JPH0553668A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPH0553668A
JPH0553668A JP3209548A JP20954891A JPH0553668A JP H0553668 A JPH0553668 A JP H0553668A JP 3209548 A JP3209548 A JP 3209548A JP 20954891 A JP20954891 A JP 20954891A JP H0553668 A JPH0553668 A JP H0553668A
Authority
JP
Japan
Prior art keywords
reactive power
inverter
difference
command
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209548A
Other languages
Japanese (ja)
Inventor
Hiroo Konishi
博雄 小西
Hiroshige Kawazoe
裕成 川添
Yukio Tokiwa
幸生 常盤
Tatsuto Nakajima
達人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP3209548A priority Critical patent/JPH0553668A/en
Publication of JPH0553668A publication Critical patent/JPH0553668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To speedily and stably control the advance and delay of the reactive power according to a command by corresponding to the change of system voltage. CONSTITUTION:The compensator is provided with a self-oscillation inverter 5 supplying the reactive power to the power system, an reactive power control means 20 inputting the difference between a command value Q and a detection value Q of the reactive power and calculating an amplitude command (k) of an inverter output voltage according to the difference at its output so as to reduce the difference, and compensation means 25 to 27 including an inverter control means 21 controlling the switching element of the inverter based on this amplitude command (k) and compensating the amplitude command (k) according to the detected value VS of the system voltage. The precedence control of the amplitude command according to the change of the system voltage enables the high-speed response as well as the stable control of the reactive power control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無効電力補償装置に係
り、特に進み遅れの無効電力を高速かつ安定に制御する
ものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a var compensator, and more particularly to a var compensator for controlling lagging reactive power at high speed and stably.

【0002】[0002]

【従来の技術】大規模電力系統において、系統の電圧安
定性を確保することは益々重要な課題となってきてお
り、各種の安定化対策がとられている。その一つとして
無効電力の供給、制御がある。無効電力の供給法には従
来から同期調相機、電力用コンデンサ、変圧器の負荷時
電圧切換等の方法があるが、最近は、優れた高速制御機
能を有する、インバ−タ方式またはサイリスタによるリ
アクトル制御方式等による静止形無効電力補償装置が着
目されている。
2. Description of the Related Art In a large-scale power system, ensuring the voltage stability of the system has become an increasingly important issue, and various stabilization measures have been taken. One of them is the supply and control of reactive power. Reactive power supply methods have traditionally included methods such as synchronous phase shifters, power capacitors, and voltage switching under load for transformers, but recently, reactors using an inverter method or thyristor that have an excellent high-speed control function. Attention is being paid to static var compensators based on control methods and the like.

【0003】この理由はは自励式直交変換装置の大容量
化等の実用化性能が高まり、電力機器への適用が可能に
なってきた点と、他の方式よりも高速制御が可能な点に
ある。この第1ステップとして電圧型の自励式インバ−
タを備えた進み及び遅れの無効電力を任意に制御できる
静止形無効電力補償装置の開発が行われている。
The reason for this is that the self-exciting orthogonal transformation device has been improved in practical performance such as large capacity and can be applied to electric power equipment, and that it can be controlled at higher speed than other systems. is there. As the first step, a voltage type self-excited inverter
A static var compensator equipped with a switch that can arbitrarily control leading and lagging reactive power has been developed.

【0004】図6に、この無効電力補償装置を含む電力
系統の1例を示す。図において、交流電源1は送電線2
を介して負荷3へ電力を供給している。コンデンサ4は
電圧型の自励式インバータ(以下、単にインバータとい
う)5の直流端に接続されている。インバ−タ5は自己
消弧機能を持ったGTO等のスイッチング素子6乃至1
1と、これらに逆並列に接続されたダイオ−ド12乃至
17で構成される。このインバ−タ5の交流端は変圧器
18を介して電力系統の送電線2に接続されている。コ
ンデンサ4とインバ−タ5と変圧器18とで無効電力補
償装置を構成する。また、制御回路として、直流電圧制
御回路19と無効電力制御回路20とPWM(パルス幅
変調)制御回路21とを設けている。
FIG. 6 shows an example of a power system including this reactive power compensator. In the figure, an AC power source 1 is a transmission line 2
Power is supplied to the load 3 via. The capacitor 4 is connected to a DC terminal of a voltage type self-excited inverter (hereinafter, simply referred to as an inverter) 5. The inverter 5 is a switching element 6 to 1 having a self-extinguishing function, such as GTO.
1 and diodes 12 to 17 connected in antiparallel to them. The AC end of the inverter 5 is connected to the power transmission line 2 of the electric power system via the transformer 18. The capacitor 4, the inverter 5 and the transformer 18 constitute a reactive power compensator. Further, a DC voltage control circuit 19, a reactive power control circuit 20, and a PWM (pulse width modulation) control circuit 21 are provided as control circuits.

