JPH0555974B2 - - Google Patents

Info

Publication number
JPH0555974B2
JPH0555974B2 JP61089045A JP8904586A JPH0555974B2 JP H0555974 B2 JPH0555974 B2 JP H0555974B2 JP 61089045 A JP61089045 A JP 61089045A JP 8904586 A JP8904586 A JP 8904586A JP H0555974 B2 JPH0555974 B2 JP H0555974B2
Authority
JP
Japan
Prior art keywords
fibers
separator
glass fibers
weight
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61089045A
Other languages
Japanese (ja)
Other versions
JPS62246252A (en
Inventor
Yoshiaki Miwa
Hiromi Matsumori
Hiroki Kitawaki
Junsuke Muto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Nippon Glass Fiber Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Nippon Glass Fiber Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP61089045A priority Critical patent/JPS62246252A/en
Publication of JPS62246252A publication Critical patent/JPS62246252A/en
Publication of JPH0555974B2 publication Critical patent/JPH0555974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高保液性蓄電池用セパレータに係り、
特にガラス繊維及び合成繊維から構成された高保
液性電池用セパレータに関する。 [従来の技術及び先行技術] ガラス繊維を含んでなる蓄電池用セパレータと
しては、既に種々のタイプのものが提案され実用
化されているが、これを大別すると次の3種類と
なる。即ち、 ガラス短繊維を主体とするもの、 ガラス短繊維に粉体を保持させたもの、 ガラス短繊維と合成繊維を混合、成形したも
の、 である。 このうちのガラス短繊維を主体とするもの
は、繊維長が短いこと、及び繊維が親水性である
ことから、細径のガラス短繊維を多量に含むよう
にした場合には、蓄電池本来の基本的性能である
保液性、吸液性には優れるものの、細径のガラス
短繊維が高価であることから、これを成形したセ
パレータも高価である。さらに有機系バインダを
使用せずに成形したセパレータにおいては引張強
度が弱く剛性も小さいために蓄電池組立作業を行
ないにくいという問題がある。また有機バインダ
を用いて成形した場合には、蓄電池に組み込まれ
て使用されているときに、このバインダが電解液
中に溶け出し、蓄電池の性能を劣化させるおそれ
がある。 のガラス繊維と粉体との混抄物からなるもの
としては、例えば特開昭58−206046号に記載され
るものがあるが、このものは吸液性は良好である
ものの、粉体がセパレータから剥離、脱落し易
く、また、引張強度も小さいという問題がある。 一方、のガラス短繊維と合成繊維とを混抄し
たものとしては、特開昭49−38126号、特開昭54
−22531号、特開昭56−99968号、特開昭53−
136632号及び特公昭58−663号に記載のものがあ
るが、これらは、機械的強度(引張強度及び剛性
等)が高いため、蓄電池組立作業を行ない易いと
いう長所がある。なお、このように、強度、剛性
等の機械的特性が向上するのは、セパレータを生
産する工程で、乾燥のため160〜180℃に温度を上
昇させることにより、合成繊維とガラス繊維又は
合成繊維同志が熱融着を起し結合するためと考え
られる。 しかしながら、合成繊維が混入されているセパ
レータは、機械的特性に優れている反面、合成繊
維がガラス繊維に比べて親水性が低いところか
ら、硫酸液の吸液性並びに保液性が劣るという欠
点を有している。即ち、ガラス繊維のみからなる
セパレータの場合には、ガラス繊維間の毛細管現
像により硫酸液を吸液し保液しているが、合成繊
維を使用すると合成繊維は疎水性であるため硫酸
液の「ぬれ」が悪くなり、吸液性、保液性が損な
われるのである。 また、合成繊維を含むセパレータは、合成繊維
が加熱融着し糊がついた状態となつて、硫酸液を
吸液した時に膨潤し難くなるために、セパレータ
の反撥力(復元力)が低下するという問題点もあ
る。 本出願人は、このような問題点を解消するもの
として、ガラス繊維及び合成繊維を含んでなる蓄
電池用セパレータにおいて、合成繊維を吸水性の
合成繊維とした蓄電池用セパレータを見出し、先
に特許出願した(特願昭60−28004、以下「先願」
という。)。 即ち、前述の如く、蓄電池用セパレータに合成
繊維を混入させてセパレータの機械的強度を向上
させることは従来より行なわれており、この合成
繊維として耐酸性の強いアクリル繊維等が広く用
いられている。ところがこのアルカリ繊維等の合
成繊維はガラス繊維に比べて親水性が小さく、混
入量が多くなるとセパレータの液保持特性を低下
させてしまい、逆に混入量が少量であれば機械的
強度の改善効果が小さくなつてしまう。 これに対して、上記先願の如く、合成繊維とし
て吸水性を有するものを用いた場合には、この吸
水性の合成繊維が蓄電池の電解液を吸液して膨潤
するため、通常の合成繊維を使用したときに起こ
る吸液性、保液性の低下を防止することができ
る。しかも、合成繊維の併用による補強効果によ
り、セパレータの機械的特性は大幅に向上され
る。 [発明が解決しようとする問題点] このように、吸水性の合成繊維を用いる先願の
発明によれば、強度及び保液性に優れた蓄電池用
セパレータが提供されるが、次のような問題が生
起することがある。 一般に電池組立工程で機械を用いた組立てを
行う場合には、セパレータに相当な強度が要求
されるが、吸水性合成繊維の配合割合が全繊維
重量の1〜5.5重量%程度では合成繊維量が少
ないために加熱融着による補強効果が小さく、
要求される強度を十分に満足し得ない。 吸水性合成繊維は一般に平均直径0.7〜2.0μ
m程度のガラス繊維より高価であることから、
吸水性合成繊維を過度に多く配合することは原
料コストが高くつき好ましくない。しかも、吸
水性合成繊維の多量配合は、繊維が強固に接着
して硬くなり、吸液時の膨潤力の低下を招くこ
ととなる。このような場合には、セパレータの
保液性が低下し、好ましくない。 [問題点を解決するための手段] 本発明の上記の如き問題のない、機械的強度が
極めて高く、電池組立工程の作業性が良好で、液
保持力及び吸液膨潤力に優れ、しかも安価な蓄電
池用セパレータを提供するものであつて、 ガラス繊維及び吸水性を有する合成繊維を含ん
でなり、合成繊維の含有率はセパレータを構成す
る繊維全重量の6〜18重量%であつて、かつ引張
強さ800g/15mm幅×1mm厚以上、座屈強度が70
g/10mm幅×1mm厚以上であることを特徴とする
高保液性蓄電池用セパレータ、 を要旨とするものである。 即ち、本発明者らは、機械的強度、保液性、吸
液膨潤性等に優れた蓄電池用セパレータを得るべ
く鋭意検討を重ねた結果、まず機械的強度につい
ては、一般に、電池組立工程で組立装置を使用す
る場合、セパレータの引張強さは800g/15mm幅
×1mm厚以上、座屈強度が70g/10mm幅×1mm厚
以上であることが好ましいことを見出した。 また、セパレータにこのような機械的強度を付
与するためには、吸水性の合成繊維の配合量は全
繊維重量の5.5重量%程度でも不足であり、6重
量%以上の配合が必要とされることを見出した。 一方、吸液時膨潤力は、吸水性合成繊維を適
量、即ち多過ぎず少な過ぎない量配合した場合に
最も大きくなり、ガラス繊維の吸液膨潤力と吸水
性合成繊維の吸液膨潤力のバランスが保たれる時
に最大の効果が得られる。即ち、吸水性合成繊維
が少な過ぎるとガラス繊維単独の場合に比し十分
な向上度が得られず、逆に多過ぎると強固に接着
してしまいガラス繊維の膨潤力が失われてしま
う。このようなことから、本発明者らは、吸液膨
潤力の観点からは、吸水性合成繊維の好適な配合
量が存在し、その値は全繊維重量の4〜18重量%
であることを見出した。 本発明者らは、上述の知見に基き、ガラス繊維
と吸水性合成繊維とからなる蓄電池用セパレータ
において、十分な機械的強度、保液性、吸液膨潤
性を得るためには、吸水性合成繊維の配合量を全
繊維重量の6〜18重量%とする必要があることを
見出し、本発明を完成させた。 以下本発明の構成につき詳細に説明する。 本発明のセパレータを構成する繊維はガラス繊
維及び吸水性の合成繊維である。 ガラス繊維としては、吸着剤を用いることなく
繊維同志を接着させ得るところから、含アルカリ
ガラス繊維が好ましい。これは、含アルカリガラ
ス繊維を用いると、製造工程の抄造工程でガラス
繊維の表面に水ガラス状物質が生成し、この水ガ
ラス状物質の粘着性によつて繊維同志が接着され
るためであると考えられる。 ガラス繊維は、全量が細径、例えば平均直径が
0.7〜2μmのものであつても良く、このような細
径の繊維と平均直径が2μmを超え5μm以下の中
細径の繊維及び/又は平均直径が5μmを超え30μ
m以下の太径の繊維とを併用しても良い。これら
の中細径繊維、太径繊維を併合する場合、その割
合はガラス繊維全量に対して1〜50重量%とする
のが好ましい。中細径、太径のガラス繊維は細径
のものに比べ安価であり、特に太径のガラス繊維
はこれを併用することによりセパレータの引張強
さを向上させることができるという利点がある。 細径のガラス繊維の好ましい平均直径は0.5〜
1.0μm、より好ましくは0.6〜0.9μmである。直径
が1.0μmを超えるとセパレータの孔径が大きくな
り、逆に、0.5μmよりも小さくなるとその製造コ
ストが高価となる。 この細径のガラス繊維の好ましい含有量は、ガ
ラス繊維重量の60重量%以上であり、とりわけ65
重量%以上が特に好ましい。含有量が60%よりも
少ないと吸液性、保液性が不足し易くなるからで
ある。 また、この細径のガラス繊維の平均長さは好ま
しくは7〜50mm、より好ましくは10〜40mmであ
る。平均長さが10mmよりも短くなるとセパレータ
の強度が小さくなり、50mmよりも長くなると抄造
時に水中へ均一に分散するのが困難になる。 このような細径のガラス繊維はFA法(火炎
法)、遠心法その他のガラス短繊維製造法によつ
て製造できる。 なお本発明においてガラス繊維の平均直径は、
試料の3ケ所について電子顕微鏡で写真撮影し、
それぞれ20本の繊維についてその直径を0.1μm単
位で測定し、これらの平均値をとることにより計
