JPH0555941B2 - - Google Patents

Info

Publication number
JPH0555941B2
JPH0555941B2 JP59152164A JP15216484A JPH0555941B2 JP H0555941 B2 JPH0555941 B2 JP H0555941B2 JP 59152164 A JP59152164 A JP 59152164A JP 15216484 A JP15216484 A JP 15216484A JP H0555941 B2 JPH0555941 B2 JP H0555941B2
Authority
JP
Japan
Prior art keywords
film
magnetic
substrate
recording medium
photothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59152164A
Other languages
Japanese (ja)
Other versions
JPS6132242A (en
Inventor
Yasuhiko Ishiwatari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15216484A priority Critical patent/JPS6132242A/en
Publication of JPS6132242A publication Critical patent/JPS6132242A/en
Publication of JPH0555941B2 publication Critical patent/JPH0555941B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は光磁気メモリー、磁気記録、表示素子
等に用いられる光熱磁気記録媒体に関する。より
詳しくは、カー効果、フアラデー効果等の磁気光
学効果を用いて読出すことのできる光熱磁気記録
媒体に関する。 〔従来技術〕 従来、光熱磁気記録媒体としてはMnBi、
MnCuBi等の多結晶薄膜、GdCo、GdFe、TbFe、
DyFe、GdTbFe、GdTbFeCo等の非晶質薄膜、
GdCo、GdFe、TbFe、DyFe、GdTbFe、
GdTbFeCo等の非晶質薄膜、TbFeO3等の単結晶
薄膜等が知られている。これらの薄膜のうち、大
面積の薄膜を室温近傍の温度で製作する成膜性、
信号を小さなエネルギーで書込むための書込効
率、記録信号をS/N比よく読出すための再生効
率等を勘案すると、最近では、非晶質薄膜が光磁
気記録媒体として優れていると考えられている。
しかしながら、これらの非晶質薄膜においても未
だ、再生信号のS/N比が十分でなく満足な再生
信号レベルが得られないという欠点があつた。特
にカー効果を用いる再生方式ではカー回転角が小
さいためS/N比を高めることが困難であつた。
そのため本発明者らはカー回転角をさらに増大さ
せるためにGdFeやTbFeにCoを添加した
GdFeCo、TbFeCoまたGdTbFeにCoを添加した
GdTbFeCoの研究をすすめ、特にGdTbFeCoの
4元非晶質合金膜が十分カー回転角が大きく、熱
安定性にすぐれ、かつS/N比の良く再生できる
光熱磁気記録媒体であることを見出した。 このように記録媒体である磁性材料の特性の改
良検討を進める一方、記録媒体上に誘電体膜や金
属反射膜を形成してみかけのカー回転角を高める
試みについても検討が続けられている。しかしな
がらS/N比を高めるものとして最適な層構成は
未だ見出されておらず、多くの改良の余地が残さ
れている。 〔発明の目的〕 本発明は以上の点に鑑みなされたものであり、
従来の種々の光熱磁気記録媒体よりも、みかけの
カー回転角が大きくでき、高いS/N比を得るこ
とが可能な新規な積層構造を有する光熱磁気記録
媒体を提供することにある。 〔発明の構成〕 以上の目的は下記の本発明の光熱磁気記録媒体
によつて達成される。すなわち本発明の光熱磁気
記録媒体は、透明膜と、該透明膜上に形成された
希土類−遷移金属合金からなる磁性膜とからなる
一単位の積層構造体が基板上に前記透明膜を基板
側にして少なくとも二単位以上積層されていると
共に最も基板側の磁性膜以外の磁性膜は最も基板
側の磁性膜よりキユリー温度が低い希土類−遷移
金属合金からなり、更に、基板から最も離れた前
記積層構造体の基板側とは逆側には透明膜と反射
膜が形成されていることを特徴とする。 本発明で用いる希土類−遷移金属合金からなる
磁性膜は、記録光(例えばレーザー光)を照射す
ると、その照射された部分に於いて光エネルギー
が熱エネルギーに変換されることにより温度が上
昇し、キユリー点に達して、磁化が反転するよう
な磁性薄膜である。このような磁化の反転により
記録ビツトを形成することができ、この記録ビツ
トに再生光を照射し、その反射光を検知すること
により再生が可能である。このような磁気光学効
果を有する希土類−遷移金属合金からなる磁性膜
(以下、磁気光学効果を有する薄膜という)とし
ては、次に挙げるものが好ましい。すなわち、
Fe、Co、Ni等の遷移金属から選ばれた一種以上
の金属元素とGd、Tb、Dy等の希土類金属から
選ばれた一種以上の金属元素(以下、遷移金属−
希土類金属と略す。)とを含有し、膜面に垂直方
向に磁化容易軸を有する非晶質磁性薄膜が好まし
い。例えば、GdFe、TbFe、DyFe、
GdTbFeCo、GdDyFeCo、TbDyFeCo等の非晶
質薄膜である。このように、薄膜が非晶質物質か
ら構成されれば、磁化容易軸が膜面の垂直方向に
向けられるのに十分な垂直磁気異方性を有する。 このような非晶質磁性薄膜は、この薄膜を構成
する成分である各金属元素を蒸着源として、スパ
ツタリング法、真空蒸着法等の方法によつて成膜
することができる。 以上述べたような遷移金属−希土類金属からな
る非晶質磁性薄膜に於いて、十分な垂直磁気異方
性かつ大きなカー回転角を得るためには下記表1
に示すような組成範囲が好ましい。
[Technical Field] The present invention relates to a magneto-optical recording medium used for magneto-optical memory, magnetic recording, display elements and the like. More specifically, the present invention relates to a photothermal magnetic recording medium that can be read using magneto-optical effects such as the Kerr effect and the Faraday effect. [Prior art] Conventionally, MnBi, MnBi,
Polycrystalline thin films such as MnCuBi, GdCo, GdFe, TbFe,
Amorphous thin films such as DyFe, GdTbFe, and GdTbFeCo,
GdCo, GdFe, TbFe, DyFe, GdTbFe,
Amorphous thin films such as GdTbFeCo and single crystal thin films such as TbFeO 3 are known. Among these thin films, the film-forming ability of producing a large-area thin film at a temperature near room temperature,
In recent years, amorphous thin films have been considered to be superior as magneto-optical recording media, considering the writing efficiency for writing signals with small energy and the reproduction efficiency for reading recorded signals with a good S/N ratio. It is being
However, these amorphous thin films still have the drawback that the S/N ratio of the reproduced signal is insufficient and a satisfactory reproduced signal level cannot be obtained. In particular, in the reproduction method using the Kerr effect, it is difficult to increase the S/N ratio because the Kerr rotation angle is small.
Therefore, the present inventors added Co to GdFe and TbFe in order to further increase the Kerr rotation angle.
Co added to GdFeCo, TbFeCo and GdTbFe
We conducted research on GdTbFeCo and found that a quaternary amorphous alloy film of GdTbFeCo has a sufficiently large Kerr rotation angle, excellent thermal stability, and is a photothermal magnetic recording medium that can be reproduced with a good S/N ratio. While efforts are being made to improve the properties of the magnetic materials used as recording media, studies are also being conducted on attempts to increase the apparent Kerr rotation angle by forming dielectric films or metal reflective films on recording media. However, the optimal layer structure for increasing the S/N ratio has not yet been found, and there remains much room for improvement. [Object of the invention] The present invention has been made in view of the above points,
It is an object of the present invention to provide a photothermal magnetic recording medium having a novel laminated structure that can have a larger apparent Kerr rotation angle and obtain a higher S/N ratio than various conventional photothermal magnetic recording media. [Structure of the Invention] The above objects are achieved by the following photothermal magnetic recording medium of the present invention. That is, in the photothermal magnetic recording medium of the present invention, a unit laminated structure consisting of a transparent film and a magnetic film made of a rare earth-transition metal alloy formed on the transparent film is placed on a substrate, with the transparent film on the substrate side. The magnetic films other than the magnetic film closest to the substrate are made of a rare earth-transition metal alloy having a lower Curie temperature than the magnetic film closest to the substrate, and the laminated layers farthest from the substrate A transparent film and a reflective film are formed on the opposite side of the structure from the substrate side. When the magnetic film made of the rare earth-transition metal alloy used in the present invention is irradiated with recording light (e.g. laser light), the temperature of the irradiated area increases as the light energy is converted into thermal energy. It is a magnetic thin film whose magnetization reverses when it reaches the Kyrie point. Recording bits can be formed by such reversal of magnetization, and reproduction is possible by irradiating the recording bits with reproduction light and detecting the reflected light. As a magnetic film made of a rare earth-transition metal alloy having such a magneto-optic effect (hereinafter referred to as a thin film having a magneto-optic effect), the following are preferable. That is,
One or more metal elements selected from transition metals such as Fe, Co, and Ni and one or more metal elements selected from rare earth metals such as Gd, Tb, and Dy (hereinafter referred to as transition metals).
Abbreviated as rare earth metal. ) and has an axis of easy magnetization perpendicular to the film surface. For example, GdFe, TbFe, DyFe,
These are amorphous thin films such as GdTbFeCo, GdDyFeCo, and TbDyFeCo. Thus, if the thin film is made of an amorphous material, it has sufficient perpendicular magnetic anisotropy so that the axis of easy magnetization is oriented in the direction perpendicular to the film surface. Such an amorphous magnetic thin film can be formed by a method such as a sputtering method or a vacuum evaporation method using each metal element that constitutes the thin film as a deposition source. In order to obtain sufficient perpendicular magnetic anisotropy and a large Kerr rotation angle in the amorphous magnetic thin film made of transition metals and rare earth metals as described above, Table 1 below is required.
A composition range as shown in is preferable.

〔発明の効果〕〔Effect of the invention〕

本発明の光熱磁気記録媒体により従来の種々の
層構造を有する光熱磁気記録媒体よりもみかけの
カー回転角を大きくすることができるようにな
り、再生に於て高いS/N比を得ることが可能と
なつた。 〔実施例〕 以下、本発明を実施例をあげて詳細に説明す
る。 参考例 1 3インチ角の白板ガラスを基板とし、高周波ス
パータ法において前記基板1上にMgF2からなる
透明膜2を成膜した。この際にターゲツトとして
5インチφのMgF2化合物を用い、真空槽内を1
×10-5Pa程度まで排気の後Arガスを、0.6Paまで
導入し、高周波電源より200Wのスパツタ電力を
供給して成膜を行なつた。 次いで、高周波スパツタ法において前記透明膜
2上に磁性膜3を成膜した。この際ターゲツトと
して5インチφのFe70Co30(原子%)合金上に1
cm角で組成比が1:1のGdTb合金片を均一に並
べたものを使用し、透明膜2を成膜するのと同一
のガス圧、スパツタ電力の条件を用いて成膜を行
なつた。膜厚はこの膜の透光率が10%以上を有す
るように20〜300Åとした、このようにしてでき
た磁性膜3はX線回析により非晶質であることを
確認した。また組成分析の結果この膜は(Gd0.5
Tb0.50.25(Fe0.7 Co0.30.75であり、膜面に垂
直方向に磁化容易軸を有することを確認した。カ
ー回転角は発振波長633nmのHeNeレーザを用い
た測定の結果、0.37度、キユリー温度は280度で
あつた。 次に、透明膜4及び磁性膜5を成膜する際、前
記透明膜2及び磁性膜3を成膜するのと、同一の
方法、条件で、真空を破らずに連続的に成膜し
た。さらに、干渉膜6を高周波スパツタ法で成膜
した。この際ターゲツトとしてAlNを用いる以
外は透明膜2及び4を成膜するのと同様に膜厚
1000Åを有する膜を成膜した。その上に蒸着法に
よつて500ÅのCuを成膜し、反射膜7とした。こ
の反射膜の材料をAu、Ag、Alに変えても回転角
に変化はなかつた。 更にその上に蒸着法によつて2000ÅのSiO薄膜
を成膜し、保護膜8とした。 以上のようにして作製した本発明の光熱磁気記
録媒体に対して発振波長830nmのHeNeレーザ光
を基板1側から入射させた場合に得られたカー回
転角は1.5度であり、希土類−遷移金属合金非晶
質膜を一層のみ有する光熱磁気記録媒体のカー回
転角0.25〜0.35度に比較して大幅に増大させるこ
とができた。 参考例 2 参考例1における反射膜7、保護膜8を成膜し
ない以外は、参考例1と同様にして光熱磁気記録
媒体を作製した。これを参考例1と同様にしてカ
ー回転角を測定した結果、値は0.80度であつた。 参考例1及び参考例2との比較から本発明の光
熱磁気記録媒体における反射膜7は明らかにみか
けの磁気光学効果を増大させる効果を有してい
る。 参考例 3 参考例1における、透明膜と磁性膜の組合せを
1組にした以外は参考例1と同様にして光熱磁気
記録媒体を作製した。これを参考例1と同様にし
てカー回転角を測定したところ、1.20度であつ
た。 参考例1と参考例3と比較すると、本発明の光
熱磁気記録媒体において透明膜と磁性膜の組合せ
数を増したことによる優位性は明らかである。 参考例 4、5 参考例1において透明膜と合せ数を3組にした
以外は参考例1と同様にして光熱磁気記録媒体を
作製した。これを参考例1と同様にしてカー回転
角を測定した結果を表2に示す。このように、透
明膜と磁性膜の組の数を増していくとカー回転角
は少し増加した。
The photothermal magnetic recording medium of the present invention makes it possible to increase the apparent Kerr rotation angle compared to conventional photothermal magnetic recording media having various layer structures, making it possible to obtain a high S/N ratio during reproduction. It became possible. [Example] Hereinafter, the present invention will be explained in detail by giving examples. Reference Example 1 A 3-inch square white glass plate was used as a substrate, and a transparent film 2 made of MgF 2 was formed on the substrate 1 using a high frequency sputtering method. At this time, a 5-inch φ MgF 2 compound was used as a target, and the inside of the vacuum chamber was
After evacuation to about ×10 -5 Pa, Ar gas was introduced to 0.6 Pa, and film formation was performed by supplying sputtering power of 200 W from a high frequency power source. Next, a magnetic film 3 was formed on the transparent film 2 using a high frequency sputtering method. At this time, as a target, 1 was placed on a 5 inch φ Fe 70 Co 30 (atomic%) alloy.
The film was formed using uniformly arranged cm square GdTb alloy pieces with a composition ratio of 1:1, and using the same gas pressure and sputtering power conditions as those used to form transparent film 2. . The film thickness was set to 20 to 300 Å so that the film had a light transmittance of 10% or more. The magnetic film 3 thus formed was confirmed to be amorphous by X-ray diffraction. Also, as a result of compositional analysis, this film has (Gd 0.5
Tb 0.5 ) 0.25 (Fe 0.7 Co 0.3 ) 0.75 , and it was confirmed that the film had an axis of easy magnetization perpendicular to the film surface. As a result of measurement using a HeNe laser with an oscillation wavelength of 633 nm, the Kerr rotation angle was 0.37 degrees and the Curie temperature was 280 degrees. Next, when forming the transparent film 4 and the magnetic film 5, the films were formed continuously without breaking the vacuum using the same method and conditions as those used to form the transparent film 2 and the magnetic film 3. Furthermore, an interference film 6 was formed by a high frequency sputtering method. At this time, the film thickness was the same as that for forming transparent films 2 and 4 except that AlN was used as the target.
