JPH0554976U - Low temperature cooling device - Google Patents

Low temperature cooling device

Info

Publication number
JPH0554976U
JPH0554976U JP11202091U JP11202091U JPH0554976U JP H0554976 U JPH0554976 U JP H0554976U JP 11202091 U JP11202091 U JP 11202091U JP 11202091 U JP11202091 U JP 11202091U JP H0554976 U JPH0554976 U JP H0554976U
Authority
JP
Japan
Prior art keywords
temperature cooling
liquid nitrogen
vacuum
low
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11202091U
Other languages
Japanese (ja)
Inventor
博則 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP11202091U priority Critical patent/JPH0554976U/en
Publication of JPH0554976U publication Critical patent/JPH0554976U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 本考案の目的は、外側が真空遮断された構造
体の内側に形成された閉囲空間内で液体窒素、液体ヘリ
ウム等の低温冷却媒体を気化させてその蒸発潜熱によ
り、構造体を冷却するに際し、構造体の所要強度を低減
できるようにした低温冷却装置を提供する 【構成】 真空装置を備えて、液体窒素、液体ヘリウム
等の低温冷却媒体を気化させる閉囲空間の圧力を0.2
気圧(絶対)以下になるようにする。
(57) [Summary] [Object] The purpose of the present invention is to vaporize a low-temperature cooling medium such as liquid nitrogen or liquid helium by vaporizing it in an enclosed space formed inside a structure whose outside is vacuum-shielded. To provide a low-temperature cooling device capable of reducing the required strength of a structure when cooling the structure by latent heat. [Constitution] A vacuum device is provided to close a low-temperature cooling medium such as liquid nitrogen or liquid helium. The pressure in the enclosure is 0.2
Keep it below atmospheric pressure (absolute).

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial application]

本考案は、外側が真空断熱された構造体の内側に形成された閉囲空間内で気化 させた液体窒素、液体ヘリウム等の低温冷却媒体の蒸発潜熱により、構造体を冷 却する低温冷却装置、特に前記構造体に高温超電導体が配設された機器、例えば 超電導磁気シールド等を冷却する低温冷却装置に関する。 The present invention is a low-temperature cooling device that cools a structure by the latent heat of vaporization of a low-temperature cooling medium such as liquid nitrogen or liquid helium that is vaporized in an enclosed space formed inside a structure that is vacuum-insulated on the outside. In particular, the present invention relates to a low-temperature cooling device for cooling a device in which a high-temperature superconductor is arranged in the structure, such as a superconducting magnetic shield.

【0002】[0002]

【従来の技術】[Prior Art]

