JPH0551756A - Lectroless ni-p plating method - Google Patents

Lectroless ni-p plating method

Info

Publication number
JPH0551756A
JPH0551756A JP20797391A JP20797391A JPH0551756A JP H0551756 A JPH0551756 A JP H0551756A JP 20797391 A JP20797391 A JP 20797391A JP 20797391 A JP20797391 A JP 20797391A JP H0551756 A JPH0551756 A JP H0551756A
Authority
JP
Japan
Prior art keywords
electroless
stage
zinc
plating
plating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20797391A
Other languages
Japanese (ja)
Inventor
Mitsuo Masuda
光男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20797391A priority Critical patent/JPH0551756A/en
Publication of JPH0551756A publication Critical patent/JPH0551756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the electroless Ni-P plating method by which a nodule-free plating film is obtd. CONSTITUTION:This electroless Ni-P plating method has a degreasing stage, an acidic etching stage, a nitric acid dipping stage, a 1st zinc substitution stage, zinc nitrate peeling stage, a 2nd zinc substitution stage, and an electroless Ni-P plating stage. The washing in at least one of the acidic etching stage, 1st zinc substitution stage and 2nd zinc substitution stage mentioned above is executed by using high-frequency ultrasonic waves of 800 to 1200kHz oscillation frequencies.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク基板用の
無電解Ni−Pメッキ方法に関し、特に無電解Ni−P
メッキ方法における洗浄の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless Ni-P plating method for a magnetic disk substrate, and more particularly to an electroless Ni-P plating method.
Improving cleaning in plating methods.

【0002】[0002]

【従来の技術】一般に、磁気ディスクは、図2に示す工
程にしたがって製造される。まず、鋳造工程20におい
てディスク基板材料であるアルミニウム合金を鋳造す
る。次いで、圧延工程21において鋳造されたアルミニ
ウム合金を圧延する。このとき圧延されたアルミニウム
合金の圧延材はコイル状に巻き取られる。次いで、打抜
工程22においてこの圧延材をディスク形状に打抜きデ
ィスクブランク材を得る。そして、研削工程23におい
てディスクブランク材の表面を研削した後、無電解Ni
−Pメッキ工程24においてディスクブランク材の表面
に無電解Ni−Pメッキ下地層を形成する。次いで、ポ
リッシング加工工程25において無電解Ni−Pメッキ
下地層表面をポリッシング加工して表面を平滑にし、テ
クスチャリング工程26においてこの無電解Ni−Pメ
ッキ下地層表面にさらにテクスチャリング処理を施す。
このテクスチャリング処理により磁気記録装置のヘッド
との吸着を防止することができる。次に、磁性層形成工
程27により無電解Ni−Pメッキ下地層上に磁性層を
形成する。このとき、磁性層は無電解メッキ法またはス
パッタリング法により形成される。その後、保護層形成
工程28において磁性層上にカーボン等をスパッタリン
グすることにより保護層を形成する。このようにして、
磁気ディスクが製造される。
2. Description of the Related Art Generally, a magnetic disk is manufactured according to the process shown in FIG. First, in a casting step 20, an aluminum alloy which is a disc substrate material is cast. Next, the aluminum alloy cast in the rolling step 21 is rolled. The rolled aluminum alloy material rolled at this time is wound into a coil. Next, in a punching step 22, the rolled material is punched into a disk shape to obtain a disk blank material. Then, after grinding the surface of the disk blank material in the grinding step 23, electroless Ni
In the -P plating step 24, an electroless Ni-P plating underlayer is formed on the surface of the disk blank material. Next, in the polishing step 25, the surface of the electroless Ni-P plated underlayer is polished to smooth the surface, and in the texturing step 26, the electroless Ni-P plated underlayer surface is further subjected to texturing treatment.
This texturing process can prevent the magnetic recording device from being attracted to the head. Next, in the magnetic layer forming step 27, a magnetic layer is formed on the electroless Ni-P plating underlayer. At this time, the magnetic layer is formed by electroless plating or sputtering. Then, in a protective layer forming step 28, carbon or the like is sputtered on the magnetic layer to form a protective layer. In this way
A magnetic disk is manufactured.