【0005】直流電圧制御回路19は、加算器22によ
りコンデンサ4の端子電圧の目標値Ec*と検出値Ec
の差を入力し、比例積分演算処理等により、その差を零
または零近傍にするに必要なインバータ5の出力電圧V
iの位相指令θを演算して出力するようになっている。
また無効電力制御回路20は、加算器23により無効電
力の目標値Q*と検出値Qの差を入力し、比例積分演算
処理等により、その差を零または零近傍にするに必要な
インバータ5の出力電圧Viの振幅指令kを演算して出
力するようになっている。但し、振幅指令kは上記差が
零のときは「1」であり、その差の極性に応じて「1」
から増又は減するとともに、その差の大きさに応じた大
きさに制御される。これらの位相指令θと振幅指令kは
PWM制御回路21に入力される。PWM制御回路21
では、入力される位相指令θに合わせて搬送波および変
調波の位相を調整するとともに、振幅指令kに比例させ
て変調波の振幅を制御する。そして、調整された搬送波
を変調波と比較してゲートパルスを生成し、このゲート
パルスに合わせてスイッチング素子6乃至11をオン・
オフ制御する。これにより、進み・遅れの無効電力を制
御するようになっている。
The DC voltage control circuit 19 uses the adder 22 to set the target value Ec * and the detected value Ec of the terminal voltage of the capacitor 4.
Of the output voltage V of the inverter 5 required to bring the difference to zero or close to zero by inputting the difference
The phase command θ of i is calculated and output.
In addition, the reactive power control circuit 20 inputs the difference between the target value Q * and the detected value Q of the reactive power by the adder 23, and performs the proportional-plus-integral calculation process or the like to make the difference zero or near the inverter 5 necessary for making the difference near zero. The amplitude command k of the output voltage Vi is calculated and output. However, the amplitude command k is "1" when the difference is zero, and "1" depending on the polarity of the difference.
Is increased or decreased and the magnitude is controlled according to the magnitude of the difference. The phase command θ and the amplitude command k are input to the PWM control circuit 21. PWM control circuit 21
Then, the phases of the carrier wave and the modulated wave are adjusted in accordance with the input phase command θ, and the amplitude of the modulated wave is controlled in proportion to the amplitude command k. Then, the adjusted carrier wave is compared with the modulated wave to generate a gate pulse, and the switching elements 6 to 11 are turned on in accordance with the gate pulse.
Turn off. As a result, the leading / lagging reactive power is controlled.

【0006】ここで、振幅指令kについて詳しく説明す
る。いま、交流系統電圧をVs、インバータ出力電圧を
Vi、変圧器18のリアクタンスをXとすると無効電力
補償装置に流れる電流I(すなわち、無効電流)は次式
で表わされる。
Now, the amplitude command k will be described in detail. Now, assuming that the AC system voltage is Vs, the inverter output voltage is Vi, and the reactance of the transformer 18 is X, the current I (that is, reactive current) flowing in the reactive power compensator is represented by the following equation.

【0007】[0007]

【数1】I=(Vi−Vs)/X 一般に交流系統の電圧位相に対する無効電力補償装置の
出力電圧の位相差θは小さいと考えられるので、振幅指
令をkとするとViは次式で表わされる。
I = (Vi-Vs) / X Generally, the phase difference θ of the output voltage of the reactive power compensator with respect to the voltage phase of the AC system is considered to be small. Therefore, when the amplitude command is k, Vi is expressed by the following equation. Be done.

【0008】[0008]

【数2】Vi=k・Vs したがって、数3が成立する。## EQU00002 ## Vi = k.Vs Therefore, equation 3 holds.

【0009】[0009]

【数3】I=(k−1)Vs/X 数3から、k=1のときは電流は零、k>1のときは進
み電流、k<1のときは遅れ電流となり、進み無効電力
はk>1の範囲、遅れ無効電力はk<1の範囲で連続的
に制御できる。
## EQU00003 ## I = (k-1) Vs / X From the equation 3, when k = 1, the current is zero, when k> 1, it is a lead current, and when k <1, it is a lag current, leading reactive power. Can be continuously controlled in the range of k> 1, and the delayed reactive power can be continuously controlled in the range of k <1.

【0010】このことを図2に示す。図2(a)に示す
ように、振幅指令kに対するインバ−タの出力電圧Vi
との間は直線関係であり、その時の振幅指令kと無効電
力の関係を系統電圧をパラメータとして表わしたものは
図2(b)に示すようになる。図2にて、La、Lb及
びLcは系統電圧を示し、その大きさの関係は、Lb>
La>Lcである。
This is shown in FIG. As shown in FIG. 2A, the output voltage Vi of the inverter with respect to the amplitude command k
Is a linear relationship, and the relationship between the amplitude command k and the reactive power at that time is represented by the system voltage as a parameter as shown in FIG. In FIG. 2, La, Lb, and Lc represent system voltages, and their magnitude relationship is Lb>
La> Lc.

【0011】いま、系統電圧をLaとすると、無効電力
補償装置は図2(b)のように基準点Oaを境にkの大
きい方では進み、小さい方では遅れの無効電力を発生す
る。したがって、kを調整することにより、無効電力の
進み、遅れと大きさを調整できることになる。
Now, assuming that the system voltage is La, the reactive power compensator generates a reactive power with a larger value of k and a delayed reactive power with a smaller value of k, with the reference point Oa as a boundary, as shown in FIG. 2B. Therefore, by adjusting k, it is possible to adjust the advance and delay and the magnitude of the reactive power.

