-13 1990-01-10 Toshiba Ceramics Co Ltd Apparatus for pulling up single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026382A (en) * 1988-06-13 1990-01-10 Toshiba Ceramics Co Ltd Apparatus for pulling up single crystal

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544656B1 (en) 1999-03-16 2003-04-08 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
EP2037009A2 (en) 1999-03-16 2009-03-18 Shin-Etsu Handotai Company Limited Method for producing a bonded SOI wafer
KR100841062B1 (en) * 2000-09-20 2008-06-25 신에쯔 한도타이 가부시키가이샤 Silicon wafer and silicon epitaxial wafer and production methods therefor
WO2002025716A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Method of producing silicon wafer and silicon wafer
JP2002100631A (en) * 2000-09-20 2002-04-05 Shin Etsu Handotai Co Ltd Silicon wafer, silicon epitaxial wafer and method for manufacturing these
EP1326269A1 (en) * 2000-09-20 2003-07-09 Shin-Etsu Handotai Co., Ltd Method of producing silicon wafer and silicon wafer
US6858094B2 (en) 2000-09-20 2005-02-22 Shin-Etsu Handotai Co., Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
US7147711B2 (en) 2000-09-20 2006-12-12 Shin-Etsu Handotai Co., Ltd. Method of producing silicon wafer and silicon wafer
WO2002025717A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
EP1326269A4 (en) * 2000-09-20 2007-06-06 Shinetsu Handotai Kk Method of producing silicon wafer and silicon wafer
WO2006125069A3 (en) * 2005-05-19 2007-01-18 Memc Electronic Materials A high resistivity silicon structure and a process for the preparation thereof
WO2006125069A2 (en) * 2005-05-19 2006-11-23 Memc Electronic Materials, Inc. A high resistivity silicon structure and a process for the preparation thereof
US7521382B2 (en) 2005-05-19 2009-04-21 Memc Electronic Materials, Inc. High resistivity silicon structure and a process for the preparation thereof
JP2010132470A (en) * 2008-12-02 2010-06-17 Sumco Techxiv株式会社 Method for producing silicon single crystal by fz method
KR20160094961A (en) 2013-12-06 2016-08-10 신에쯔 한도타이 가부시키가이샤 Single-crystal production method
US9863060B2 (en) 2013-12-06 2018-01-09 Shin-Etsu Handotai Co., Ltd. Method for manufacturing single crystal
KR20170046130A (en) 2014-08-19 2017-04-28 신에쯔 한도타이 가부시키가이샤 Single crystal growth apparatus and single crystal growth method using apparatus
KR20200088285A (en) 2017-11-21 2020-07-22 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal
KR20210040993A (en) 2018-08-29 2021-04-14 신에쯔 한도타이 가부시키가이샤 Single crystal growing method

Also Published As

Publication number Publication date
JP2732967B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US5141786A (en) Synthetic silica glass articles and a method for manufacturing them
EP0360659B1 (en) Synthetic fused silica glass and method for the preparation thereof
KR101645663B1 (en) Silica vessel for pulling up single crystal silicon and process for producing same
US8163083B2 (en) Silica glass crucible and method for pulling up silicon single crystal using the same
JPH0558788A (en) Production of high resistance silicon wafer
US9446957B2 (en) Polycrystalline silicon rod and method for producing polysilicon
JP4931106B2 (en) Silica glass crucible
JP2010280567A (en) Method for producing silica glass crucible
JP5685894B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JPH0562869A (en) Manufacture of high-integration-level memory structure
JP2692446B2 (en) N-type silicon single crystal manufacturing method
JP2009249262A (en) Method of manufacturing silicon single crystal
JP3123696B2 (en) Method for manufacturing quartz glass crucible
JP2002293691A (en) Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JPH02229735A (en) Quartz glass member
JPH0132165B2 (en)
EP2143831B1 (en) Method for pulling up silicon single crystal using a silica glass crucible.
JPH02175686A (en) Quartz crucible for pulling silicon single crystal
JPH0825835B2 (en) Single crystal pulling device
TW438912B (en) Graphite support vessel for supporting a silica container during production of single-crystal silicon from silicon melt formed within the silica container according to a czochraliski-type approach
JP3526591B2 (en) Manufacturing method of synthetic quartz glass
JP3050351B2 (en) Method for producing opaque quartz glass
JP2015113252A (en) Reaction vessel used for production of polycrystal silicon by zinc reduction method
JP3048800B2 (en) Method for producing opaque quartz glass
JP2692446C (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees