JPH0558646B2 - - Google Patents

Info

Publication number
JPH0558646B2
JPH0558646B2 JP23603287A JP23603287A JPH0558646B2 JP H0558646 B2 JPH0558646 B2 JP H0558646B2 JP 23603287 A JP23603287 A JP 23603287A JP 23603287 A JP23603287 A JP 23603287A JP H0558646 B2 JPH0558646 B2 JP H0558646B2
Authority
JP
Japan
Prior art keywords
powder
electrode paste
electrode
ceramic capacitor
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23603287A
Other languages
Japanese (ja)
Other versions
JPS6480010A (en
Inventor
Hiroshi Kishi
Shunji Murai
Koichi Chasono
Minoru Ooshio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP23603287A priority Critical patent/JPS6480010A/en
Publication of JPS6480010A publication Critical patent/JPS6480010A/en
Publication of JPH0558646B2 publication Critical patent/JPH0558646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、磁器コンデンサ用の電極ペースト、
特に積層磁器コンデンサの内部電極或は外部電極
を形成するのに最適な電極ペーストに関する。 [従来の技術] 積層磁器コンデンサは、誘電体磁器層と、これ
を挟んで対向する2組の内部電極、及びこれら内
部電極を各々の組ごとに接続する外部電極を基本
的な構成部材とする。近年、この種の積層磁器コ
ンデンサの製造においては、焼成工程の簡略化を
図り、製造コストを低減する目的で、磁器と電極
とを同時焼成する方法が実施されている。例え
ば、内部電極形成用の電極ペーストが印刷された
未焼成の磁器シート、いわゆるグリーンシートを
積層し、さらに所定の工程を経て六面体の生チツ
プを製作した後、前記電極ぺーストと未焼成の磁
器とを同時に焼成する方法である。更には、前記
六面体の生チツプの両端に外部電極形成用の電極
ぺーストを塗布した後、磁器と内外電極形成用の
導電ベーストを同時に焼成する方法が実施されて
いる。 この様な同時焼成方式で用いられる電極ぺース
トや磁器材料は、焼成工程における熱収縮特性の
近いものを選択することが必要であり、さもなく
ばデラミネーシヨンやクラツクが発生しやすい。 従来、電極ぺーストの熱収縮を磁器のそれと近
づけるため、それにガラスフリツト粉末を含有さ
せたり(特開昭54−140958号公報)、共材といわ
れるグリーンシートと同種あるいは類似の磁器材
料粉末を電極ぺーストに含有させる手段(特開昭
54−140960号、特開昭57−30308号)等が提案さ
れている。 [発明が解決しようとしている問題点] しかしながら、ガラスフリツトや共材を含有さ
せた前記電極ペーストについては、次のような問
題があつた。即ち、この電極ペーストを使用した
積層磁器コンデンサの場合、デラミネーシヨンや
クラツクの問題がほぼ解決される一方で、ガラス
フリツトや共材を含有しない電極ペーストを使用
した場合に比較し、外部電極と誘電体磁器との結
合力が悪くなる。例えば、外部電極の剥離試験を
1Kgの荷重で行なうと、電極の剥離がガラスフリ
ツトや共材の含有率にほぼ比例して多く発生する
ようになり、含有率0%の場合、殆ど剥離が見ら
れないのに対し、5重量%から20重量%と増加す
るに従い約5〜65%の剥離が発生する。 この発明は、ガラスフリツトや共材を含む従来
の電極ペーストに於ける前記問題点を解決するも
ので、外部電極の誘電体磁器に対する結合力を改
良できる磁器コンデサ用電極ペーストを提供する
ことを目的とするものである。 [問題を解決するための手段] 即ち、本発明における前記の目的は、ニツケル
を主成分とする卑金属粉末と、窒化物粉末とを含
有する磁器コンデンサ用電極ペーストにより達成
される。 [作用] 後述するように、前記電極ペーストは、従来の
ものに比べて誘電体磁器に対する結合力が強く、
外部電極の剥離強度試験において、良好な結果が
得られ、しかも焼成時の誘電体磁器に発生するク
ラツツクも少ない。これは次のような理由による
ものと考えられる。 前記電極ペーストに含有する窒化物粉末は、還
元雰囲気中で焼成や高温での焼成過程において、
窒化物の大部分はそのまま残るが、一部は次のよ
うに反応し、これにより金属粒子の窒化物(MZ
CW)が析出する。 wM′xCy+(yxz)M→(xxw)M′+yMZCW ただし、M′はCu、Ti、Al、B、Cr、Mo、
Nb、Si、Ta、Hf、V、Ni、W、Zr、Fe等の金
属元素であり、Mは卑金属粉末に含まれる金属元
素であるx=1、2または3、y=1、2、3ま
たは4、z=1、2、3または4、w=1、2ま
たは3であり、前記Mの種類により決まる。例え
ば、MがNiの場合、z=1。w=1、MがCuの
場合、z=3、w=1、MがAlの場合、z=1、
w=1である。 前記の反応により、金属粒子の急激な収縮が抑
制され、かつ金属粒子と磁器との反応が妨げられ
ず、むしろ窒化物から分離した金属成分(M′)
が磁器と反応する。この結果、外部電極と磁器と
の結合力が劣化せず、外部電極の剥離試験に於て
良い結果がもたらされる。 [実施例] 次に本発明の実施例と比較例について説明す
る。 実施例 卑金属粉末成分として、平均粒径1μm、純度
99.9%のNi粉末を、窒化物粉末として平均粒径
0.5μm、純度99.9%の表1の各欄に示す窒化物粉
末を、バインダとしてエチルセルロース16gとブ
チルカルビトール64gとを用い、これらを擂潰機
で5時間粗混合した後、ロールミルで1時間混合
し、電極ペーストを調整した。なお、表1に於
て、Ni粉末の重量比は窒化物粉末との総重量に
対する比(重量%)で表わした。 この電極ペーストを外部電極形成用ペーストと
して、次の方法で積層磁器コンデンサを製作し
た。(Ba0.90Sr0.10)TiO3を主体とし、若干のLi2O
−CaO−SiO2ガラス粉末を含む磁器スラリによ
り、厚さ約30μmのグリーンシートを作り、これ
にNi粉末とZrN粉末を含む内部電極用形成用の
電極ペーストをスクリーン印刷し、乾燥した。次
に、前記グリーンシートの印刷面を上にして同様
のグリーンシートを内部電極が交互にずれるよう
に合計30枚積層し、更にこの積層物の上下両面に
各々厚さ60μmのグリーンシートを4枚ずつ積層
して圧着した後、これを個々のチツプ毎に裁断し
た。 交互に対向した2組の内部電極に各々接続する
よう、積層チツプの両端面に前記外部電極形成用
の電極ペーストを約50μmの厚みでほぼ均一に塗
布し、これを乾燥した。次いで、この生チツプを
2%のH2ガスを含むN2ガス雰囲気中に於て、
1250℃の温度で2時間焼成した。 こうして得られた積層磁器コンデンサチツプの
長さは3.2mm、幅は2.5mm、厚さは0.8mmであり、そ
の構造を第1図に示す。同図に於て、1はチツ
プ、2は誘電体磁器、3は内部電極、4は外部電
極を各々示す。 前記積層磁器コンデンサチツプの20個につい
て、その外部電極4を研削、除去し、その跡の誘
電体磁器2の素地を50倍の拡大鏡を用いて目視検
査し、クラツクの発生率を調べた。また、別の20
個を第2図に示すように試験用治具5に半田6で
固着し、チツプ1の中央に1Kgの荷重
[Industrial Application Field] The present invention provides electrode paste for ceramic capacitors,