【0012】[0012]

【発明が解決しようとする課題】ところが、上記従来の
技術では、系統電圧がLaで運転されている状態から、
急激にLb又はLcのように変化すると、フィードバッ
ク制御されるkの値の追従変化が遅れることになる。し
たがって、図2(b)に示す関係から明らかなように、
発生する無効電力Qが進み、遅れを含めて目標値Q*か
ら大きくはずれてしまい、無効電力制御の応答性及び安
定性が悪いという解決すべき課題がある。
However, in the above-mentioned conventional technique, from the state where the system voltage is operated at La,
When the value suddenly changes like Lb or Lc, the follow-up change of the value of k under feedback control is delayed. Therefore, as is clear from the relationship shown in FIG.
There is a problem to be solved that the generated reactive power Q advances and largely deviates from the target value Q * including a delay, and the responsiveness and stability of the reactive power control are poor.

【0013】本発明の目的は、系統電圧の変化に対応さ
せて、進み、遅れの無効電力を指令どおりに、高速かつ
安定に制御できる無効電力補償装置を提供することにあ
る。
An object of the present invention is to provide a reactive power compensator capable of controlling the advanced and delayed reactive power at high speed and stably according to a change in system voltage.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、電力系統に無効電力を供給する自励式イ
ンバ−タの出力電圧の大きさを制御して、進み・遅れを
含む無効電力を制御する無効電力制御装置において、前
記電力系統の系統電圧に応じて前記インバータ出力電圧
を補正する補正手段を設けたことを特徴とする。
In order to achieve the above object, the present invention controls the magnitude of the output voltage of a self-exciting inverter for supplying reactive power to a power system, and includes a lead and a delay. The reactive power control device for controlling the reactive power is characterized in that correction means for correcting the inverter output voltage according to the system voltage of the power system is provided.

【0015】この場合において、無効電力の指令値と検
出値の差を入力し、その差を低減すべくその差に応じた
インバータ出力電圧の振幅指令を演算して出力する無効
電力制御手段と、この振幅指令に基づいて前記インバー
タのスイッチング素子を制御するインバータ制御手段と
を含んでなるときは、電力系統の系統電圧の検出値を入
力し、この検出値に応じて前記振幅指令を補正する補正
手段を設ける。
In this case, the reactive power control means for inputting the difference between the command value and the detected value of the reactive power and for calculating and outputting the amplitude command of the inverter output voltage according to the difference to reduce the difference. When an inverter control means for controlling the switching element of the inverter based on the amplitude command is included, a detected value of the system voltage of the electric power system is input, and the correction is performed to correct the amplitude command according to the detected value. Provide means.

【0016】また、無効電力は電圧と電流の積であり、
一般に電圧の変動は小さいから、上記無効電力指令に代
えて無効電流指令に基づく制御にすることができる。す
なわち、無効電力制御手段を、無効電流の指令値と検出
値の差を入力し、その差を低減すべくその差に応じたイ
ンバータ出力電圧の振幅指令を演算して出力するもので
あってもよい。
The reactive power is the product of voltage and current,
In general, since the voltage fluctuation is small, control can be performed based on the reactive current command instead of the reactive power command. That is, even if the reactive power control means inputs the difference between the command value and the detected value of the reactive current and calculates and outputs the amplitude command of the inverter output voltage according to the difference in order to reduce the difference. Good.

【0017】また、コンデンサを直流電源とし電力系統
に無効電力を供給する自励式インバ−タの場合であっ
て、コンデンサの端子電圧の基準値と検出値の差を入力
し、その差を低減すべくその差に応じたインバータ出力
電圧の位相指令を演算して出力する直流電圧制御手段
と、この位相指令と前記振幅指令に基づいて前記インバ
ータのスイッチング素子を制御するインバータ制御手段
とを含んでなる無効電力補償装置の場合は、前記電力系
統の系統電圧の検出値を入力し、この検出値に応じて前
記振幅指令を補正する補正手段と、この補正された振幅
指令を前記位相指令に応じて更に補正して前記インバー
タ制御手段に入力する振幅指令を生成する振幅指令生成
手段と、前記位相指令を前記補正手段により補正された
振幅指令により補正して前記インバータ制御手段に入力
する位相指令を生成する位相指令生成手段とを設けるこ
とが好ましい。
In the case of a self-exciting inverter that uses a capacitor as a DC power source and supplies reactive power to the power system, the difference between the reference value and the detected value of the terminal voltage of the capacitor is input and the difference is reduced. Therefore, it includes a DC voltage control means for calculating and outputting a phase command of an inverter output voltage according to the difference, and an inverter control means for controlling a switching element of the inverter based on the phase command and the amplitude command. In the case of a reactive power compensator, a detected value of the system voltage of the power system is input, and a correction unit that corrects the amplitude command according to the detected value, and the corrected amplitude command according to the phase command. Amplitude command generating means for further correcting and generating an amplitude command to be inputted to the inverter control means, and the phase command is corrected by the amplitude command corrected by the correcting means. It is preferable to provide the phase command generating means for generating a phase command to be input to the inverter control means.