算される。 中細径のガラス繊維を用いる場合、その好まし
い平均直径は2.0〜5.0μm、とりわけ3.0〜4.0μm
である。また、含有量はガラス繊維重量の10〜40
重量%、とりわけ15〜30重量%とするのが好まし
い。中細径のガラス繊維の配合により細径ガラス
繊維量を減らすことができ、コスト的に有利とな
る。なお、この中細径のガラス繊維の長さは7〜
50mmとりわけ10〜40mmが好ましい。 太径のガラス繊維を用いる場合、その好ましい
平均直径は10〜20μm、とりわけ12〜19μmであ
る。また、含有量はガラス繊維重量の8〜35重量
%、とりわけ10〜30重量%とするのが好ましい。
平均直径が10μmよりも小さいと、あるいは含有
量が8重量%よりも少ないと、引張強さ改善効果
が小さくなり、平均直径が20μmを超えると、あ
るいは含有量が35重量%を超えるとセパレータの
吸液性、保液性が小さくなる。この太径のガラス
繊維の長さは5〜80mmとりわけ6〜40mmが好まし
い。 ガラス繊維の組成の好適な範囲について次に説
明する。 本発明のセパレータを構成するガラス繊維は、
前述のように含アルカリ珪酸塩ガラス組成のもの
が、その表面に水ガラスを形成して接着性を発現
するところから好ましい。そして、このうちで
も、蓄電池に使用されることから、耐酸性の良好
なものが好適に使用される。この耐酸性の程度
は、平均繊維径1μ以下のガラス繊維の状態で、
JISC−2202に従つて測定した場合の重量減が2
%以下であるのが望ましい。また、このようなガ
ラス繊維の組成としては重量比で60〜75%の
SiO2及び8〜20%のR2O(Na2O、K2Oなどのア
ルカリ金属酸化物)を、主として含有し(ただし
SiO2+R2Oは75〜90%)その他に例えばCaO、
MgO、B2O3、Al2O3、ZnO、Fe2O3などの1種又
は2種以上を含んだものが挙げられる。尚好まし
い含アルカリ珪酸塩ガラスの一例を次の第1表に
示す。
[Industrial Application Field] The present invention relates to a separator for high liquid storage batteries,
In particular, the present invention relates to a high liquid retention battery separator made of glass fiber and synthetic fiber. [Prior Art and Prior Art] Various types of storage battery separators containing glass fibers have already been proposed and put into practical use, and these can be broadly classified into the following three types. That is, there are those that are mainly made of short glass fibers, those that have powder held in short glass fibers, and those that are made by mixing and molding short glass fibers and synthetic fibers. Among these, those mainly composed of short glass fibers have a short fiber length and are hydrophilic, so if they contain a large amount of short glass fibers with a small diameter, they can be used to improve the original basics of storage batteries. Although it has excellent liquid retention and liquid absorption properties, the small diameter short glass fibers are expensive, so the separator made from them is also expensive. Furthermore, a separator formed without using an organic binder has low tensile strength and low rigidity, making it difficult to assemble a storage battery. In addition, when molding is performed using an organic binder, when the battery is incorporated into a storage battery and used, the binder may dissolve into the electrolyte and deteriorate the performance of the storage battery. For example, there is a product made of a mixture of glass fiber and powder described in JP-A-58-206046, but although this product has good liquid absorption properties, the powder does not separate from the separator. There are problems in that it easily peels off and falls off, and also has low tensile strength. On the other hand, as a mixture of short glass fibers and synthetic fibers, JP-A-49-38126 and JP-A-54
-22531, JP-A-56-99968, JP-A-53-
There are those described in Japanese Patent Publication No. 136632 and Japanese Patent Publication No. 58-663, and these have the advantage of being easy to assemble storage batteries because of their high mechanical strength (tensile strength, rigidity, etc.). In addition, mechanical properties such as strength and rigidity are improved in the separator production process by raising the temperature to 160 to 180°C for drying, which improves mechanical properties such as synthetic fibers and glass fibers or synthetic fibers. It is thought that this is because the comrades cause thermal fusion and join together. However, although separators containing synthetic fibers have excellent mechanical properties, they have the disadvantage of poor absorption and retention of sulfuric acid solutions because synthetic fibers are less hydrophilic than glass fibers. have. In other words, in the case of a separator made only of glass fibers, the sulfuric acid solution is absorbed and retained by capillary development between the glass fibers, but when synthetic fibers are used, the sulfuric acid solution absorbs and retains the liquid because synthetic fibers are hydrophobic. This results in poor wettability and impaired liquid absorption and retention. In addition, in separators containing synthetic fibers, the synthetic fibers heat-fuse and become sticky, making it difficult for them to swell when absorbing sulfuric acid solution, reducing the repulsive force (restoring force) of the separator. There is also a problem. In order to solve these problems, the present applicant discovered a storage battery separator that uses water-absorbing synthetic fibers as a storage battery separator containing glass fibers and synthetic fibers, and has previously filed a patent application. (Patent application 1986-28004, hereinafter referred to as "prior application")