【0003】以上の磁気ディスク製造工程における無電
解Ni−Pメッキ方法は、図3に示す工程にしたがって
行われる。通常、被処理基板をアルカリ脱脂工程30、
酸性エッチング工程32、硝酸浸漬工程34、第一亜鉛
置換工程36、硝酸亜鉛剥離工程38、第二亜鉛置換工
程40、並びに無電解Ni−Pメッキ工程42に順次供
する。各工程の処理後には、水洗31,33,35,3
7,39,41,43が行われる。水洗は、純水を収容
する複数の槽に処理後の被処理基板を順次連続して浸漬
させることにより行われる。このとき、槽内の純水は注
入・排出を行うことにより常に清浄に保たれている。あ
るいは、水洗は、処理後の基板に純水をシャワーするこ
とにより行われる。
The electroless Ni-P plating method in the above magnetic disk manufacturing process is performed according to the process shown in FIG. Usually, the substrate to be processed is subjected to an alkaline degreasing step 30,
The acidic etching step 32, the nitric acid dipping step 34, the first zinc replacement step 36, the zinc nitrate stripping step 38, the second zinc replacement step 40, and the electroless Ni-P plating step 42 are sequentially provided. After the treatment of each step, washing with water 31, 33, 35, 3
7, 39, 41, 43 are performed. Washing with water is performed by successively and successively dipping the processed substrate into a plurality of tanks containing pure water. At this time, the pure water in the tank is always kept clean by injecting and discharging. Alternatively, the washing with water is performed by showering the treated substrate with pure water.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
無電解Ni−Pメッキ方法により得られるメッキ被膜の
表面には、凸状の欠陥、いわゆるノジュールが発生す
る。このノジュールを除去するために後工程においてメ
ッキ被膜表面のポリッシング加工が不可欠となる。ノジ
ュールの発生を防止することができればポリッシング加
工工程を省略するか、またはポリッシング量を低減する
ことができるので、ノジュールの発生を防止できる無電
解Ni−Pメッキ方法の開発が望まれている。
However, convex defects, so-called nodules, occur on the surface of the plating film obtained by the conventional electroless Ni-P plating method. In order to remove this nodule, it is essential to polish the surface of the plated coating in a later step. If the generation of nodules can be prevented, the polishing processing step can be omitted or the amount of polishing can be reduced. Therefore, development of an electroless Ni-P plating method capable of preventing the generation of nodules is desired.

【0005】本発明はかかる点に鑑みてなされたもので
あり、ノジュールのないメッキ被膜を得ることができる
無電解Ni−Pメッキ方法を提供することを目的とす
る。
The present invention has been made in view of the above points, and an object thereof is to provide an electroless Ni-P plating method capable of obtaining a plating film without nodules.

【0006】[0006]

【課題を解決するための手段】本発明者らは、ノジュー
ル発生の原因を検討した結果、酸性エッチング工程、第
一亜鉛置換工程、および第二亜鉛置換工程において発生
するアルミニウム合金の不溶解性残渣、いわゆるスマッ
トが核となり、その部分に過剰析出が起こることにより
ノジュールが発生することを見出だした。したがって、
酸性エッチング工程、第一亜鉛置換工程、および第二亜
鉛置換工程の後に発生したスマットを除去することによ
りノジュールの発生を防止することができる。本発明
は、このような知見に基づきなされたものである。
As a result of investigating the cause of nodule generation, the present inventors have found that an insoluble residue of an aluminum alloy is generated in the acid etching step, the first zinc substitution step, and the second zinc substitution step. It was found that so-called smut becomes a nucleus and nodules are generated due to excessive precipitation in that portion. Therefore,
By removing the smut generated after the acid etching step, the first zinc substitution step, and the second zinc substitution step, the generation of nodules can be prevented. The present invention has been made based on such findings.