構造体、例えばその構造体の表面に高温超電導体を有する超電導磁気シールド 等の機器を極低温に冷却する場合には、周囲との断熱性を良くして冷却効率を上 げるために構造体を真空中に配置して真空断熱方式により外部からの熱侵入を防 止しながら、構造体の内側に形成された閉囲空間内で液体窒素、液体ヘリウム等 の低温冷却媒体を気化させてその蒸発潜熱により、構造体を冷却している。 従来の低温冷却装置では、低温冷却媒体が気化する閉囲空間は大気圧と同じ圧 力になっているので、構造体は周囲の真空環境との圧力差に抗するために高い機 械的強度を必要とし、そのため重量が重くかつ構造も複雑となり、更には重い重 量と複雑な構造のため構造体の冷却性に制約を加えていた。 When cooling a structure, for example, a device such as a superconducting magnetic shield that has a high-temperature superconductor on the surface of the structure, to a very low temperature, the structure should be improved in order to improve the heat insulation efficiency with the surroundings and to improve the cooling efficiency. Is placed in a vacuum to prevent heat intrusion from the outside by a vacuum heat insulation method, and a low-temperature cooling medium such as liquid nitrogen or liquid helium is vaporized in the enclosed space formed inside the structure. The structure is cooled by the latent heat of vaporization. In the conventional low-temperature cooling device, the enclosed space where the low-temperature cooling medium vaporizes has the same pressure as the atmospheric pressure, so the structure has high mechanical strength to withstand the pressure difference from the surrounding vacuum environment. Therefore, the weight is heavy and the structure is complicated, and the heavy weight and the complicated structure impose a restriction on the cooling property of the structure.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案の目的は、上述のようにして上記構造体を冷却するに際し、構造体の所 要強度を低減できるようにした低温冷却装置を提供することである。 An object of the present invention is to provide a low-temperature cooling device capable of reducing the required strength of the structure when cooling the structure as described above.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案者は、鋭意検討の結果、構造体の機械的強度を低減する解決法として、 構造体の内側に形成され、低温冷却媒体が気化する閉囲空間と構造体の外側の真 空環境との圧力差を減少させることが有効であることを知見した。 即ち,上記目的は、次の本考案に係る特徴を有する低温冷却装置により達成され た。それは、外側が真空断熱された構造体の内側に形成された閉囲空間内で気化 させた液体窒素、液体ヘリウム等の低温冷却媒体の蒸発潜熱により前記構造体を 冷却するに際し、真空装置を備えて閉囲空間の圧力を0.2気圧(絶対)以下に なるようにしたことを特徴とする低温冷却装置である。 As a solution to reduce the mechanical strength of the structure, the present inventor, as a result of diligent study, has developed a structure in which the low temperature cooling medium is vaporized into an enclosed space and a space outside the structure. It was found that it is effective to reduce the pressure difference between. That is, the above object was achieved by a low temperature cooling device having the following features of the present invention. It is equipped with a vacuum device when the structure is cooled by the latent heat of vaporization of a low-temperature cooling medium such as liquid nitrogen or liquid helium vaporized in an enclosed space formed inside the structure whose outside is vacuum-insulated. The low-temperature cooling device is characterized in that the pressure in the enclosed space is set to 0.2 atm (absolute) or less.

【0005】 構造体10は、図1に示すように、外側が真空断熱層11により真空断熱され 、内側には液体窒素、液体ヘリウム等の低温冷却媒体が気化することにより冷却 される被冷却空間12を閉囲している。 本考案に係る低温冷却装置は、被冷却空間12と連通する真空ポンプ等の真空 装置14と、被冷却空間12内に設けられた液体冷媒気化装置18に液体冷媒を 供給する液体冷媒供給装置16とを備え、更に好適には液体冷媒供給管20と真 空装置の吸気管22とにそれぞれ供給量調節弁24と排気量調節弁26とを備え ている。尚、真空装置14、液体冷媒供給装置16、液体冷媒気化装置18等は 、既知の装置である。 被冷却空間12を0.2気圧以下の所定圧力になるように真空装置14により 減圧し、減圧された被冷却空間12に低温冷却媒体を導入して蒸発させ、その蒸 発潜熱により被冷却空間12を閉囲する構造体10を冷却する。 被冷却空間12の気圧を0.2気圧以下としたのは、0.2気圧以上の圧力で あると本考案の効果が顕著でないからである。 以上の構成により、被冷却空間の圧力が低くなり、周囲の真空との圧力差が減 少するので、被冷却空間を閉囲する構造体の所要強度を低減することが出来る。 またこのとき気化したガスは空間に拡がり易く被冷却空間内及び構造体に存在す る温度差を小さくする働きもする。 以下に、添付図面を参照して実施例に基づき本考案をより詳細に説明する。As shown in FIG. 1, the structure 10 is vacuum-insulated on the outer side by a vacuum heat-insulating layer 11, and is cooled on the inner side by cooling a low-temperature cooling medium such as liquid nitrogen or liquid helium by vaporization. 12 are closed. The low-temperature cooling device according to the present invention is a liquid refrigerant supply device 16 for supplying a liquid refrigerant to a vacuum device 14 such as a vacuum pump communicating with the cooled space 12 and a liquid refrigerant vaporizer 18 provided in the cooled space 12. More preferably, the liquid refrigerant supply pipe 20 and the intake pipe 22 of the air-gap device are provided with a supply amount control valve 24 and an exhaust amount control valve 26, respectively. The vacuum device 14, the liquid refrigerant supply device 16, the liquid refrigerant vaporization device 18, etc. are known devices. The space 12 to be cooled is decompressed by the vacuum device 14 to a predetermined pressure of 0.2 atm or less, and the low-temperature cooling medium is introduced into the decompressed space 12 to be evaporated, and the space to be cooled is evaporated by the latent heat of vaporization. The structure 10 surrounding 12 is cooled. The pressure of the cooled space 12 is set to 0.2 atm or less because the effect of the present invention is not remarkable when the pressure is 0.2 atm or more. With the above configuration, the pressure in the cooled space is reduced and the pressure difference from the surrounding vacuum is reduced, so that the required strength of the structure surrounding the cooled space can be reduced. Further, at this time, the vaporized gas easily spreads in the space and also serves to reduce the temperature difference existing in the cooled space and the structure. Hereinafter, the present invention will be described in more detail based on embodiments with reference to the accompanying drawings.