That's what it means. ). That is, as mentioned above, it has been a conventional practice to mix synthetic fibers into storage battery separators to improve the mechanical strength of the separators, and acrylic fibers with strong acid resistance are widely used as the synthetic fibers. . However, synthetic fibers such as alkali fibers have less hydrophilicity than glass fibers, and if they are mixed in a large amount, they reduce the liquid retention properties of the separator, whereas if they are mixed in a small amount, they have no effect on improving mechanical strength. becomes smaller. On the other hand, when water-absorbing synthetic fibers are used as in the previous application, the water-absorbing synthetic fibers absorb the electrolyte of the storage battery and swell. It is possible to prevent the decrease in liquid absorbency and liquid retention that occurs when using . Furthermore, the mechanical properties of the separator are significantly improved due to the reinforcing effect of the combined use of synthetic fibers. [Problems to be Solved by the Invention] As described above, according to the invention of the earlier application using water-absorbing synthetic fibers, a separator for storage batteries with excellent strength and liquid retention is provided. Problems may occur. Generally, when assembling using a machine in the battery assembly process, considerable strength is required for the separator, but when the proportion of water-absorbing synthetic fibers is about 1 to 5.5% by weight of the total fiber weight, the amount of synthetic fibers is small. Because of the small amount, the reinforcing effect by heat fusion is small,
The required strength cannot be fully satisfied. Water-absorbing synthetic fibers generally have an average diameter of 0.7-2.0μ
Since it is more expensive than glass fiber of about m
Blending too much water-absorbing synthetic fiber is undesirable because it increases the cost of raw materials. Moreover, when a large amount of water-absorbing synthetic fibers is blended, the fibers become firmly adhered and hardened, resulting in a decrease in swelling power during liquid absorption. In such a case, the liquid retention property of the separator decreases, which is not preferable. [Means for solving the problems] The present invention does not have the above-mentioned problems, has extremely high mechanical strength, has good workability in the battery assembly process, has excellent liquid holding power and liquid absorption and swelling power, and is inexpensive. To provide a storage battery separator comprising glass fiber and water-absorbing synthetic fiber, the content of the synthetic fiber being 6 to 18% by weight of the total weight of the fibers constituting the separator, and Tensile strength 800g/15mm width x 1mm thickness or more, buckling strength 70
The gist of the present invention is a separator for storage batteries with high liquid retention, characterized by having a width of 10 mm/1 mm or more and a thickness of 1 mm or more. That is, as a result of intensive studies to obtain a storage battery separator with excellent mechanical strength, liquid retention, liquid absorption and swelling properties, the present inventors found that mechanical strength is generally determined in the battery assembly process. It has been found that when using an assembly device, it is preferable that the separator has a tensile strength of 800 g/15 mm width x 1 mm thickness or more and a buckling strength of 70 g/10 mm width x 1 mm thickness or more. In addition, in order to impart such mechanical strength to the separator, the amount of water-absorbing synthetic fibers added is insufficient even at around 5.5% by weight of the total fiber weight, and it is necessary to add more than 6% by weight. I discovered that. On the other hand, the swelling power upon liquid absorption is greatest when an appropriate amount of water-absorbing synthetic fiber is blended, that is, an amount that is neither too much nor too small. Maximum effectiveness is achieved when balance is maintained. That is, if the amount of water-absorbing synthetic fibers is too small, a sufficient degree of improvement cannot be obtained compared to the case of using only glass fibers, and on the other hand, if the amount of water-absorbing synthetic fibers is too large, they will adhere firmly and the swelling power of the glass fibers will be lost. Based on these facts, the present inventors found that from the viewpoint of liquid absorption and swelling power, there is a suitable blending amount of water-absorbing synthetic fibers, and that value is 4 to 18% by weight of the total fiber weight.