【0007】すなわち本発明は、脱脂工程と、酸性エッ
チング工程と、硝酸浸漬工程と、第一亜鉛置換工程と、
硝酸亜鉛剥離工程と、第二亜鉛置換工程と、無電解Ni
−Pメッキとを具備する無電解Ni−Pメッキ方法にお
いて、前記酸性エッチング工程、前記第一亜鉛置換工
程、および前記第二亜鉛置換工程の少なくとも一つの工
程における洗浄を発振周波数800〜1200kHzの
高周波超音波を用いて行うことを特徴とする無電解Ni
−Pメッキ方法を提供する。
That is, the present invention comprises a degreasing step, an acid etching step, a nitric acid dipping step, a first zinc replacement step,
Zinc nitrate stripping step, second zinc replacement step, electroless Ni
In an electroless Ni-P plating method including -P plating, cleaning in at least one of the acid etching step, the first zinc replacement step, and the second zinc replacement step is performed at a high frequency of an oscillation frequency of 800 to 1200 kHz. Electroless Ni characterized by being performed using ultrasonic waves
-Providing a P plating method.

【0008】ここで、高周波を発生する装置としては、
通常使用されている高周波発生装置等が用いられる。高
周波発生装置の振動子の発振周波数は800〜1200
kHz設定する。これは、振動子の発振周波数が800
kHz未満であると超音波によるキャビテーションエロ
ージョンでマイクロピットが発生してしまい、振動子の
発振周波数が1200kHzを超えるとノジュール核と
なるスマットを除去できなくなりノジュール多発状態と
なるからである。
Here, as a device for generating a high frequency,
A commonly used high frequency generator or the like is used. The oscillator of the high frequency generator has an oscillation frequency of 800 to 1200.
Set to kHz. This is because the oscillator oscillation frequency is 800
If it is lower than kHz, micropits will be generated by cavitation erosion by ultrasonic waves, and if the oscillation frequency of the vibrator exceeds 1200 kHz, the smut which becomes the nodule nucleus cannot be removed and the nodule-prone state will occur.

【0009】[0009]

【作用】本発明の無電解Ni−Pメッキ方法によれば、
酸性エッチング工程、第一亜鉛置換工程、および第二亜
鉛置換工程の少なくとも一つの工程における洗浄を発振
周波数800〜1200kHzの高周波を用いて行う。
According to the electroless Ni-P plating method of the present invention,
Cleaning in at least one of the acid etching step, the first zinc substitution step, and the second zinc substitution step is performed using a high frequency with an oscillation frequency of 800 to 1200 kHz.

【0010】いわゆる高周波超音波洗浄(以下、高周波
洗浄と略記する)は、直径0.2μm程度の汚染物質を
除去することができる。このため、酸性エッチング工
程、第一亜鉛置換工程、または第二亜鉛置換工程におけ
る処理後に高周波洗浄を行うことにより、ノジュールの
核となるスマットを除去することができる。したがっ
て、無電解Ni−Pメッキ層のノジュールの発生を未然
に防止することができる。
So-called high frequency ultrasonic cleaning (hereinafter abbreviated as high frequency cleaning) can remove contaminants having a diameter of about 0.2 μm. Therefore, by performing high-frequency cleaning after the treatment in the acid etching step, the first zinc substitution step, or the second zinc substitution step, the smut that becomes the core of the nodule can be removed. Therefore, the generation of nodules in the electroless Ni-P plated layer can be prevented in advance.

【0011】[0011]

【実施例】以下、本発明の実施例を具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below.

【0012】実施例1 図1は、本発明にかかる無電解Ni−Pメッキ方法を示
す工程図である。
Example 1 FIG. 1 is a process diagram showing an electroless Ni-P plating method according to the present invention.