【0006】[0006]

【実施例】【Example】

第2図に超電導磁気シールドを冷却するための本考案に係る低温冷却装置の実 施例装置50を示す。 超電導磁気シールドは、図2に示すように長手方向線に沿った断面がヘアピン 状の超電導体製円筒体28と、該超電導体製円筒体28の形状に沿ってその周囲 を包囲する真空容器30とから構成されている。真空容器30と超電導体製円筒 体28との間の2個の外側環状空間部32と内側環状空間部34とは、本考案に 係る装置の真空装置とは別の排気系により0.0001torrに保持されて、超電 導体製円筒体28を真空断熱している。 超電導体製円筒体28は、長さ2mの2個の同心状の外側円筒壁36A、内側 円筒壁36Bと、それぞれの一方の端面を閉じる同心の外側半球壁38A、及び 内側半球壁38Bと、それぞれの他方の端面が形成する環状面を閉じる環状板4 0からなる構造体である。超電導体製円筒体28は、その内側に被冷却空間12 を閉囲形成している。超電導体製円筒体28の円筒壁36B、半球壁38Bの外 側、即ち真空容器30の壁と対面する側には、それぞれ300ミクロン厚さの高 温超電導体層42が高温超電導体のコ─ティングにより形成されている。 FIG. 2 shows an embodiment device 50 of a low temperature cooling device according to the present invention for cooling a superconducting magnetic shield. As shown in FIG. 2, the superconducting magnetic shield includes a cylindrical body 28 made of a superconductor having a hairpin-shaped cross section along a longitudinal line, and a vacuum container 30 surrounding the circumference of the cylindrical body 28 made of a superconductor. It consists of and. The two outer annular spaces 32 and the inner annular spaces 34 between the vacuum container 30 and the superconductor cylinder 28 are adjusted to 0.0001 torr by an exhaust system different from the vacuum device of the device according to the present invention. It is held and the superconductor cylinder 28 is vacuum-insulated. The superconductor cylindrical body 28 includes two concentric outer cylindrical walls 36A and inner cylindrical walls 36B having a length of 2 m, and concentric outer hemispherical walls 38A and inner hemispherical walls 38B for closing one end face of each of them. The structure is composed of an annular plate 40 that closes the annular surface formed by the other end surface of each. The superconductor cylinder 28 encloses the cooled space 12 inside thereof. On the outer side of the cylindrical wall 36B and the hemispherical wall 38B of the superconductor cylinder 28, that is, on the side facing the wall of the vacuum container 30, a high-temperature superconductor layer 42 having a thickness of 300 microns is formed as a high-temperature superconductor layer. It is formed by tinging.