I found that. Based on the above findings, the present inventors have discovered that in order to obtain sufficient mechanical strength, liquid retention, and liquid absorption swelling properties in a storage battery separator made of glass fibers and water-absorbing synthetic fibers, it is necessary to The present invention was completed based on the discovery that it is necessary to adjust the amount of fiber to 6 to 18% by weight of the total fiber weight. The configuration of the present invention will be explained in detail below. The fibers constituting the separator of the present invention are glass fibers and water-absorbing synthetic fibers. As the glass fibers, alkali-containing glass fibers are preferred because the fibers can be bonded together without using an adsorbent. This is because when alkali-containing glass fibers are used, a water-glass-like substance is generated on the surface of the glass fiber during the papermaking process of the manufacturing process, and the fibers are bonded together by the adhesiveness of this water-glass-like substance. it is conceivable that. The total amount of glass fiber is small in diameter, for example, the average diameter is
It may be 0.7 to 2 μm, and such small diameter fibers, medium-thin fibers with an average diameter of more than 2 μm and 5 μm or less, and/or fibers with an average diameter of more than 5 μm and 30 μm.
It may also be used in combination with fibers having a diameter of less than m. When these medium-thin diameter fibers and large-diameter fibers are combined, the proportion thereof is preferably 1 to 50% by weight based on the total amount of glass fibers. Medium-thin and large-diameter glass fibers are cheaper than small-diameter ones, and especially large-diameter glass fibers have the advantage that the tensile strength of the separator can be improved by using them together. The preferred average diameter of small diameter glass fibers is 0.5~
It is 1.0 μm, more preferably 0.6 to 0.9 μm. If the diameter exceeds 1.0 μm, the pore size of the separator becomes large, and conversely, if the diameter is smaller than 0.5 μm, the manufacturing cost becomes high. The preferred content of this small diameter glass fiber is 60% by weight or more of the glass fiber weight, especially 65% by weight or more of the glass fiber weight.
Particularly preferred is % by weight or more. This is because if the content is less than 60%, the liquid absorption and liquid retention properties tend to be insufficient. Moreover, the average length of this small diameter glass fiber is preferably 7 to 50 mm, more preferably 10 to 40 mm. If the average length is shorter than 10 mm, the strength of the separator will be reduced, and if it is longer than 50 mm, it will be difficult to uniformly disperse it in water during papermaking. Such small-diameter glass fibers can be manufactured by the FA method (flame method), centrifugation method, or other short glass fiber manufacturing methods. In addition, in the present invention, the average diameter of the glass fibers is
Photographs were taken of three locations on the sample using an electron microscope.
It is calculated by measuring the diameter of each 20 fibers in units of 0.1 μm and taking the average value. When medium-sized glass fibers are used, the preferred average diameter is 2.0 to 5.0 μm, especially 3.0 to 4.0 μm.
It is. In addition, the content is 10 to 40 of the glass fiber weight.
It is preferably 15 to 30% by weight, especially 15 to 30% by weight. By blending glass fibers with medium and small diameters, the amount of small-diameter glass fibers can be reduced, which is advantageous in terms of cost. In addition, the length of this medium-thin diameter glass fiber is 7~
50 mm, especially 10 to 40 mm is preferred. When using large-diameter glass fibers, the preferred average diameter is 10 to 20 μm, particularly 12 to 19 μm. Further, the content is preferably 8 to 35% by weight, particularly 10 to 30% by weight, based on the weight of the glass fibers.
If the average diameter is smaller than 10 μm or the content is less than 8% by weight, the tensile strength improvement effect becomes small, and if the average diameter exceeds 20 μm or the content exceeds 35% by weight, the separator Liquid absorption and liquid retention are reduced. The length of this large diameter glass fiber is preferably 5 to 80 mm, particularly 6 to 40 mm. A suitable range of the composition of the glass fiber will be explained below. The glass fibers constituting the separator of the present invention are
As mentioned above, an alkali-containing silicate glass composition is preferred because it forms water glass on its surface and exhibits adhesive properties. Among these, those with good acid resistance are preferably used since they are used in storage batteries. This degree of acid resistance is for glass fibers with an average fiber diameter of 1μ or less.
Weight loss when measured according to JISC-2202 is 2
% or less is desirable. In addition, the composition of such glass fiber is 60 to 75% by weight.
Mainly contains SiO 2 and 8-20% R 2 O (alkali metal oxides such as Na 2 O, K 2 O) (but
(SiO 2 + R 2 O is 75-90%) In addition, for example, CaO,
Examples include those containing one or more of MgO, B 2 O 3 , Al 2 O 3 , ZnO, Fe 2 O 3 and the like. An example of a preferable alkali-containing silicate glass is shown in Table 1 below.