【0013】まず、外径95mmφ、内径25mmφの3.
5インチサイズの被処理基板としてアルミニウム合金基
板600枚を1バッチとしてアルカリ脱脂工程1に供し
た。次いで、アルカリ脱脂工程1後の被処理基板を酸性
エッチング工程3、硝酸浸漬工程5、第一亜鉛置換工程
7、硝酸亜鉛剥離工程9、および第二亜鉛置換工程11
に順次供した。各工程の処理後には、pHが6〜7の純
水を収容した槽に浸漬して被処理基板に水洗2,4,
6,8,10,12を行った。この中で、酸性エッチン
グ工程3、第一亜鉛置換工程7、および第二亜鉛置換工
程11の処理後の水洗4,8,12(高周波洗浄)は、
発振周波数800kHzの高周波をかけながら行った。
First, the outer diameter is 95 mmφ and the inner diameter is 25 mmφ.
As a 5 inch size substrate to be processed, 600 aluminum alloy substrates were batched and subjected to the alkaline degreasing step 1. Next, the substrate to be processed after the alkaline degreasing step 1 is subjected to an acidic etching step 3, a nitric acid dipping step 5, a first zinc replacement step 7, a zinc nitrate stripping step 9, and a second zinc replacement step 11.
It was put in order. After the processing of each step, the substrate to be processed is rinsed with water 2, 4 by immersing it in a tank containing pure water having a pH of 6 to 7.
6,8,10,12 were performed. Among these, the washing with water 4, 8 and 12 (high frequency washing) after the treatments of the acidic etching step 3, the first zinc substitution step 7 and the second zinc substitution step 11 are:
It was performed while applying a high frequency of an oscillation frequency of 800 kHz.

【0014】上記の前処理を行った被処理基板を無電解
Ni−Pメッキ工程13に供した。なお、液温度、液中
のpH、処理時間等の条件は、通常行われている既知の
ものを用いた。このようにして、本発明の方法により被
処理基板に15μmの無電解Ni−Pメッキ層を形成し
た。
The substrate to be treated which had been subjected to the above-mentioned pretreatment was subjected to an electroless Ni-P plating step 13. The conditions such as the liquid temperature, the pH in the liquid, the treatment time, and the like were known and commonly used. In this way, a 15 μm electroless Ni—P plated layer was formed on the substrate to be processed by the method of the present invention.

【0015】得られた無電解Ni−Pメッキ層に存在す
るノジュール評価および表面性状を調べた。その結果を
下記表1に示す。なお、ノジュール評価は、倍率300
の光学顕微鏡を用いて、メッキ層の0.030mm×0.
025mmの領域を1か所としてその領域内に存在する直
径5μm以上のノジュールの数を測定することにより行
い、5か所/1枚の割合で1バッチ中5枚について測定
し、その平均値を示した。また、表面性状は、ノジュー
ル評価方法と同様光学顕微鏡によりメッキ層表面に発生
したマイクロピットを調べることにより判断した。
The nodule existing in the obtained electroless Ni-P plated layer and the surface property were examined. The results are shown in Table 1 below. The nodule evaluation is a magnification of 300.
Using an optical microscope of 0.030 mm × 0.
It is performed by measuring the number of nodules with a diameter of 5 μm or more existing in the area of 025 mm as one location, and measuring 5 sheets in one batch at a rate of 5 places / sheet, and the average value is obtained. Indicated. The surface texture was judged by examining the micropits generated on the surface of the plating layer with an optical microscope as in the nodule evaluation method.

【0016】実施例2 酸性エッチング工程3の水洗4のみに高周波洗浄を行う
こと以外は実施例1と同様にして被処理基板に15μm
の無電解Ni−Pメッキ層を形成した。
Example 2 The substrate to be processed was 15 μm in the same manner as in Example 1 except that the high frequency cleaning was performed only in the water washing 4 in the acid etching step 3.
No electroless Ni-P plating layer was formed.

【0017】得られた無電解Ni−Pメッキ層に存在す
るノジュール評価および表面性状を実施例1と同様にし
て調べた。その結果を下記表1に併記する。
Evaluation of the nodules and surface properties of the obtained electroless Ni-P plated layer were examined in the same manner as in Example 1. The results are also shown in Table 1 below.