【0007】 低温冷却装置50は、被冷却空間12と連通する真空ポンプ14と、被冷却空 間12に設けられた液体窒素気化装置18と、液体窒素気化装置18に液体窒素 を供給する液体窒素供給装置16とを備えている。 被冷却空間12の圧力を真空ポンプ14により0.2気圧(絶対)に維持しな がら、液体窒素供給管20を介して液体窒素供給装置16から液体窒素気化装置 18に液体窒素を導いて気化させることにより、超電導体製円筒体28の超電導 体層42を66Kに冷却し、領域44に超電導磁気シールド効果を発揮させるこ とができる。 超電導体製円筒体28、即ち被冷却空間12を閉囲する構造体の内外圧力差は 、従来の約1.0気圧に較べて、0.2気圧と大幅に低下するので、超電導体製 円筒体28の機械的所要強度はそれに相応して低減し、その構造は非常に簡単に なる。The low-temperature cooling device 50 includes a vacuum pump 14 that communicates with the cooled space 12, a liquid nitrogen vaporizer 18 provided in the cooled space 12, and liquid nitrogen that supplies liquid nitrogen to the liquid nitrogen vaporizer 18. And a supply device 16. While maintaining the pressure of the cooled space 12 at 0.2 atm (absolute) by the vacuum pump 14, the liquid nitrogen is supplied from the liquid nitrogen supply device 16 to the liquid nitrogen vaporizer 18 via the liquid nitrogen supply pipe 20 and vaporized. By doing so, the superconducting layer 42 of the superconducting cylinder 28 can be cooled to 66K and the region 44 can exhibit the superconducting magnetic shield effect. Since the pressure difference between the inside and outside of the superconductor cylinder 28, that is, the structure surrounding the cooled space 12 is significantly reduced to 0.2 atm compared to the conventional pressure of about 1.0 atm, the superconductor cylinder 28 is The mechanical strength requirements of the body 28 are correspondingly reduced, and its construction is very simple.

【0008】 第3図に別の超電導磁気シールドを冷却するための本考案に係る低温冷却装置 の別の実施例装置60を示す。 超電導磁気シールドは、超電導体製円筒体の長さが3mであること以外は全て 、前述の超電導磁気シールドと同じ構成になっている。よって、同じ部品には同 じ参照番号を附し、かつその説明を省略する。 低温冷却装置60は、低温冷却装置50の真空ポンプ14と液体窒素供給装置 16と液体窒素気化装置18に加えて、供給量調節弁24と排気量調節弁26と をそれぞれ液体窒素供給管20及び真空ポンプ14の吸気管22に備え、供給量 調節弁24及び排気量調節弁26を調節することにより液体窒素供給量及び排気 量をそれぞれ変化させることができる。FIG. 3 shows another embodiment apparatus 60 of the low temperature cooling apparatus according to the present invention for cooling another superconducting magnetic shield. The superconducting magnetic shield has the same structure as the above-mentioned superconducting magnetic shield except that the length of the superconducting cylindrical body is 3 m. Therefore, the same parts are designated by the same reference numerals and the description thereof is omitted. In addition to the vacuum pump 14, the liquid nitrogen supply device 16 and the liquid nitrogen vaporization device 18 of the low temperature cooling device 50, the low temperature cooling device 60 includes a supply amount control valve 24 and an exhaust amount control valve 26 respectively in the liquid nitrogen supply pipe 20 and the liquid nitrogen supply pipe 20. The liquid nitrogen supply amount and the exhaust amount can be changed by adjusting the supply amount adjusting valve 24 and the exhaust amount adjusting valve 26 provided in the intake pipe 22 of the vacuum pump 14.