In particular, the present invention relates to an electrode paste suitable for forming internal electrodes or external electrodes of multilayer ceramic capacitors. [Prior Art] The basic components of a multilayer ceramic capacitor are a dielectric ceramic layer, two sets of internal electrodes facing each other with this layer in between, and external electrodes that connect each set of these internal electrodes. . In recent years, in the manufacture of this type of multilayer ceramic capacitor, a method has been implemented in which the ceramic and the electrode are fired simultaneously in order to simplify the firing process and reduce manufacturing costs. For example, unfired porcelain sheets, so-called green sheets, printed with electrode paste for forming internal electrodes are laminated, and then a hexahedral raw chip is manufactured through a predetermined process, and then the electrode paste and unfired porcelain are laminated together. This method involves firing both at the same time. Furthermore, a method has been implemented in which after applying an electrode paste for forming external electrodes to both ends of the hexahedral raw chip, porcelain and a conductive base for forming inner and outer electrodes are fired at the same time. It is necessary to select electrode pastes and porcelain materials used in such a simultaneous firing method that have similar heat shrinkage characteristics during the firing process, otherwise delamination and cracks are likely to occur. Conventionally, in order to make the thermal contraction of electrode paste similar to that of porcelain, glass frit powder was added to it (Japanese Patent Application Laid-open No. 140958/1983), or a powder of a porcelain material of the same type or similar to the green sheet, which is called a co-material, was used for electrode paste. Means for containing it in the strike (JP-A-Sho)
No. 54-140960, Japanese Unexamined Patent Publication No. 57-30308), etc. have been proposed. [Problems to be Solved by the Invention] However, the electrode paste containing glass frit or a co-material has the following problems. In other words, in the case of multilayer ceramic capacitors using this electrode paste, the problems of delamination and cracks are almost solved, but compared to the case of using an electrode paste that does not contain glass frit or co-materials, the external electrode and dielectric The bonding force with the body's porcelain deteriorates. For example, when a peel test is performed on an external electrode under a load of 1 kg, electrode peeling occurs more often in proportion to the content of glass frit and co-materials, and when the content is 0%, almost no peeling is observed. On the other hand, as the weight increases from 5% to 20%, peeling occurs by about 5% to 65%. The present invention solves the above-mentioned problems with conventional electrode pastes containing glass frit and co-materials, and aims to provide an electrode paste for a ceramic capacitor that can improve the bonding force of an external electrode to a dielectric ceramic. It is something to do. [Means for Solving the Problems] That is, the above object of the present invention is achieved by an electrode paste for a ceramic capacitor containing a base metal powder containing nickel as a main component and a nitride powder. [Function] As will be described later, the electrode paste has a stronger binding force to the dielectric ceramic than conventional pastes.