【0018】[0018]

【作用】このように構成されることから、次の作用によ
り上記目的が達成される。系統電圧が変化すると、基本
的には無効電力の検出値がそれに応じて変化し、無効電
力制御手段のフィードバック制御によりその変化を減少
させる方向に振幅指令kが調整される。しかし、フィー
ドバック制御であるから、系統電圧の急激な変化に対し
ては制御が遅れ、しかも安定な制御ができない場合があ
る。この点、本発明によれば、系統電圧の検出値に応じ
て直接振幅指令を補正していることから、言い換えれば
系統電圧の変化に合わせて振幅指令を先行制御している
ことから、無効電力制御の応答性を高速化できるととも
に、安定な制御を行わせることができるのである。
With the above structure, the above object is achieved by the following operation. When the system voltage changes, the detected value of the reactive power basically changes in accordance therewith, and the amplitude command k is adjusted by feedback control of the reactive power control means so as to reduce the change. However, since the feedback control is performed, the control may be delayed with respect to a rapid change in the system voltage, and stable control may not be possible. In this respect, according to the present invention, since the amplitude command is directly corrected according to the detected value of the system voltage, in other words, the amplitude command is preliminarily controlled according to the change of the system voltage. The control response can be speeded up and stable control can be performed.

【0019】[0019]

【実施例】本発明の一実施例を図1に示す。図示のよう
に、本実施例の主回路構成は、図6の従来例と同一であ
り、同一部品に同一符号を付して説明を省略する。
FIG. 1 shows an embodiment of the present invention. As shown in the figure, the main circuit configuration of this embodiment is the same as that of the conventional example of FIG. 6, and the same parts are designated by the same reference numerals and the description thereof is omitted.

【0020】本実施例が、従来例と異なる点は、交流系
統電圧を交流電圧検出器24で検出し、これを整流回路
25で整流して交流電圧eoを求め、これを関数発生回
路26に入力して後述する関数に従って振幅指令kの補
正値eaを求め、これを加算器27を介して振幅指令k
に加算するようにした点である。
The present embodiment is different from the conventional example in that the AC voltage is detected by the AC voltage detector 24, the AC voltage eo is rectified by the rectifier circuit 25 to obtain the AC voltage eo, which is sent to the function generating circuit 26. A correction value ea of the amplitude command k is obtained according to a function to be described later, and the correction value ea is calculated via the adder 27.
This is the point that was added to.

【0021】したがって、PWM制御回路21は振幅指
令kとその補正値eaの加算値を振幅指令k’として、
インバータ5の出力電圧Viを制御する。ここで、PW
M制御方式はインバータの出力制御に多く用いられてい
る周知の技術であり、図3にそのPWM制御回路21に
おける1相分の信号波形の1例を示す。図3(a)は搬
送波Cと変調波Mの波形例を示し、図3(b)はスイッ
チング素子の制御パルスである。図示のように、搬送波
C<変調波Mのとき「1」となり、C>Mのとき「0」
となる。なお、変調波Mは120度づつずれて他の2相
に対応するものが存在するがここでは省略されている。
インバータ5は、ゲートパルスが「1」のとき、スイッ
チング素子6(他の2相では夫々対応する制御パルスに
より8または10)をオン、スイッチング素子7(他の2
相では夫々対応する制御パルスにより9または11)を
オフ、制御パルス「0」のときスイッチング素子7(前
記と同じく他の2相では9または11)をオン、スイッ
チング素子6(前記と同じく他の2相では8または10)
をオフするように動作する。
Therefore, the PWM control circuit 21 sets the added value of the amplitude command k and its correction value ea as the amplitude command k '.
The output voltage Vi of the inverter 5 is controlled. Where PW
The M control method is a well-known technique that is often used for output control of an inverter, and FIG. 3 shows an example of a signal waveform for one phase in the PWM control circuit 21. FIG. 3A shows a waveform example of the carrier wave C and the modulated wave M, and FIG. 3B shows a control pulse of the switching element. As shown, when the carrier wave C <modulated wave M, it becomes “1”, and when C> M, it becomes “0”.
Becomes The modulated waves M are shifted by 120 degrees and correspond to the other two phases, but they are omitted here.
The inverter 5 turns on the switching element 6 (8 or 10 depending on the corresponding control pulse in the other two phases, respectively) when the gate pulse is “1”, and the switching element 7 (the other two phases).
In the phase, 9 or 11) is turned off by the corresponding control pulse, and when the control pulse is “0”, the switching element 7 (9 or 11 in the other two phases as described above) is turned on and the switching element 6 (the other as described above is changed). 2 or 8)
To turn off.