【表】【table】

【表】 本発明のセパレータはこのような含アルカリ珪
酸塩ガラス繊維の他に吸水性合成繊維を含有す
る。 本発明において用いられる吸水性の合成繊維と
しては、アクリル繊維等の表面を高水性加工した
ものが好ましく、具体的には、ランシール−F
(日本エクスラン工業(株)製、商品名)等が挙げら
れる。ランシール−Fはアクリロニトリル繊維の
表面に、全重量の20〜30%のポリアクリル酸を保
持させた、直径約15μmの高給水性有機繊維であ
る。 本発明において、これらガラス繊維及び吸水性
合成繊維の配合割合は、ガラス繊維94〜82重量%
及び合成繊維6〜18重量%とする。吸水性合成繊
維の配合量が18重量%よりも多いと、十分な吸液
膨潤力が得られず、保液性が不足し、逆に6重量
%よりも少ないと強度及び剛性の改善効果が小さ
く、電池組立工程において良好な作業性を得るこ
とができない。 本発明の蓄電池用セパレータは、通常の合成繊
維を配合したセパレータの製造方法と同様の方法
によつて製造することができる。即ち、ガラス繊
維として含アルカリ珪酸塩ガラス繊維を用いる場
合には、ガラス繊維と合成繊維を、例えばPH値
2.5〜3.5に保つた水の中に一定時間、例えば5〜
20分、水流型分散機等を用いて繊維をなるべく切
断せずに分散させておき、それを湿式抄造して、
該ガラス繊維の表面に接着層おそらくは水ガラス
層を形成せしめ、ついでこれを所定温度、例えば
80〜180℃に加熱することによりガラス繊維をそ
の表面の水ガラスによつて相互に接着することに
よつて得ることができる。 なお繊維の一部として混合された合成繊維も後
工程の熱処理工程(例えば乾燥工程)において成
形もしくは接着作用を発揮し、セパレータの強度
を高める。 本発明のセパレータ自体の厚さは、使用される
蓄電池によつて異なるが0.3〜3mmであることが
好ましい。 なお、繊維を水中に分散あるいは抄造工程にお
いて、水ガラスを添加し、接着作用を助長させる
ことも可能である。水ガラス以外にも、類似の無
機系接着剤を用いることもできる。このようなも
のとしては、Silpap700(セントラル硝子(株)、商品
名)等が挙げられる。その他、分散にあたり、分
散剤を使用しても良い。又、湿式抄造された繊維
抄造体、例えば抄造コンベアー上にある繊維抄造
体にジアルキルスルフオサクシネートをスプレー
して、ガラス繊維に対して0.005〜10重量%付着
させることによつて、ジアルキルスルフオサクシ
ネートの有する親水性によりセパレータの保液性
を向上させることができる。ジアルキルスルフオ
サクシネートを上記の如くスプレーする代わりに
抄造槽中の分散水に混入してもよい。 このような本発明の蓄電池用セパレータは、そ
の引張強度が800g/15mm幅×1mm厚以上が座屈
強度が70g/10mm幅×1mm厚以上であるが、その
保液性は特に1.2g/c.c.以上であることが好まし
い。 [作用] 吸水性の合成繊維は蓄電池の電解液を吸液して
膨潤するため、通常の合成繊維を使用したときに
起こる吸液性、保液性の低下を防止することがで
きる。しかも、合成繊維はセパレータの製造過程
中、抄造後の乾燥により加熱溶解してセパレータ
の強度を高め、その機勝的特性を大幅に向上させ
ることができる。 本発明の蓄電池用セパレータは、このような吸
水性合成繊維を全繊維重量の6〜18重量%含有す
る引張強さや座屈強度が特定値以上のものである
ため、十分な強度向上効果が得られ、またガラス
繊維と合成繊維との膨潤力が良好にバランスし、
このため著しく優れた保液性、吸液膨潤性を得る
ことができる。しかも合成繊維配合量が過度に多
くないため、材料コストの高騰を防ぐことができ
る。 [実施例] 以下実施例及び比較例について説明する。 実施例1〜3、比較例1〜3 第2表に示す配合の構成繊維を水中に投入して
水流型分散機により撹拌して分散させ、更に硫酸
を加えて水のPHを2.7とし約10分間保持した。次
いで抄造を行い150℃に加熱してマツト状の蓄電
池用セパレータを製造した。 このセパレータの灼熱減量、保液性、吸液性、
引張強さ、座屈強度、最大孔径について測定した
結果を第2表に示す。
[Table] The separator of the present invention contains water-absorbing synthetic fibers in addition to such alkali-containing silicate glass fibers. As the water-absorbing synthetic fiber used in the present invention, it is preferable to use acrylic fiber or the like whose surface has been treated to make it highly water-resistant.
(manufactured by Nippon Exlan Kogyo Co., Ltd., trade name), etc. Lanseal-F is a highly water-supplying organic fiber with a diameter of about 15 μm, which has 20 to 30% of the total weight of polyacrylic acid retained on the surface of acrylonitrile fiber. In the present invention, the blending ratio of these glass fibers and water-absorbing synthetic fibers is 94 to 82% by weight of glass fibers.
and 6 to 18% by weight of synthetic fibers. If the amount of water-absorbing synthetic fibers is more than 18% by weight, sufficient liquid absorption and swelling power will not be obtained, leading to insufficient liquid retention, while if it is less than 6% by weight, the strength and rigidity will not be improved. Due to its small size, it is difficult to obtain good workability in the battery assembly process. The separator for a storage battery of the present invention can be manufactured by a method similar to that of a separator containing ordinary synthetic fibers. That is, when using alkali-containing silicate glass fibers as the glass fibers, the glass fibers and synthetic fibers are
For a certain period of time, for example, 5~
Disperse the fibers for 20 minutes using a water jet dispersion machine, etc. without cutting them as much as possible, and then perform wet papermaking.