【0009】 低温冷却装置60は、0.2気圧(絶対)以下なっている被冷却空間12に、 液体窒素を導入し、気化させ、その蒸発潜熱により被冷却空間12を閉囲する超 電導体製円筒体28を冷却する。真空ポンプ14の排気量を排気量調節弁26に より調節して被冷却空間12の圧力を所要真空圧にすることにより、超電導体製 円筒体28の高温超電導体層42を63Kから78Kの間の、又はその以上の所 望の温度に冷却し、かつその温度に保持して領域44において超電導磁気シール ド効果を発揮させることができる。 また、液体窒素供給管20を介して液体窒素供給装置16から液体窒素気化装 置18に供給される液体窒素の供給量を供給量調節弁24により調節することに より、被冷却空間12に保持される液体窒素量を調整することができる。更に、 気化したガスの滞留のため又は循環不十分のため、温度が十分低下しない部分が 生じる場合には、気化する量以上に液体窒素を導入し、液体窒素を直接接触させ ることによって所要温度に均一に冷却が出来る。The low-temperature cooling device 60 is a superconductor that introduces liquid nitrogen into the cooled space 12 at a pressure of 0.2 atm (absolute) or less to vaporize it and to enclose the cooled space 12 by the latent heat of vaporization thereof. The cylindrical body 28 is cooled. By adjusting the exhaust amount of the vacuum pump 14 by the exhaust amount adjusting valve 26 to bring the pressure of the cooled space 12 to the required vacuum pressure, the high temperature superconductor layer 42 of the superconductor cylindrical body 28 is placed between 63K and 78K. The temperature can be cooled to a desired temperature or higher, and can be maintained at that temperature to exert the superconducting magnetic shield effect in the region 44. Further, the supply amount adjusting valve 24 adjusts the supply amount of the liquid nitrogen supplied from the liquid nitrogen supplying device 16 to the liquid nitrogen vaporizing device 18 through the liquid nitrogen supplying pipe 20, so that the liquid nitrogen is kept in the cooled space 12. The amount of liquid nitrogen used can be adjusted. Furthermore, if there is a portion where the temperature does not drop sufficiently due to the accumulation of vaporized gas or insufficient circulation, introduce the liquid nitrogen in excess of the amount that vaporizes and bring the liquid nitrogen into direct contact with the required temperature. Can be uniformly cooled.

【0010】[0010]

【考案の効果】[Effect of the device]

本考案は、外側が真空断熱された構造体の内側に閉囲された被冷却空間内で気 化させた液体窒素、液体ヘリウム等の低温冷却媒体の蒸発潜熱により構造体を極 低温に冷却するに際し、被冷却空間を減圧状態に維持することにより、構造体、 例えば超電導磁気シールド等の構造体の所要強度を大幅に低下させることができ る。 従って、本考案は、技術上及び医療上有用な超電導磁気シールド等の用途に使 用でき、工業的価値も大である。 The present invention cools a structure to an extremely low temperature by the latent heat of vaporization of a low-temperature cooling medium such as liquid nitrogen or liquid helium vaporized in a space to be cooled that is enclosed inside a structure that is vacuum-insulated on the outside. In this case, the required strength of the structure, for example, the structure such as the superconducting magnetic shield, can be significantly reduced by maintaining the decompressed space in the cooled space. Therefore, the present invention can be used for technically and medically useful applications such as superconducting magnetic shields, and has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る低温冷却装置を模式的に示す原理
図である。
FIG. 1 is a principle view schematically showing a low temperature cooling device according to the present invention.

【図2】超電導磁気シールドを冷却するための本考案に
係る実施例装置の模式的系統図であって、超電導磁気シ
ールドはその断面が図解的に示されている。
FIG. 2 is a schematic system diagram of a device for cooling a superconducting magnetic shield according to an embodiment of the present invention, in which a cross section of the superconducting magnetic shield is schematically illustrated.

【図3】超電導磁気シールドを冷却するための本考案に
係る別の実施例装置の模式的系統図であって、超電導磁
気シールドはその断面が図解的に示されている。
FIG. 3 is a schematic system diagram of another embodiment device for cooling a superconducting magnetic shield according to the present invention, in which a cross section of the superconducting magnetic shield is schematically shown.