【0022】図4(a)に整流回路25の1例を示す。
交流電圧検出器24で検出された三相交流電圧eu,e
v,ewがダイオ−ドブリッジで整流されたのち、抵抗
R21とR22で分圧されて、出力電圧eoが得られる。図
4(b)は関数発生回路26の特性例を示す。横軸に整
流回路25の出力電圧eoの大きさ、縦軸に出力である
補正値eaを示す。ここではeoに対してeaは線形関
係に設定したが、ステップ的あるいは曲線などの非線形
特性にしてもよい。図4(c)はこの特性例を得る回路
である。整流回路25で得られた出力電圧eoは図4
(c)の演算増幅器AMPの1つの入力に導かれる。回
路はリニア増幅回路であり演算増幅器AMPのゲインが
R12/R11であるのでポテンショメ−タVRをR11・e
s/R12の値に設定することにより図4(b)に示した
特性が得られる。
FIG. 4A shows an example of the rectifier circuit 25.
Three-phase AC voltage eu, e detected by the AC voltage detector 24
After v and ew are rectified by the diode bridge, they are divided by the resistors R21 and R22 to obtain the output voltage eo. FIG. 4B shows a characteristic example of the function generating circuit 26. The horizontal axis shows the magnitude of the output voltage eo of the rectifier circuit 25, and the vertical axis shows the correction value ea which is the output. Here, ea is set to have a linear relationship with respect to eo, but non-linear characteristics such as steps or curves may be used. FIG. 4C is a circuit for obtaining this characteristic example. The output voltage eo obtained by the rectifier circuit 25 is shown in FIG.
It is led to one input of the operational amplifier AMP of (c). Since the circuit is a linear amplifier circuit and the gain of the operational amplifier AMP is R12 / R11, the potentiometer VR is set to R11.e.
By setting the value of s / R12, the characteristics shown in FIG. 4 (b) can be obtained.

【0023】このように構成される実施例の動作につい
て次に説明する。基本的な無効電力制御の動作は、前述
したように、無効電力制御回路20により、予め設定さ
れた制御特性(例えば、図2(b)のLaに示すQ−k
特性)に従い、無効電力の指令値と検出値の差に応じて
振幅指令kが制御される。
The operation of the embodiment thus constructed will be described below. As described above, the basic reactive power control operation is performed by the reactive power control circuit 20 with preset control characteristics (for example, Qk indicated by La in FIG. 2B).
According to the characteristics), the amplitude command k is controlled according to the difference between the command value and the detected value of the reactive power.

【0024】今、系統電圧VsがLa、無効電力の指令
値Q*が零、無効電力補償装置が図2(b)の基準点O
aで運転されていたとき、何らかの原因により系統電圧
VsがLbに急変したとする。この場合、前述したよう
に無効電力制御回路20から出力される振幅指令kの値
は急には変化しないので、無効電力制御の動作特性は図
2(b)のLbの特性に移行し、A点が動作点になって
しまい、無効電力Qが零から遅れの方に増大して、指令
値Q*から外れしまうことになる。しかし、本実施例で
は、系統の電圧変化に応じて補正値eaが増加し、PW
M制御回路21に入力される振幅指令k’が増加するの
で、動作点はAからOb点に移り、速やかに無効電力が
指令値Q*=0に制御される。すなわち、関数発生回路
26は、系統電圧がLaからLbに変化したとき、(O
b−Oa)に相当する補正値eaを出力するように設定
されているのである。
Now, the system voltage Vs is La, the command value Q * of the reactive power is zero, and the reactive power compensator is the reference point O in FIG. 2 (b).
It is assumed that the system voltage Vs suddenly changes to Lb due to some cause when the vehicle is operated at a. In this case, since the value of the amplitude command k output from the reactive power control circuit 20 does not change suddenly as described above, the operating characteristic of the reactive power control shifts to the characteristic of Lb in FIG. The point becomes the operating point, the reactive power Q increases from zero toward the delay, and deviates from the command value Q *. However, in this embodiment, the correction value ea increases in accordance with the voltage change of the system, and the PW
Since the amplitude command k ′ input to the M control circuit 21 increases, the operating point moves from A to the Ob point and the reactive power is quickly controlled to the command value Q * = 0. That is, when the system voltage changes from La to Lb, the function generating circuit 26 outputs (O
The correction value ea corresponding to (b-Oa) is set to be output.

【0025】一方、位相指令θは交流系統の電圧位相に
対する搬送波C及び変調波Mの位相を制御して主にイン
バ-タの直流電圧を基準値に一定に保持制御する。無効
電力の制御は、この直流電圧を一定とした状態で振幅指
令kを制御することにより行う。
On the other hand, the phase command θ controls the phases of the carrier wave C and the modulation wave M with respect to the voltage phase of the AC system, and mainly maintains the DC voltage of the inverter at a constant reference value. The reactive power is controlled by controlling the amplitude command k with the DC voltage kept constant.

【0026】上述したように、本実施例によれば、系統
電圧の変動に拘らず、進み、遅れの無効電力を指令どう
りに高速かつ安定に制御することができる。
As described above, according to this embodiment, it is possible to control the advanced and delayed reactive power at high speed and stably according to the command regardless of the fluctuation of the system voltage.

【0027】上記の実施例では、インバ−タ出力電圧の
振幅を無効電力制御回路出力で制御する場合について説
明したが、無効電力制御を無効電力制御に代え、無効電
流制御回路の出力で制御しても同一の効果が得られる。
この場合、必要な無効電力を得るための無効電流の指令
値は、無効電力指令値を交流電圧で除して作られた値と
すればよく、無効電流制御回路により事故時の電流変動
が制限できるメリットがある。
In the above embodiment, the case where the amplitude of the inverter output voltage is controlled by the output of the reactive power control circuit has been described, but the reactive power control is replaced by the reactive power control and is controlled by the output of the reactive current control circuit. However, the same effect can be obtained.
In this case, the reactive current command value for obtaining the necessary reactive power may be a value made by dividing the reactive power command value by the AC voltage, and the reactive current control circuit limits the current fluctuation at the time of an accident. There is a merit that can be done.