An adhesive layer, perhaps a water glass layer, is formed on the surface of the glass fiber, and then this is heated to a predetermined temperature, e.g.
It can be obtained by adhering glass fibers to each other by means of water glass on their surfaces by heating to 80-180°C. Note that the synthetic fibers mixed as part of the fibers also exert a shaping or adhesion effect in the subsequent heat treatment step (for example, drying step), increasing the strength of the separator. The thickness of the separator itself of the present invention varies depending on the storage battery used, but is preferably 0.3 to 3 mm. It is also possible to add water glass during the dispersion of fibers in water or during the papermaking process to promote adhesion. In addition to water glass, similar inorganic adhesives can also be used. Examples of such products include Silpap700 (trade name, manufactured by Central Glass Co., Ltd.). In addition, a dispersant may be used for dispersion. In addition, by spraying dialkyl sulfosuccinate onto a wet-processed fiber paper product, for example, a fiber paper product on a paper-making conveyor, so that the dialkyl sulfosuccinate adheres to the glass fibers in an amount of 0.005 to 10% by weight. The hydrophilicity of succinate can improve the liquid retention of the separator. Instead of spraying the dialkyl sulfosuccinate as described above, it may be mixed into the dispersion water in the papermaking tank. Such a storage battery separator of the present invention has a tensile strength of 800 g/15 mm width x 1 mm thickness or more and a buckling strength of 70 g/10 mm width x 1 mm thickness or more, but its liquid retention property is particularly 1.2 g/cc. It is preferable that it is above. [Function] Since water-absorbing synthetic fiber absorbs the electrolyte of the storage battery and swells, it is possible to prevent a decrease in liquid absorption and liquid retention that occurs when ordinary synthetic fibers are used. Furthermore, during the separator manufacturing process, synthetic fibers can be heated and melted by drying after papermaking to increase the strength of the separator and significantly improve its mechanical properties. The separator for storage batteries of the present invention contains such water-absorbing synthetic fibers in an amount of 6 to 18% by weight based on the total fiber weight, and has tensile strength and buckling strength exceeding specific values, so that a sufficient strength improvement effect can be obtained. In addition, the swelling power of glass fiber and synthetic fiber is well balanced,
Therefore, extremely excellent liquid retaining properties and liquid absorption swelling properties can be obtained. Moreover, since the amount of synthetic fibers is not excessively high, it is possible to prevent material costs from rising. [Example] Examples and comparative examples will be described below. Examples 1 to 3, Comparative Examples 1 to 3 The constituent fibers of the composition shown in Table 2 were poured into water, stirred and dispersed using a water jet disperser, and sulfuric acid was added to adjust the pH of the water to 2.7 to about 10. Hold for minutes. Next, papermaking was performed and heated to 150°C to produce a pine-shaped storage battery separator. This separator's loss on ignition, liquid retention, liquid absorption,
Table 2 shows the results of measuring tensile strength, buckling strength, and maximum pore diameter.