【符号の説明】[Explanation of symbols]

10 構造体 11 真空断熱層 12 被冷却空間 14 真空ポンプ 16 液体窒素供給装置 18 液体冷媒気化装置 20 液体冷媒供給管 22 真空装置の吸気管 24 液体窒素供給量調節弁 26 排気量調節弁 28 超電導体製円筒体 30 真空容器 32 外側環状空間部 34 内側環状空間部 36 円筒壁 38 半球壁 40 環状板 42 高温超電導体層 50 本考案に係る低温冷却装置の実施例装置 60 本考案に係る低温冷却装置の別の実施例装置 10 Structure 11 Vacuum Insulation Layer 12 Cooled Space 14 Vacuum Pump 16 Liquid Nitrogen Supply Device 18 Liquid Refrigerant Vaporizer 20 Liquid Refrigerant Supply Pipe 22 Vacuum Device Intake Pipe 24 Liquid Nitrogen Supply Volume Control Valve 26 Exhaust Volume Control Valve 28 Superconductor Cylindrical body 30 Vacuum container 32 Outer annular space portion 34 Inner annular space portion 36 Cylindrical wall 38 Hemispherical wall 40 Annular plate 42 High temperature superconductor layer 50 Example device of low temperature cooling device according to the present invention 60 Low temperature cooling device according to the present invention Another embodiment of the device

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 外側が真空断熱された構造体の内側に形
成された閉囲空間内で気化させた液体窒素、液体ヘリウ
ム等の低温冷却媒体の蒸発潜熱により前記構造体を冷却
するに際し、真空装置を備えて前記閉囲空間の圧力を
0.2気圧(絶対)以下になるようにしたことを特徴と
する冷却装置。
1. When cooling the structure by the latent heat of vaporization of a low-temperature cooling medium such as liquid nitrogen or liquid helium vaporized in an enclosed space formed inside the structure whose outer side is vacuum-insulated, a vacuum is used. A cooling device provided with a device for controlling the pressure of the enclosed space to 0.2 atm (absolute) or less.
JP11202091U 1991-12-25 1991-12-25 Low temperature cooling device Pending JPH0554976U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11202091U JPH0554976U (en) 1991-12-25 1991-12-25 Low temperature cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11202091U JPH0554976U (en) 1991-12-25 1991-12-25 Low temperature cooling device

Publications (1)

Publication Number Publication Date
JPH0554976U true JPH0554976U (en) 1993-07-23

Family

ID=14575978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11202091U Pending JPH0554976U (en) 1991-12-25 1991-12-25 Low temperature cooling device

Country Status (1)

Country Link
JP (1) JPH0554976U (en)

Similar Documents

Publication Publication Date Title
US3122004A (en) Apparatus for cryogenic refrigeration
JPH09232640A (en) Permanent magnet system
JP2005344991A (en) Cryogenic cryostat
JPH0554976U (en) Low temperature cooling device
US7263841B1 (en) Superconducting magnet system with supplementary heat pipe refrigeration
JPS6290910A (en) Cryogenic device
JP3358053B2 (en) Liquid nitrogen recondenser
US4364235A (en) Helium-cooled cold surface, especially for a cryopump
JPH04116907A (en) Superconductive cooling device
JPH0353404Y2 (en)
JP3523085B2 (en) Transfer line
JPH04116363A (en) Cryogenic apparatus
JP2760858B2 (en) Cryostat for superconducting device
JPH0447978Y2 (en)
JPS63274117A (en) Very low temperature heat-insulating supporting member
JPH05315129A (en) Cryostat
JPH064567Y2 (en) Cryogenic container
JPS63299180A (en) Superconducting apparatus
JPH06101946A (en) Cryogenic container
JPH0633855B2 (en) Liquid helium storage equipment
JPH0511403B2 (en)
JPH0444369A (en) Superconducting magnet
JPH07176424A (en) Superconducting coil apparatus
JPH03260575A (en) Liquid hydrogen tank for slush hydrogen
JP2558510Y2 (en) Pressurized superfluid helium generator