【0018】実施例3 第一亜鉛置換工程7の水洗8のみに高周波洗浄を行うこ
と以外は実施例1と同様にして被処理基板に15μmの
無電解Ni−Pメッキ層を形成した。
Example 3 A 15 .mu.m electroless Ni-P plating layer was formed on a substrate to be treated in the same manner as in Example 1 except that only high-frequency washing was performed in the first zinc substitution step 7 of water washing 8.

【0019】得られた無電解Ni−Pメッキ層に存在す
るノジュール評価および表面性状を実施例1と同様にし
て調べた。その結果を下記表1に併記する。
Evaluation of the nodules and surface properties of the obtained electroless Ni-P plated layer were examined in the same manner as in Example 1. The results are also shown in Table 1 below.

【0020】実施例4 第二亜鉛置換工程11の水洗12のみに高周波洗浄を行
うこと以外は実施例1と同様にして被処理基板に15μ
mの無電解Ni−Pメッキ層を形成した。
Example 4 In the same manner as in Example 1 except that the high frequency cleaning was performed only in the water cleaning 12 in the second zinc substitution step 11, the substrate to be processed was 15 μm.
m electroless Ni-P plated layer was formed.

【0021】得られた無電解Ni−Pメッキ層に存在す
るノジュール評価および表面性状を実施例1と同様にし
て調べた。その結果を下記表1に併記する。
The evaluation of the nodules present in the obtained electroless Ni-P plated layer and the surface properties were examined in the same manner as in Example 1. The results are also shown in Table 1 below.

【0022】比較例1 外径95mmφ、内径25mmφの3.5インチサイズの被
処理基板としてアルミニウム合金基板600枚を1バッ
チとしてアルカリ脱脂工程1に供した。次いで、アルカ
リ脱脂工程1後の被処理基板を酸性エッチング工程3、
硝酸浸漬工程5、第一亜鉛置換工程7、硝酸亜鉛剥離工
程9、および第二亜鉛置換工程11に順次供した。各工
程の処理後には、pHが6〜7の純水を収容した槽に浸
漬して被処理基板に水洗2,4,6,8,10,12を
行った。その後、前処理を行った被処理基板を無電解N
i−Pメッキ工程13に供した。なお、液温度、液中の
pH、処理時間等の条件は、通常行われている既知のも
のを用いた。このようにして、被処理基板に15μmの
無電解Ni−Pメッキ層を形成した。
Comparative Example 1 As a batch of 600 aluminum alloy substrates as 3.5 inch size substrates having an outer diameter of 95 mmφ and an inner diameter of 25 mmφ, one batch was subjected to the alkaline degreasing step 1. Next, the substrate to be processed after the alkali degreasing step 1 is subjected to an acid etching step 3,
A nitric acid immersion step 5, a first zinc replacement step 7, a zinc nitrate stripping step 9, and a second zinc replacement step 11 were sequentially performed. After the treatment in each step, the substrate to be treated was washed with water 2, 4, 6, 8, 10, and 12 by immersing it in a bath containing pure water having a pH of 6 to 7. After that, the pre-treated substrate is electroless N
It was subjected to the i-P plating step 13. The conditions such as the liquid temperature, the pH in the liquid, the treatment time, and the like were known and commonly used. In this way, a 15 μm electroless Ni—P plating layer was formed on the substrate to be processed.

【0023】得られた無電解Ni−Pメッキ層に存在す
るノジュール評価および表面性状を実施例1と同様にし
て調べた。その結果を下記表1に併記する。
Evaluation of the nodules and surface properties of the obtained electroless Ni-P plated layer were examined in the same manner as in Example 1. The results are also shown in Table 1 below.