A film having a thickness of 1000 Å was formed. A 500 Å thick Cu film was formed thereon by vapor deposition to form a reflective film 7. Even when the material of this reflective film was changed to Au, Ag, or Al, there was no change in the rotation angle. Further, a 2000 Å thin SiO film was formed thereon by vapor deposition to form a protective film 8. The Kerr rotation angle obtained when a HeNe laser beam with an oscillation wavelength of 830 nm was incident on the photothermal magnetic recording medium of the present invention produced as described above from the substrate 1 side was 1.5 degrees, and the rare earth-transition metal The Kerr rotation angle could be significantly increased compared to the 0.25 to 0.35 degree of a photothermal magnetic recording medium having only one layer of alloy amorphous film. Reference Example 2 A photothermal magnetic recording medium was produced in the same manner as in Reference Example 1, except that the reflective film 7 and protective film 8 in Reference Example 1 were not formed. The Kerr rotation angle was measured in the same manner as in Reference Example 1, and the value was 0.80 degrees. From a comparison with Reference Examples 1 and 2, the reflective film 7 in the photothermal magnetic recording medium of the present invention clearly has the effect of increasing the apparent magneto-optic effect. Reference Example 3 A photothermal magnetic recording medium was produced in the same manner as in Reference Example 1 except that the transparent film and magnetic film were combined into one set. The Kerr rotation angle was measured in the same manner as in Reference Example 1 and found to be 1.20 degrees. Comparing Reference Example 1 and Reference Example 3, it is clear that the advantage of increasing the number of combinations of transparent films and magnetic films in the photothermal magnetic recording medium of the present invention is obvious. Reference Examples 4 and 5 A photothermal magnetic recording medium was produced in the same manner as in Reference Example 1, except that three sets of transparent films were used in Reference Example 1. The Kerr rotation angle was measured in the same manner as in Reference Example 1, and the results are shown in Table 2. In this way, as the number of pairs of transparent films and magnetic films was increased, the Kerr rotation angle slightly increased.

【表】 参考例 4 参考例1において磁性膜5を成膜する際にター
ゲツトとして6インチφのFeを用い、その上に
1cm角のTb合金を並べたものを用いて高周波ス
パツタ法によつて成膜する以外は参考例1と同様
にして光熱磁気記録媒体を作製した。TbFe膜の
カー回転角は0.21度である。これを参考例1と同
様にしてカー回転角を測定したところ1.45度であ
つた。TbFeはキユリー温度が125℃であり、
GdTbFeCoの280℃に比較して低いため、記録効
率の点で有利である。実際、発振波長8300Åパワ
ー10mWの半導体レーザを用いてこの光熱磁気記
録媒体に書込みを試みたところ、1.2μmのスポツ
トが形成されることを確認した。 このように、TbFe膜を基板1側から第1番目
の磁性膜以外の磁性膜として用いると、再生効率
をあまり劣化させることなく、より記録効率を高
めることができた。 参考例 6、7 参考例1において非晶質磁性膜3および5を形
成する際に5インチφの(Fe70 Co30)(原子%)
円板上に1cm角のGdDy合金(1:1)、或いは
TbDy合金(1:1)を並べたものをターゲツト
として用いる以外は参考例1と同様にして光熱磁
気記録媒体を作製した。これを参考例1と同様に
してカー回転角を測定した結果を表3に示す。
[Table] Reference Example 4 When forming the magnetic film 5 in Reference Example 1, a 6-inch φ Fe was used as the target, and 1 cm square Tb alloy was arranged on top of it by high-frequency sputtering. A photothermal magnetic recording medium was produced in the same manner as in Reference Example 1 except for the film formation. The Kerr rotation angle of the TbFe film is 0.21 degrees. The Kerr rotation angle was measured in the same manner as in Reference Example 1 and found to be 1.45 degrees. TbFe has a Kyrie temperature of 125℃,
It is lower than the 280°C of GdTbFeCo, which is advantageous in terms of recording efficiency. In fact, when writing was attempted on this photothermal magnetic recording medium using a semiconductor laser with an oscillation wavelength of 8300 Å and a power of 10 mW, it was confirmed that a 1.2 μm spot was formed. In this way, when the TbFe film was used as a magnetic film other than the first magnetic film from the substrate 1 side, the recording efficiency could be further improved without significantly deteriorating the reproduction efficiency. Reference Examples 6 and 7 When forming amorphous magnetic films 3 and 5 in Reference Example 1, (Fe 70 Co 30 ) (atomic %) of 5 inches φ was used.