【0028】次に、本発明の他の実施例を図5に示す。
加算器28は、前記直流電圧制御回路19の出力θと前
記関数発生回路26の出力eaを加算してθ’を得、こ
のθ’と前記無効電力制御回路20の出力kとから、位
相指令値作成回路29により次式に従い前記PWM制御
回路21への位相指令θ”を作成する。
Next, another embodiment of the present invention is shown in FIG.
The adder 28 adds the output θ of the DC voltage control circuit 19 and the output ea of the function generating circuit 26 to obtain θ ′, and from this θ ′ and the output k of the reactive power control circuit 20, a phase command is issued. The value creating circuit 29 creates the phase command θ ″ to the PWM control circuit 21 according to the following equation.

【0029】[0029]

【数4】tanθ”=k/θ’ 振幅指令値作成回路30は、無効電力制御回路20の出
力kと加算器28の出力θ’から次式の如くkとθ’の
自乗平均によりPWM制御回路21への振幅指令k”を
作成する。
Tan θ ″ = k / θ ′ The amplitude command value generation circuit 30 performs PWM control from the output k of the reactive power control circuit 20 and the output θ ′ of the adder 28 by the root mean square of k and θ ′ as in the following equation. An amplitude command k ″ to the circuit 21 is created.

【0030】[0030]

【数5】k”=√(kxk+θ’xθ’) 上式のkとθ’に応じてPWM制御回21によってイン
バータ5の制御パルスがつくられる。この場合は図1の
実施例に比べると、インバータの出力電圧の位相と振幅
の指令が無効電力制御回路20と直流電圧制御回路19
の出力とから合成して作られるので各々の制御回路から
振幅指令と位相指令を作る場合よりも制御系の応答を早
くできる特徴がある。
[Mathematical formula-see original document] k ″ = √ (kxk + θ′xθ ′) The control pulse of the inverter 5 is generated by the PWM control circuit 21 according to the above equation k and θ ′. In this case, compared with the embodiment of FIG. The command of the phase and amplitude of the output voltage of the inverter is the reactive power control circuit 20 and the DC voltage control circuit 19
Since it is made by combining with the output of, the control system has a characteristic that the response of the control system can be made faster than the case where the amplitude command and the phase command are made from each control circuit.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、系
統電圧の変化に合わせて振幅指令を先行制御しているこ
とから、系統電圧の変化にかかわらず、無効電力制御の
応答性を高速化できるとともに、安定な制御を行わせる
ことができるという効果がある。
As described above, according to the present invention, since the amplitude command is preliminarily controlled according to the change in the system voltage, the responsiveness of the reactive power control can be improved regardless of the change in the system voltage. There is an effect that the speed can be increased and stable control can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である無効電力補償装置を含
む電力系統図である。
FIG. 1 is a power system diagram including a reactive power compensator according to an embodiment of the present invention.

【図2】(a)は振幅指令とインバータ出力電圧の関係
を、(b)は振幅指令と無効電力の関係を示す図であ
る。
FIG. 2A is a diagram showing a relationship between an amplitude command and an inverter output voltage, and FIG. 2B is a diagram showing a relationship between an amplitude command and reactive power.

【図3】PWM制御回路1相分の信号波形図であり、
(a)は搬送波と変調波の関係を、(b)はゲートパル
スを示す。
FIG. 3 is a signal waveform diagram for one phase of a PWM control circuit,
(A) shows the relationship between the carrier wave and the modulated wave, and (b) shows the gate pulse.

【図4】(a)は整流回路を、(b)は関数発生回路の
特性を、(c)は関数発生回路の構成を示す図である。
4A is a diagram showing a rectifier circuit, FIG. 4B is a characteristic diagram of a function generating circuit, and FIG. 4C is a diagram showing a configuration of the function generating circuit.

【図5】本発明の他の実施例の無効電力補償装置の主要
部である制御回路の構成図である。
FIG. 5 is a configuration diagram of a control circuit which is a main part of a reactive power compensating device according to another embodiment of the present invention.

【図6】従来例の無効電力補償装置を含む電力系統図で
ある。
FIG. 6 is a power system diagram including a conventional reactive power compensator.