Good results were obtained in the peel strength test of the external electrode, and fewer cracks occurred in the dielectric porcelain during firing. This is considered to be due to the following reasons. The nitride powder contained in the electrode paste undergoes a firing process in a reducing atmosphere or at a high temperature.
Most of the nitride remains as is, but some reacts as follows, which results in formation of metal particle nitride (M Z
C W ) precipitates. wM′ x C y + (yxz)M→(xxw)M′+yM Z C W However, M′ is Cu, Ti, Al, B, Cr, Mo,
It is a metal element such as Nb, Si, Ta, Hf, V, Ni, W, Zr, Fe, etc., and M is a metal element contained in the base metal powder. x = 1, 2 or 3, y = 1, 2, 3 or 4, z=1, 2, 3, or 4, and w=1, 2, or 3, depending on the type of M. For example, if M is Ni, z=1. w=1, when M is Cu, z=3, w=1, when M is Al, z=1,
w=1. Due to the above reaction, rapid shrinkage of the metal particles is suppressed, and the reaction between the metal particles and the porcelain is not hindered, but rather the metal component (M') separated from the nitride
reacts with porcelain. As a result, the bonding force between the external electrode and the porcelain does not deteriorate, and good results are obtained in the peel test of the external electrode. [Example] Next, Examples and Comparative Examples of the present invention will be described. Example Base metal powder component, average particle size 1 μm, purity
99.9% Ni powder as nitride powder with average particle size
The nitride powder shown in each column of Table 1 with a diameter of 0.5 μm and a purity of 99.9% was roughly mixed with 16 g of ethyl cellulose and 64 g of butyl carbitol as a binder in a crusher for 5 hours, and then mixed in a roll mill for 1 hour. Then, the electrode paste was prepared. In Table 1, the weight ratio of Ni powder is expressed as a ratio (% by weight) to the total weight of Ni powder. Using this electrode paste as a paste for forming external electrodes, a multilayer ceramic capacitor was manufactured by the following method. (Ba 0.90 Sr 0.10 ) Mainly TiO 3 with some Li 2 O
A green sheet with a thickness of about 30 μm was made from a porcelain slurry containing -CaO-SiO 2 glass powder, and an electrode paste for forming internal electrodes containing Ni powder and ZrN powder was screen printed on this and dried. Next, a total of 30 similar green sheets were stacked with the printed side of the green sheet facing up so that the internal electrodes were alternately shifted, and then four green sheets each with a thickness of 60 μm were placed on both the top and bottom of this stack. After laminating and crimping each chip, it was cut into individual chips. The electrode paste for forming external electrodes was applied almost uniformly to a thickness of about 50 μm on both end faces of the laminated chip so as to be connected to two sets of internal electrodes facing each other alternately, and then dried. Next, the raw chips were placed in a N2 gas atmosphere containing 2% H2 gas.
It was baked at a temperature of 1250°C for 2 hours. The thus obtained laminated ceramic capacitor chip had a length of 3.2 mm, a width of 2.5 mm, and a thickness of 0.8 mm, and its structure is shown in FIG. In the figure, 1 is a chip, 2 is a dielectric ceramic, 3 is an internal electrode, and 4 is an external electrode. For 20 of the laminated ceramic capacitor chips, the external electrodes 4 were ground and removed, and the remaining dielectric ceramic 2 substrate was visually inspected using a 50x magnifying glass to determine the incidence of cracks. Also another 20
As shown in Figure 2, the chip is fixed to a test jig 5 with solder 6, and a load of 1 kg is applied to the center of the chip 1.