1 cm square GdDy alloy (1:1) on a disk, or
A photothermal magnetic recording medium was produced in the same manner as in Reference Example 1 except that an array of TbDy alloys (1:1) was used as the target. The Kerr rotation angle was measured in the same manner as in Reference Example 1, and the results are shown in Table 3.

【表】 以上述べた実施例から明らかなように、本発明
の光熱磁気記録媒体により再生時に大きなカー回
転角を得ることが可能となり、再生信号レベルが
向上した。また、非晶質磁性薄膜と透明膜との積
層構造体を3単位或いは4単位有するような光熱
磁気記録媒体のカー回転角はそれを2単位有する
記録媒体と同等又はそれ以上の値を示した。この
ため、磁気光学効果を有する薄膜として希土類−
遷移金属からなる非晶質磁性薄膜を用いる場合は
前記の積層構造体の数は2ないし3単位が適当で
ある。しかし、磁気光学効果を有する薄膜として
透光性のよいものを用いれば磁性層を透過する時
の光量損失が減少するのでこの限りではない。 また、最も基板側の磁性膜以外の磁性膜を、最
も基板側の磁性膜よりキユリー温度が低い希土類
−遷移金属合金から形成することで、再生効率を
劣化させることなく記録効率を高めることが可能
となつた。
[Table] As is clear from the examples described above, the photothermal magnetic recording medium of the present invention made it possible to obtain a large Kerr rotation angle during reproduction, and the reproduction signal level was improved. In addition, the Kerr rotation angle of a photothermal magnetic recording medium having 3 or 4 units of a laminated structure of an amorphous magnetic thin film and a transparent film was equal to or greater than that of a recording medium having 2 units. . For this reason, rare earth metals can be used as thin films with magneto-optic effects.
When an amorphous magnetic thin film made of a transition metal is used, the number of laminated structures is suitably 2 to 3 units. However, this is not the case because if a thin film having a magneto-optic effect is used that has good light transmittance, the amount of light lost when passing through the magnetic layer will be reduced. In addition, by forming the magnetic films other than the magnetic film closest to the substrate from a rare earth-transition metal alloy whose Curie temperature is lower than that of the magnetic film closest to the substrate, it is possible to increase recording efficiency without deteriorating playback efficiency. It became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光熱磁気記録媒体の一実
施例を示す模式断面図である。 1……基板、2,4……透明膜、3,5……非
晶質磁性薄膜、6……干渉膜、7……反射膜、8
……保護膜。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a photothermal magnetic recording medium according to the present invention. 1... Substrate, 2, 4... Transparent film, 3, 5... Amorphous magnetic thin film, 6... Interference film, 7... Reflective film, 8
……Protective film.