【符号の説明】[Explanation of symbols]

4 コンデンサ 5 インバ−タ 18 変圧器 19 直流電圧制御回路 20 無効電力制御回路 21 PWM制御回路 24 交流電圧検出器 25 整流回路 26 関数発生回路 27 加算回路 28 加算器 4 Capacitor 5 Inverter 18 Transformer 19 DC Voltage Control Circuit 20 Reactive Power Control Circuit 21 PWM Control Circuit 24 AC Voltage Detector 25 Rectifier Circuit 26 Function Generating Circuit 27 Adder Circuit 28 Adder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 常盤 幸生 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 (72)発明者 中島 達人 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Tokiwa 2-4-1, Nishi-Atsujigaoka, Chofu-shi, Tokyo Inside the TEPCO Technical Research Institute (72) Inventor Tatsuto Nakajima 2-4-1, Nishi-Atsujigaoka, Chofu-shi, Tokyo TEPCO Technical Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に無効電力を供給する自励式イ
ンバ−タの出力電圧の大きさを制御して、進み・遅れを
含む無効電力を制御する無効電力制御装置において、前
記電力系統の系統電圧に応じて前記インバータ出力電圧
を補正する補正手段を設けたことを特徴とする無効電力
補償装置。
1. A reactive power controller for controlling reactive power including advance / delay by controlling the magnitude of an output voltage of a self-exciting inverter for supplying reactive power to the power system. A reactive power compensating device comprising a correcting means for correcting the inverter output voltage according to the voltage.
【請求項2】 電力系統に無効電力を供給する自励式イ
ンバ−タと、無効電力の指令値と検出値の差を入力し、
その差を低減すべくその差に応じたインバータ出力電圧
の振幅指令を演算して出力する無効電力制御手段と、こ
の振幅指令に基づいて前記インバータのスイッチング素
子を制御するインバータ制御手段とを含んでなる無効電
力補償装置において、前記電力系統の系統電圧の検出値
を入力し、この検出値に応じて前記振幅指令を補正する
補正手段を設けたことを特徴とする無効電力補償装置。
2. A self-excited inverter for supplying reactive power to a power system and a difference between a command value and a detected value of the reactive power are input.
In order to reduce the difference, a reactive power control means for calculating and outputting an amplitude command of an inverter output voltage according to the difference, and an inverter control means for controlling a switching element of the inverter based on the amplitude command are included. In the reactive power compensator according to the present invention, a reactive power compensator is provided, in which a detected value of the system voltage of the power system is input and a correction unit is provided to correct the amplitude command according to the detected value.
【請求項3】 電力系統に無効電力を供給する自励式イ
ンバ−タと、無効電流の指令値と検出値の差を入力し、
その差を低減すべくその差に応じたインバータ出力電圧
の振幅指令を演算して出力する無効電流制御手段と、こ
の振幅指令に基づいて前記インバータのスイッチング素
子を制御するインバータ制御手段とを含んでなる無効電
力補償装置において、前記電力系統の系統電圧の検出値
を入力し、この検出値に応じて前記振幅指令を補正する
補正手段を設けたことを特徴とする無効電力補償装置。
3. A self-excited inverter for supplying reactive power to a power system, and a difference between a command value and a detected value of the reactive current are inputted.
In order to reduce the difference, a reactive current control means for calculating and outputting an amplitude command of an inverter output voltage according to the difference, and an inverter control means for controlling a switching element of the inverter based on the amplitude command are included. In the reactive power compensator according to the present invention, a reactive power compensator is provided, in which a detected value of the system voltage of the power system is input and a correction unit is provided to correct the amplitude command according to the detected value.
【請求項4】 電力系統に無効電力を供給する自励式イ
ンバ−タと、このインバータの直流端に接続されたコン
デンサと、無効電力の指令値と検出値の差を入力し、そ
の差を低減すべくその差に応じた前記インバータの出力
電圧の振幅指令を演算して出力する無効電力制御手段
と、前記コンデンサの端子電圧の基準値と検出値の差を
入力し、その差を低減すべくその差に応じたインバータ
出力電圧の位相指令を演算して出力する直流電圧制御手
段と、この位相指令と前記振幅指令に基づいて前記イン
バータのスイッチング素子を制御するインバータ制御手
段とを含んでなる無効電力補償装置において、前記電力
系統の系統電圧の検出値を入力し、この検出値に応じて
前記振幅指令を補正する補正手段を設けたことを特徴と
する無効電力補償装置。
4. A self-exciting inverter for supplying reactive power to a power system, a capacitor connected to a DC terminal of this inverter, and a difference between a command value and a detected value of the reactive power are input to reduce the difference. In order to reduce the difference, the reactive power control means for calculating and outputting the amplitude command of the output voltage of the inverter according to the difference and the difference between the reference value and the detected value of the terminal voltage of the capacitor are input. A DC voltage control means for calculating and outputting a phase command of an inverter output voltage according to the difference, and an inverter control means for controlling a switching element of the inverter based on the phase command and the amplitude command. In the power compensator, a reactive power compensator is provided, which is provided with a correction unit that inputs a detected value of the system voltage of the power system and corrects the amplitude command according to the detected value. ..
【請求項5】 電力系統に無効電力を供給する自励式イ
ンバ−タと、このインバータの直流端に接続されたコン
デンサと、無効電力の指令値と検出値の差を入力し、そ
の差を低減すべくその差に応じた前記インバータの出力
電圧の振幅指令を演算して出力する無効電力制御手段
と、前記コンデンサの端子電圧の基準値と検出値の差を
入力し、その差を低減すべくその差に応じたインバータ
出力電圧の位相指令を演算して出力する直流電圧制御手
段と、この位相指令と前記振幅指令に基づいて前記イン
バータのスイッチング素子を制御するインバータ制御手
段とを含んでなる無効電力補償装置において、前記電力
系統の系統電圧の検出値を入力し、この検出値に応じた
補正値を出力する補正手段と、前記直流電圧制御手段か
ら出力される位相指令と前記補正値とに基づいて前記イ
ンバータ制御手段に入力する振幅指令を生成する振幅指
令生成手段と、前記無効電力制御手段から出力される振
幅指令と前記補正値とに基づいて前記インバータ制御手
段に入力する位相指令を生成する位相指令生成手段とを
設けたことを特徴とする無効電力補償装置。
5. A self-excited inverter for supplying reactive power to a power system, a capacitor connected to a DC terminal of this inverter, and a difference between a command value and a detected value of the reactive power are input to reduce the difference. In order to reduce the difference, the reactive power control means for calculating and outputting the amplitude command of the output voltage of the inverter according to the difference and the difference between the reference value and the detected value of the terminal voltage of the capacitor are input. A DC voltage control means for calculating and outputting a phase command of an inverter output voltage according to the difference, and an inverter control means for controlling a switching element of the inverter based on the phase command and the amplitude command. In the power compensator, a correction unit that inputs a detected value of the system voltage of the power system and outputs a correction value according to the detected value, and a phase command output from the DC voltage control unit And an amplitude command generating means for generating an amplitude command to be input to the inverter control means based on the correction value, and an amplitude command output from the reactive power control means and the inverter control means based on the correction value. A reactive power compensating device comprising: a phase command generating means for generating a phase command to be input.
JP3209548A 1991-08-21 1991-08-21 Reactive power compensator Pending JPH0553668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209548A JPH0553668A (en) 1991-08-21 1991-08-21 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209548A JPH0553668A (en) 1991-08-21 1991-08-21 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPH0553668A true JPH0553668A (en) 1993-03-05