【表】【table】

【表】 第2表により、次のことが明らかである。 即ち、吸水性合成繊維の少量添加(比較例2)
では十分な強度向上効果が得られないのに対し、
多量添加(比較例3)では硬さを示す座屈強度や
引張強さは、ガラス繊維のみの場合(比較例1)
よりも大幅に向上される。 しかしながら、セパレータの基本的な特性とし
て要求される保液性、吸液性については、さほど
の改良効果は得られていない。 これに対し、本発明の如く、吸水性合成繊維の
特定量を用いた場合(実施例1〜3)には、座屈
強度や引張強さも相当に向上しているうえに、保
液性が著しく良化している。また、吸液性等の他
の特性も良好である。 なお、第2表中*1〜*4の繊維は次の通りで
ある。 *1 ガラス繊維A:組成=第1表のC平均直径
=0.8μm平均長さ=10mm *2 ガラス繊維B:組成=第1表のC平均直径
=4μm平均長さ=15mm *3 ガラス繊維C:組成=第1表のC平均直径
=19μm平均長さ=25mm *4 吸水性合成繊維:高吸水性合成繊維(日本
エクスラン工業(株)製、商品名「ランシール−
F」) また、実施例及び比較例におけるこれらの特性
値の測定法は次の通りである。 厚さ(mm) 試料をその厚み方向に20Kg/dm2の荷重で押
圧した状態で測定する。(JISC−2202) 目付(g/cm2) 試料重量を試料面積で除して得られる値であ
る。 密度(g/cm3) 試料(重量W)10cm×10cmの面積(S)に20Kgの
荷重を加えた時の試料の厚さをTとした時に、
式:W/(S×T)(g/cm3)で与えられる値
で表わす。 灼熱減量(%) 試料を空気中で600℃に恒量となるまで加熱
し、その減量分を元の試料重量で除して求め
る。 保液性 試料に水を飽和するまで含ませ、その試料を
5分間45°の角度に傾斜させたガラス板上にお
いた後の、試料中に含まれた水の量を測定し、
その水の量をBとし、試料の体積をAとする
と、式B/Aで与えられる値で表す。 吸液速度(mm/5分) 試料を垂直にしてその下部を比重1.3の希硫
酸液に浸漬し、5分後に経時的に上昇する液位
を測定することにより求める。 引張強さ(g/15mm幅) 幅15mmの試料の両端を引張りそれが切断する
ときの外力の値(g)を求め、厚さ(mm)で除
して、幅15mm、厚さ1mm当りの値で表示する。 座屈強度(g/10mm幅) 幅50mm、長さ100mmの試料を準備し、長さの
上方50mm分をホルダで挟み、下方50mmは突き出
ているように保持し、試料の下方先端を秤に接
触させ、ホルダを静かに下降させることにより
試料を秤に押し付け、座屈したときの荷重
(g)を求める。そして、幅10mm、厚さ1mm当
りの値に換算して表示する。 最大孔径(μm) 試料片をメタノール溶液中に30分以上浸漬
し、市販の最大孔径測定装置のサンプルホルダ
にサンプルをセツトし、上部よりピペツトでメ
タノールを10〜5c.c.入れる。静かに空気を流
し、メタノールより気泡が発生したときの空気
圧を読みとり、計算式により最大細孔径を求め
る。 [効果] 以上詳述した通り、本発明の高保液性蓄電池用
セパレータは、特定量の吸水性の合成繊維を配合
してなり、特定値以上の引張強さ及び座屈強度を
有するものであり、 吸水性合成繊維の配合量が特定値以上である
ため、極めて優れた補強効果が奏され、機械的
強度は極めて高い。 吸水性合成繊維とガラス繊維との配合に良好
なバランスが保たれ、その吸液膨潤性や保液性
は著しく向上される。 吸水性合成繊維の配合量が特定値以下である
ため、繊維材料コストの高騰を押えることがで
きる。 等の優れた効果を有する。 このように、本発明のセパレータは、引張強度
及び剛性が大きいので蓄電池の組立作業が容易で
あり、その優れた保液性、吸液性により、高性能
の蓄電池を製造することができ、しかも製品コス
トを低廉化することができるので、その工業的有
用性は極めて高い。
[Table] The following is clear from Table 2. That is, addition of a small amount of water-absorbing synthetic fiber (Comparative Example 2)
However, a sufficient strength improvement effect cannot be obtained.
When a large amount is added (Comparative Example 3), the buckling strength and tensile strength, which indicate hardness, are lower than when only glass fiber is used (Comparative Example 1).
significantly improved. However, no significant improvement effect has been achieved in terms of liquid retention and liquid absorption properties, which are required as basic properties of a separator. On the other hand, when a specific amount of water-absorbing synthetic fiber is used as in the present invention (Examples 1 to 3), the buckling strength and tensile strength are considerably improved, and the liquid retention property is also improved. It has improved significantly. In addition, other properties such as liquid absorption are also good. The fibers marked *1 to *4 in Table 2 are as follows. *1 Glass fiber A: Composition = C in Table 1 Average diameter = 0.8 μm Average length = 10 mm *2 Glass fiber B: Composition = C in Table 1 Average diameter = 4 μm Average length = 15 mm *3 Glass fiber C : Composition = C in Table 1 Average diameter = 19 μm Average length = 25 mm *4 Water-absorbent synthetic fiber: Super water-absorbent synthetic fiber (manufactured by Nippon Exlan Kogyo Co., Ltd., product name: "Lanseal-")
F'') Furthermore, the methods for measuring these characteristic values in Examples and Comparative Examples are as follows. Thickness (mm) Measure the sample while pressing it with a load of 20 kg/dm 2 in the thickness direction. (JISC-2202) Fabric weight (g/cm 2 ) This is the value obtained by dividing the sample weight by the sample area. Density (g/cm 3 ) When the thickness of the sample is T when a load of 20 kg is applied to the area (S) of sample (weight W) 10 cm x 10 cm,
It is expressed as a value given by the formula: W/(S×T) (g/cm 3 ). Loss on ignition (%) Heat the sample in air to 600°C until it reaches a constant weight, and calculate the loss by dividing the weight by the original weight of the sample. Liquid retention: After soaking a sample with water until it is saturated and placing the sample on a glass plate tilted at an angle of 45° for 5 minutes, measure the amount of water contained in the sample.
If the amount of water is B and the volume of the sample is A, it is expressed by the value given by the formula B/A. Liquid absorption rate (mm/5 minutes) Determine by holding the sample vertically, immersing its lower part in a dilute sulfuric acid solution with a specific gravity of 1.3, and measuring the rise in the liquid level over time after 5 minutes. Tensile strength (g/15mm width) Find the value of external force (g) when pulling both ends of a 15mm wide sample and it cuts it, divide it by the thickness (mm), and calculate the tensile strength per 15mm width and 1mm thickness. Display by value. Buckling strength (g/10mm width) Prepare a sample with a width of 50mm and a length of 100mm, hold the upper 50mm of the length with a holder, hold it so that the lower 50mm protrudes, and place the lower tip of the sample on the scale. The sample is pressed against the scale by making contact and gently lowering the holder, and the load (g) when buckled is determined. Then, it is converted into a value per 10 mm width and 1 mm thickness and displayed. Maximum pore diameter (μm) Immerse the sample piece in a methanol solution for at least 30 minutes, set the sample in the sample holder of a commercially available maximum pore diameter measuring device, and pipette 10 to 5 c.c. of methanol from above. Flow air gently, read the air pressure when bubbles are generated from methanol, and use a formula to determine the maximum pore diameter. [Effects] As detailed above, the high liquid retention separator for storage batteries of the present invention is made by blending a specific amount of water-absorbing synthetic fibers, and has tensile strength and buckling strength exceeding specific values. , Since the amount of water-absorbing synthetic fibers is above a certain value, an extremely excellent reinforcing effect is achieved and the mechanical strength is extremely high. A good balance is maintained in the blending of water-absorbing synthetic fibers and glass fibers, and its liquid absorption and swelling properties and liquid retention properties are significantly improved. Since the amount of water-absorbing synthetic fibers is below a specific value, it is possible to suppress the rise in the cost of fiber materials. It has excellent effects such as As described above, the separator of the present invention has high tensile strength and rigidity, so it is easy to assemble a storage battery, and its excellent liquid retention and absorption properties make it possible to manufacture a high-performance storage battery. Since the product cost can be reduced, its industrial usefulness is extremely high.