【表】 を加え、これによつて外部電極5の剥離が発生す
るか否か調べた。 これら試験によるクラツク及び電極剥離の発生
率を、試験に供した試料20個のうちの発生数によ
り、表1に示した。 実施例 2 BaTiO3系磁器に代えて、次ぎに示す誘電体磁
器を各々使用し、かつ表2で示す外部電極形成用
の電極ペーストを用いて、前記実施例1同様に積
層磁器コンデンサチツプを製作した。更に、これ
らについて同様に試験を行い、その結果を表2に
示した。
[Table] was added to investigate whether or not this would cause peeling of the external electrode 5. The incidence of cracks and electrode peeling in these tests is shown in Table 1 based on the number of occurrences out of 20 samples subjected to the test. Example 2 A multilayer porcelain capacitor chip was produced in the same manner as in Example 1, using the following dielectric porcelains instead of BaTiO 3 ceramics and using the electrode paste for forming external electrodes shown in Table 2. did. Furthermore, similar tests were conducted on these, and the results are shown in Table 2.

【表】【table】

【表】 実施例 3 Ni、Al、Cu、Zn及びZrNを、表3の各欄に示
す割合で含有する外部電極形成用の電極ペースト
を用い、前記実施例1と同様にして積層磁器コン
デンサチツプを製作した。更に、これについて同
様に試験を行つた結果を表3に示す。
[Table] Example 3 A multilayer ceramic capacitor chip was prepared in the same manner as in Example 1 using an electrode paste for forming external electrodes containing Ni, Al, Cu, Zn and ZrN in the proportions shown in each column of Table 3. was produced. Furthermore, Table 3 shows the results of a similar test.