Family

ID=16574639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209548A Pending JPH0553668A (en) 1991-08-21 1991-08-21 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0553668A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055591A (en) * 2009-08-31 2011-03-17 Daihen Corp Inverter control circuit and grid-connected inverter system with the same
KR101125795B1 (en) * 2010-09-20 2012-03-28 한국전력공사 Controlling apparatus of static synchronous compensator and method for controlling stabilization power system of static synchronous compensator
JP2012135194A (en) * 2010-12-22 2012-07-12 General Electric Co <Ge> Power conversion system and method
JP2012143053A (en) * 2010-12-28 2012-07-26 Origin Electric Co Ltd Single-phase voltage type ac-dc conversion device and system-interconnected system
WO2012160646A1 (en) 2011-05-24 2012-11-29 株式会社日立製作所 Var compensator, and system and method therefor
CN103825287A (en) * 2014-03-14 2014-05-28 武汉理工大学 Quick dynamic reactive-power compensating method of combined electrical load

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055591A (en) * 2009-08-31 2011-03-17 Daihen Corp Inverter control circuit and grid-connected inverter system with the same
KR101125795B1 (en) * 2010-09-20 2012-03-28 한국전력공사 Controlling apparatus of static synchronous compensator and method for controlling stabilization power system of static synchronous compensator
JP2012135194A (en) * 2010-12-22 2012-07-12 General Electric Co <Ge> Power conversion system and method
JP2012143053A (en) * 2010-12-28 2012-07-26 Origin Electric Co Ltd Single-phase voltage type ac-dc conversion device and system-interconnected system
WO2012160646A1 (en) 2011-05-24 2012-11-29 株式会社日立製作所 Var compensator, and system and method therefor
CN103825287A (en) * 2014-03-14 2014-05-28 武汉理工大学 Quick dynamic reactive-power compensating method of combined electrical load

Similar Documents

Publication Publication Date Title
US4823251A (en) Controller for instantaneous output current and/or voltage of 3-phase converter
JPH01303060A (en) Parallel operation equipment for ac output converter
KR20110069828A (en) Adaptive generation and control of arbitrary electrical waveforms in a grid-tied power conversion system
JPS6137864B2 (en)
US5942880A (en) Compensation control device for a power system
CN114865932A (en) Pulse load power supply system and control method
JPH1141814A (en) Controller of power converter
JPH0553668A (en) Reactive power compensator
KR20200001300A (en) System for controlling grid-connected apparatus for distributed generation
JP4872090B2 (en) Voltage regulator
JPH11289666A (en) Voltage adjuster
Gazoli et al. Resonant (P+ RES) controller applied to voltage source inverter with minimum DC link capacitor
JPS6194585A (en) Controller for pwm inverter
Rocha et al. A discrete current control for PWM rectifier
JP3110898B2 (en) Inverter device
JPH04289728A (en) Higher harmonic compensator
JP3252634B2 (en) Inverter circuit output voltage control method
JP3083214B2 (en) Transformer excitation current detection device
JPH0375893B2 (en)
Pinheiro et al. Neural network-based controller for voltage PWM rectifier
JP3229898B2 (en) Voltage source inverter device
JPH07312828A (en) Voltage control device
JPH0744841B2 (en) Power converter control circuit
JPH0522938A (en) Controlling circuit for power conversion system
JPS607919B2 (en) Power supply method for polyphase AC motor