【0024】比較例2 発振周波数が28kHzである高周波をかけながら酸性
エッチング工程3、第一亜鉛置換工程7、および第二亜
鉛置換工程11の処理後の水洗4,8,12を行うこと
以外は実施例1と同様にして被処理基板に15μmの無
電解Ni−Pメッキ層を形成した。
COMPARATIVE EXAMPLE 2 Except that the washing with water 4, 8 and 12 after the acid etching step 3, the first zinc substitution step 7 and the second zinc substitution step 11 were carried out while applying a high frequency having an oscillation frequency of 28 kHz. A 15 .mu.m electroless Ni-P plating layer was formed on the substrate to be processed in the same manner as in Example 1.

【0025】得られた無電解Ni−Pメッキ層に存在す
るノジュール評価および表面性状を実施例1と同様にし
て調べた。その結果を下記表1に併記する。
Evaluation of the nodules and surface properties of the obtained electroless Ni-P plated layer were examined in the same manner as in Example 1. The results are also shown in Table 1 below.

【0026】[0026]

【表1】 [Table 1]

【0027】表1から明らかなように、本発明の方法に
より得られた無電解Ni−Pメッキ層(実施例1〜4)
は、ノジュールが極めて少なく、表面性状が優れてい
た。これに対して従来の方法により得られた無電解Ni
−Pメッキ層(比較例1)は、ノジュールが多かった。
また、本発明の方法の範囲外の発振周波数の高周波を用
いて得られた無電解Ni−Pメッキ層(比較例2)は、
マイクロピットが発生して表面性状が悪いものであっ
た。
As is apparent from Table 1, the electroless Ni-P plating layers obtained by the method of the present invention (Examples 1 to 4)
Had very few nodules and had excellent surface properties. On the other hand, electroless Ni obtained by the conventional method
The -P plated layer (Comparative Example 1) had a large amount of nodules.
Further, the electroless Ni-P plating layer (Comparative Example 2) obtained by using a high frequency having an oscillation frequency outside the range of the method of the present invention,
Micropits were generated and the surface quality was poor.

【0028】[0028]

【発明の効果】以上説明した如く本発明の無電解Ni−
Pメッキ方法は、ノジュールがなくしかも表面性状に優
れたメッキ被膜を得ることができる。また、ノジュール
の発生を押さえることができるので、後工程のポリッシ
ング加工工程を省略することができ、製造コストの低減
を図ることができる。
INDUSTRIAL APPLICABILITY As described above, the electroless Ni-- of the present invention is used.
The P plating method can obtain a plating film having no nodules and excellent surface properties. Further, since it is possible to suppress the generation of nodules, it is possible to omit a polishing process step that is a post-process, and it is possible to reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる無電解Ni−Pメッキ方法を示
す工程図。
FIG. 1 is a process drawing showing an electroless Ni—P plating method according to the present invention.

【図2】磁気ディスクの製造工程を示す工程図。FIG. 2 is a process drawing showing a manufacturing process of a magnetic disk.

【図3】従来の無電解Ni−Pメッキ方法を示す工程
図。
FIG. 3 is a process diagram showing a conventional electroless Ni-P plating method.

【符号の説明】[Explanation of symbols]