【表】 (比較例) 表4に示すように、Ni粉末以外に無機成分を
含まない外部電極形成用の電極ペースト、Ni粉
末とCaO−B2O3−SiO2系ガラスフリツトとを含
む電極ペースト、及びNi粉末と誘電体磁器の共
材であるところのBaTiO3粉末とを含む外部電極
を各々用いて、前記実施例1と同様にして積層磁
器コンデンサチツプを製作した。更に、これにつ
いて同様に試験を行い、その結果を表4に示し
た。
[Table] (Comparative example) As shown in Table 4, an electrode paste for forming an external electrode that does not contain any inorganic components other than Ni powder, and an electrode paste that contains Ni powder and CaO-B 2 O 3 -SiO 2 -based glass frit A laminated ceramic capacitor chip was manufactured in the same manner as in Example 1 using external electrodes containing Ni powder and BaTiO 3 powder, which is a co-material of dielectric ceramic. Furthermore, a similar test was conducted on this, and the results are shown in Table 4.

【表】 なお、以上の実施例等から明らかにされた、本
発明の望ましい実施態様を挙げると次の通りであ
る。 (1) 電極粉末に含有させる窒化物粉末は、Cu、
Ti、Al、B、Cr、Mo、Nb、Si、Ta、Hf、
V、Ni、W、Zr、Feの窒化物のうち、少なく
とも一種以上から成ること。 (3) 電極粉末中の卑金属粉末と窒化物粉末との割
合は、卑金属粉末が70〜99重量%、窒化物粉末
が1〜30重量%であること。 (4) 電極ペースト中の卑金属粉末がNi以外の金
属を含む場合、卑金属粉末と窒化物粉末との総
量に対するNi粉末成分の含有料が50重量%以
上であること。 [発明の効果] 以上説明した通り、本発明の電極ペーストによ
れば、積層磁器コンデンサにおけるクラツクを少
なくし、且つ電極の結着力を強く保つことができ
る。
[Table] The following are preferred embodiments of the present invention that have been clarified from the above examples and the like. (1) The nitride powder contained in the electrode powder is Cu,
Ti, Al, B, Cr, Mo, Nb, Si, Ta, Hf,
Contains at least one of V, Ni, W, Zr, and Fe nitrides. (3) The ratio of base metal powder and nitride powder in the electrode powder is 70 to 99% by weight of the base metal powder and 1 to 30% by weight of the nitride powder. (4) If the base metal powder in the electrode paste contains a metal other than Ni, the content of the Ni powder component shall be 50% by weight or more based on the total amount of the base metal powder and nitride powder. [Effects of the Invention] As explained above, according to the electrode paste of the present invention, cracks in a multilayer ceramic capacitor can be reduced and the binding force of the electrodes can be maintained strongly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層磁器コンデンサチツプの構造を示
す縦断側面面図、第2図は実施例、比較例に於け
る外部電極剥離試験の方法を示す説明図である。 1……誘電体磁器層、2……内部電極、3……
外部電極。
FIG. 1 is a vertical cross-sectional side view showing the structure of a multilayer ceramic capacitor chip, and FIG. 2 is an explanatory diagram showing the method of external electrode peeling test in Examples and Comparative Examples. 1... Dielectric ceramic layer, 2... Internal electrode, 3...
external electrode.

Claims (1)