Claims (1)

【特許請求の範囲】 1 ガラス繊維及び吸水性を有する合成繊維を含
んでなり、合成繊維の含有率はセパレータを構成
する繊維全重量の6〜18重量%であつて、かつ引
張強さ800g/15mm幅×1mm厚以上、座屈強度が
70g/10mm幅×1mm厚以上であることを特徴とす
る高保液性蓄電池用セパレータ。 2 セパレータの保液性が1.2g/c.c.以上である
特許請求の範囲第1項に記載の高保液性蓄電池用
セパレータ。 3 ガラス繊維は平均直径0.7〜2μmのガラス繊
維を主体とするものである特許請求の範囲第1項
又は第2項に記載の高保液性蓄電池用セパレー
タ。 4 ガラス繊維は平均直径0.7〜2μmのガラス繊
維を主体とし、平均直径2μmを超え5μm以下の
ガラス繊維及び/又は平均直径5μmを超え30μm
以下のガラス繊維を1〜50重量%含む特許請求の
範囲第3項に記載の高保液性蓄電池用セパレー
タ。
[Claims] 1. Contains glass fibers and synthetic fibers with water absorption properties, the content of the synthetic fibers is 6 to 18% by weight of the total weight of the fibers constituting the separator, and the tensile strength is 800 g/ 15mm width x 1mm thickness or more, buckling strength
A separator for storage batteries with high liquid retention, characterized by having a size of 70g/10mm width x 1mm thickness or more. 2. The separator for a high liquid storage battery according to claim 1, wherein the separator has a liquid holding capacity of 1.2 g/cc or more. 3. The high liquid retention separator for storage batteries according to claim 1 or 2, wherein the glass fibers are mainly glass fibers having an average diameter of 0.7 to 2 μm. 4 Glass fibers are mainly glass fibers with an average diameter of 0.7 to 2 μm, glass fibers with an average diameter of more than 2 μm and 5 μm or less, and/or glass fibers with an average diameter of more than 5 μm and 30 μm.
The high liquid retention separator for storage batteries according to claim 3, which contains 1 to 50% by weight of the following glass fibers.
JP61089045A 1986-04-17 1986-04-17 Separator for highly preservative electrolyte storage battery Granted JPS62246252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089045A JPS62246252A (en) 1986-04-17 1986-04-17 Separator for highly preservative electrolyte storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089045A JPS62246252A (en) 1986-04-17 1986-04-17 Separator for highly preservative electrolyte storage battery

Publications (2)

Publication Number Publication Date
JPS62246252A JPS62246252A (en) 1987-10-27
JPH0555974B2 true JPH0555974B2 (en) 1993-08-18

Family

ID=13959917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089045A Granted JPS62246252A (en) 1986-04-17 1986-04-17 Separator for highly preservative electrolyte storage battery

Country Status (1)

Country Link
JP (1) JPS62246252A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197372A (en) * 1987-10-08 1989-04-14 Yuasa Battery Co Ltd Lead-acid battery
JP2005135870A (en) * 2003-10-31 2005-05-26 Furukawa Battery Co Ltd:The Control valve type lead storage battery

Also Published As

Publication number Publication date
JPS62246252A (en) 1987-10-27

Similar Documents

Publication Publication Date Title
JP2743438B2 (en) Sealed lead-acid battery
US6706450B2 (en) Separator for sealed lead acid battery
JP2576277B2 (en) Separator for sealed lead-acid battery and sealed lead-acid battery
JP2762446B2 (en) Storage battery separator
JPH0555974B2 (en)
EP0515105B1 (en) Sheet like separator and valve regulated lead acid battery
JPS60221954A (en) Separator for storage battery
JP2546240B2 (en) Storage battery separator and manufacturing method thereof
JPH0756794B2 (en) Sealed lead acid battery separator
JP3060694B2 (en) Sheet separator and sealed lead-acid battery
JPS63224144A (en) Separator for storage battery
JPS59138058A (en) Separator for storage battery
JP2632716B2 (en) Sealed lead-acid battery
JPH0555976B2 (en)
JPH0555977B2 (en)
JPH0521306B2 (en)
JPS5971255A (en) Separator for storage battery
JPH0457068B2 (en)
JPH0427672B2 (en)
JPH06325744A (en) Separator for storage battery
JPH01294352A (en) Sealed lead-acid battery
JPH0756793B2 (en) Storage battery separator
JPS62252064A (en) Separator for storage battery
JP3979467B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JPH0266850A (en) Sealed lead-acid battery