1,30…アルカリ脱脂工程、3,32…酸性エッチン
グ工程、5,34…硝酸浸漬工程、7,36…第一亜鉛
置換工程、9,38…硝酸亜鉛剥離工程、11,40…
第二亜鉛置換工程、13,42…無電解Ni−Pメッキ
工程、2,6,10,31,33,35,37,39,
41…水洗、4,8,12…高周波洗浄。
1, 30 ... Alkali degreasing step, 3, 32 ... Acid etching step, 5, 34 ... Nitric acid dipping step, 7, 36 ... First zinc substitution step, 9, 38 ... Zinc nitrate stripping step, 11, 40 ...
Second zinc substitution step, 13, 42 ... Electroless Ni-P plating step, 2, 6, 10, 31, 33, 35, 37, 39,
41 ... washing with water, 4,8,12 ... high frequency washing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 脱脂工程と、酸性エッチング工程と、硝
酸浸漬工程と、実用新案登録一亜鉛置換工程と、硝酸亜
鉛剥離工程と、第二亜鉛置換工程と、無電解Ni−Pメ
ッキとを具備する無電解Ni−Pメッキ方法において、
前記酸性エッチング工程、前記第一亜鉛置換工程、およ
び前記第二亜鉛置換工程の少なくとも一つの工程におけ
る洗浄を発振周波数800〜1200kHzの高周波超
音波を用いて行うことを特徴とする無電解Ni−Pメッ
キ方法。
1. A degreasing process, an acid etching process, a nitric acid dipping process, a utility model registration-zinc replacement process, a zinc nitrate stripping process, a second zinc replacement process, and an electroless Ni-P plating. In the electroless Ni-P plating method,
Cleaning in at least one of the acid etching step, the first zinc substitution step, and the second zinc substitution step is performed using high frequency ultrasonic waves with an oscillation frequency of 800 to 1200 kHz. Plating method.
JP20797391A 1991-08-20 1991-08-20 Lectroless ni-p plating method Pending JPH0551756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20797391A JPH0551756A (en) 1991-08-20 1991-08-20 Lectroless ni-p plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20797391A JPH0551756A (en) 1991-08-20 1991-08-20 Lectroless ni-p plating method

Publications (1)

Publication Number Publication Date
JPH0551756A true JPH0551756A (en) 1993-03-02

Family

ID=16548575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20797391A Pending JPH0551756A (en) 1991-08-20 1991-08-20 Lectroless ni-p plating method

Country Status (1)

Country Link
JP (1) JPH0551756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715635B1 (en) * 1998-11-09 2007-05-08 루센트 테크놀러지스 인크 Capacitor loaded memory cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715635B1 (en) * 1998-11-09 2007-05-08 루센트 테크놀러지스 인크 Capacitor loaded memory cell

Similar Documents

Publication Publication Date Title
JP5274022B2 (en) Method of forming a component of quartz glass for use in semiconductor manufacturing and component obtained according to the method
US3886052A (en) Method of making a magnetic recording disc
JP3820787B2 (en) Sputtering target and manufacturing method thereof
JP2006089363A (en) Process for manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium obtained by the process, and magnetic recording medium obtained using the substrate
JP2011137206A (en) Plating pretreatment method of aluminum alloy
JPH0551756A (en) Lectroless ni-p plating method
JP2001209925A (en) Aluminum substrate for magnetic recording medium and method for producing same
JP2001312817A (en) Method for cleaning glass substrate for magnetic recording medium, glass substrate for magnetic recording medium cleaned by the same and magnetic recording medium using the substrate
JP5796963B2 (en) Method for manufacturing aluminum substrate for hard disk drive
US20120219828A1 (en) Production method of base plate for disk drive, base plate for disk drive, and disk drive therewith
JP2020087494A (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof, aluminum alloy base for magnetic disk and manufacturing method thereof, and magnetic disk and manufacturing method thereof
JP4285222B2 (en) Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method
US6629878B1 (en) Pretreatment for reducing surface treatments defects
JP2005206866A (en) Pretreatment method for electroless plating, method for manufacturing substrate for magnetic recording media including the pretreatment method, and substrate for magnetic recording media manufactured by the manufacturing method
JP3103884B1 (en) Low defect surface coating layer composed of stainless steel with low defects or stainless steel formed on a substrate
JP2001073166A (en) Aluminum alloy substrate for magnetic recording medium and its production
JP4096352B2 (en) Manufacturing method of material for manufacturing magnetic thin film
JP2002183943A (en) Method for manufacturing magnetic disk substrate
JP2001229531A (en) Method of cleaning glass substrate
JP5890236B2 (en) Manufacturing method of hard disk substrate
JPH076357A (en) Titanium substrate for magnetic disk
JPH0775946A (en) Hdd aluminum base polishing method
JPH05247659A (en) Etching liquid for pretreatment of aluminum substrate for magnetic disk and pretreatment of this substrate by using this etching liquid
JP2844661B2 (en) Method for removing film from magnetic recording medium
JP2000173050A (en) Magnetic recording medium and its fabricating method