【特許請求の範囲】 1 ニツケルを主成分とする卑金属粉末と、窒化
物粉末とを含有することを特徴とする磁器コンデ
ンサ用電極ペースト。 2 前記窒化物粉末は、Cu、Ti、Al、B、Cr、
Mo、Nb、Si、Ta、Hf、V、Ni、W、Zr、Fe
の窒化物のうち少なくとも一種以上から成ること
を特徴とする特許請求の範囲第1項記載の磁器コ
ンデンサ用電極ペースト。 3 前記卑金属粉末が70〜99重量%、窒化物粉末
が1〜30重量%であることを特徴とする特許請求
の範囲第1項または第2項に記載の磁器コンデン
サ用電極ペースト。 4 前記卑金属粉末と窒化物粉末との内、ニツケ
ル粉末成分が50重量%以上であることを特徴とす
る特許請求の範囲第1項、第2項または第3項に
記載の磁器コンデンサ用電極ペースト。
[Scope of Claims] 1. An electrode paste for a ceramic capacitor characterized by containing a base metal powder containing nickel as a main component and a nitride powder. 2 The nitride powder includes Cu, Ti, Al, B, Cr,
Mo, Nb, Si, Ta, Hf, V, Ni, W, Zr, Fe
The electrode paste for a ceramic capacitor according to claim 1, characterized in that the electrode paste is made of at least one kind of nitrides. 3. The electrode paste for a ceramic capacitor according to claim 1 or 2, wherein the base metal powder is 70 to 99% by weight and the nitride powder is 1 to 30% by weight. 4. The electrode paste for a ceramic capacitor according to claim 1, 2 or 3, wherein the nickel powder component of the base metal powder and nitride powder is 50% by weight or more. .
JP23603287A 1987-09-19 1987-09-19 Electrode paste for ceramic capacitor Granted JPS6480010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23603287A JPS6480010A (en) 1987-09-19 1987-09-19 Electrode paste for ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23603287A JPS6480010A (en) 1987-09-19 1987-09-19 Electrode paste for ceramic capacitor

Publications (2)

Publication Number Publication Date
JPS6480010A JPS6480010A (en) 1989-03-24
JPH0558646B2 true JPH0558646B2 (en) 1993-08-27

Family

ID=16994749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23603287A Granted JPS6480010A (en) 1987-09-19 1987-09-19 Electrode paste for ceramic capacitor

Country Status (1)

Country Link
JP (1) JPS6480010A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042681C (en) * 1994-10-26 1999-03-24 同济大学 Heating-up nickel electrode for piezo-electric device
JP2006013437A (en) * 2004-05-27 2006-01-12 Kyocera Corp Laminated piezoelectric element, its manufacturing method, and injection device using it
JP5166049B2 (en) * 2008-01-21 2013-03-21 太陽誘電株式会社 Ceramic electronic component and method for manufacturing the same
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell
KR101565631B1 (en) * 2012-06-04 2015-11-03 삼성전기주식회사 Conductive paste composition for internal electrode, multilayer ceramic electronic capacitor and fabricating method thereof
JP5757977B2 (en) * 2013-06-25 2015-08-05 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell

Also Published As

Publication number Publication date
JPS6480010A (en) 1989-03-24

Similar Documents

Publication Publication Date Title
CA2211259C (en) Monolithic ceramic capacitor and producing method thereof
KR101108958B1 (en) Laminated ceramic capacitor and method of manufacturing the same
KR102388227B1 (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR20030029499A (en) Electroconductive paste, method of producing monolithic ceramic electronic part, and monolithic ceramic electronic part
US20030113554A1 (en) Glass ceramic laminate becoming relatively high in bending strength after fired
CA1331279C (en) Magnesium titanate ceramic and dual dielectric substrate using same
JP3376963B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JPH0558645B2 (en)
JPH0558646B2 (en)
JP2593137B2 (en) Conductive paste
US6404616B2 (en) Multilayer ceramic capacitor
CN103460316A (en) Layered ceramic capacitor and method for producing layered ceramic capacitor
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP4349843B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH1050545A (en) Multilayer ceramic capacitor
JP4549210B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2635053B2 (en) Conductive paste
JPH0679995B2 (en) WN metallization structure of AlN substrate
JPS6323646B2 (en)
JPH11214240A (en) Laminated ceramic electronic component and their manufacture
JP2006202857A (en) Laminated ceramic electronic component and its manufacturing method
GB2353408A (en) Method for manufacturing a monolithic ceramic electronic component
JPH04260314A (en) Ceramic laminate
JPH10106881A (en) Multilayered ceramic capacitor
JP3160855B2 (en) Multilayer ceramic capacitors