Claims (1)

【特許請求の範囲】[Claims] 1 透明膜と、該透明膜上に形成された希土類−
遷移金属合金からなる磁性膜とからなる一単位の
積層構造体が基板上に前記透明膜を基板側にして
少なくとも二単位以上積層されていると共に最も
基板側の磁性膜以外の磁性膜は最も基板側の磁性
膜よりキユリー温度が低い希土類−遷移金属合金
からなり、更に、基板から最も離れた前記積層構
造体の基板側とは逆側には透明膜と反射膜が形成
されていることを特徴とする光熱磁気記録媒体。
1 Transparent film and rare earth formed on the transparent film
At least two units of a laminated structure consisting of a magnetic film made of a transition metal alloy are laminated on a substrate with the transparent film facing the substrate, and the magnetic films other than the magnetic film closest to the substrate are stacked on the substrate. It is made of a rare earth-transition metal alloy whose Curie temperature is lower than that of the magnetic film on the side, and furthermore, a transparent film and a reflective film are formed on the opposite side of the laminated structure from the substrate side that is farthest from the substrate. A photothermal magnetic recording medium.
JP15216484A 1984-07-24 1984-07-24 Optothermomagnetic recording medium Granted JPS6132242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15216484A JPS6132242A (en) 1984-07-24 1984-07-24 Optothermomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15216484A JPS6132242A (en) 1984-07-24 1984-07-24 Optothermomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6132242A JPS6132242A (en) 1986-02-14
JPH0555941B2 true JPH0555941B2 (en) 1993-08-18

Family

ID=15534421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15216484A Granted JPS6132242A (en) 1984-07-24 1984-07-24 Optothermomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6132242A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071559B2 (en) * 1986-05-30 1995-01-11 住友金属鉱山株式会社 Magneto-optical disk
JP2578418B2 (en) * 1986-12-29 1997-02-05 三菱化学株式会社 Method for manufacturing magneto-optical recording medium
JPH0823939B2 (en) * 1989-05-17 1996-03-06 三洋電機株式会社 Optical recording medium and manufacturing method thereof
JPH04114667A (en) * 1990-09-03 1992-04-15 Suishiyou:Kk Organic halogenide decomposition treating device
JP3808917B2 (en) * 1995-07-20 2006-08-16 オリンパス株式会社 Thin film manufacturing method and thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552535A (en) * 1978-10-12 1980-04-17 Nippon Hoso Kyokai <Nhk> Magnetic recording medium
JPS58153244A (en) * 1982-03-05 1983-09-12 Matsushita Electric Ind Co Ltd Photomagnetic recording medium
JPS59148161A (en) * 1983-02-14 1984-08-24 Seiko Instr & Electronics Ltd Photomagnetic disk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552535A (en) * 1978-10-12 1980-04-17 Nippon Hoso Kyokai <Nhk> Magnetic recording medium
JPS58153244A (en) * 1982-03-05 1983-09-12 Matsushita Electric Ind Co Ltd Photomagnetic recording medium
JPS59148161A (en) * 1983-02-14 1984-08-24 Seiko Instr & Electronics Ltd Photomagnetic disk

Also Published As

Publication number Publication date
JPS6132242A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
JP3072812B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
US4753853A (en) Double-layered magnetooptical recording medium
EP0621592B1 (en) Magnetooptical recording medium, method for producing the same, method for recording or reproducing information in or from the same
US5738950A (en) Magnetooptical recording medium
JPS6148148A (en) Thermooptical magnetic recording medium
JPH04364249A (en) Magneto-optical recording medium
JPH0555941B2 (en)
US5958575A (en) Magneto-optical recording medium
JPS60107751A (en) Photothermomagnetic recording medium
EP0350010B1 (en) Magneto-optical recording medium
JPS60219655A (en) Optical recording medium
JPH0232690B2 (en)
JP2550633B2 (en) Photothermal magnetic recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPH0350344B2 (en)
JPH0528555A (en) Magneto-optical recording medium
JPS62209750A (en) Photomagnetic recording medium
JPS61278061A (en) Photomagnetic recording medium
JP2528184B2 (en) Magneto-optical recording medium
JPH0690813B2 (en) Amorphous magneto-optical layer
JPS62172547A (en) Photomagnetic recording medium
JPH0782669B2 (en) Magneto-optical recording medium
JPS6148151A (en) Optical recording medium
JPH07262633A (en) Magneto-optical recording medium
JP2882915B2 (en) Magneto-optical recording medium