JP4285222B2 - Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method - Google Patents

Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method Download PDF

Info

Publication number
JP4285222B2
JP4285222B2 JP2003408138A JP2003408138A JP4285222B2 JP 4285222 B2 JP4285222 B2 JP 4285222B2 JP 2003408138 A JP2003408138 A JP 2003408138A JP 2003408138 A JP2003408138 A JP 2003408138A JP 4285222 B2 JP4285222 B2 JP 4285222B2
Authority
JP
Japan
Prior art keywords
nickel
substrate
plating film
plating
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003408138A
Other languages
Japanese (ja)
Other versions
JP2005171268A (en
Inventor
典彦 中島
正則 杉内
和人 樋口
辰実 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003408138A priority Critical patent/JP4285222B2/en
Publication of JP2005171268A publication Critical patent/JP2005171268A/en
Application granted granted Critical
Publication of JP4285222B2 publication Critical patent/JP4285222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は無電解ニッケル−リン(Ni−P)メッキ上へ、密着性のよい無電解メッキをする方法に関する。特に、本発明は無電解メッキの前処理方法、該前処理方法を含む、固定磁気ディスクを用いた記憶装置に使用される磁気記ディスク用基板の製造方法、および、該製造方法により製造される磁気記録媒体用基板に関する。   The present invention relates to a method for performing electroless plating with good adhesion on electroless nickel-phosphorus (Ni-P) plating. In particular, the present invention is a pretreatment method for electroless plating, a method for producing a magnetic recording disk substrate used in a storage device using a fixed magnetic disk, and the production method, including the pretreatment method. The present invention relates to a magnetic recording medium substrate.

磁気記録媒体、特に磁気ディスク用の基板として主に用いられているアルミ合金製基板には、表面硬化層(下地層)として、リン濃度(以下P濃度とも称する)が20〜25at%のニッケル−高リンメッキ(以下Ni−高Pメッキとも称する)が施される。このメッキの後、基板は研磨加工により鏡面化され、磁性層が形成されて磁気記録媒体となる。このメッキ工程で不良品が発生する場合があるが、不良品は、再メッキされて再使用することが試みられる。しかし、Ni−Pメッキ上へNi−Pメッキを施した基板は、サブミクロンの微小欠陥が存在し、磁気記録媒体としたときにエラーが発生する原因となるため、年々高密度化する磁気記録媒体用の基板としてこのような再メッキした基板を使用することが難しくなっている。   An aluminum alloy substrate mainly used as a substrate for magnetic recording media, particularly a magnetic disk, has a surface hardened layer (underlying layer) having a phosphorus concentration (hereinafter also referred to as P concentration) of 20 to 25 at% nickel- High phosphorus plating (hereinafter also referred to as Ni-high P plating) is performed. After this plating, the substrate is mirror-finished by polishing and a magnetic layer is formed to become a magnetic recording medium. Although defective products may occur in this plating process, the defective products are re-plated and attempted to be reused. However, a substrate with Ni-P plating on Ni-P plating has submicron micro defects and causes errors when used as a magnetic recording medium. It has become difficult to use such re-plated substrates as media substrates.

一方、磁化方向が面内を向く従来の水平記録方式に対して、より高密度な記録が可能な垂直磁気記録方式が提案されている。垂直磁気記録用の磁気記録媒体は、磁性層の下に磁界を収束させる軟磁性裏打ち層を必要とする。その形成方法としては、スパッタ法が主流であるが、その他にも特許文献1に記載のような、表面硬化層を熱処理して軟磁性裏打ち層を形成する方法が提案されている。   On the other hand, a perpendicular magnetic recording method capable of recording at a higher density has been proposed as compared with the conventional horizontal recording method in which the magnetization direction is in-plane. A magnetic recording medium for perpendicular magnetic recording requires a soft magnetic backing layer for converging a magnetic field under the magnetic layer. As the formation method, the sputtering method is the mainstream. However, as described in Patent Document 1, a method of forming a soft magnetic underlayer by heat-treating the surface hardened layer has been proposed.

特開平1−285022号公報Japanese Patent Laid-Open No. 1-285022

軟磁性裏打ち層をスパッタ法で成膜する場合、その膜厚が数百nmであることから、膜厚が数nm〜数十nmである磁性層と比較して軟磁性裏打ち層の成膜時間が長くなり、生産性が悪い。   When a soft magnetic backing layer is formed by sputtering, the film thickness is several hundreds of nanometers, so the soft magnetic backing layer is formed compared to a magnetic layer having a thickness of several nanometers to several tens of nanometers. Becomes longer and productivity is poor.

軟磁性裏打ち層は、軟磁性組成としてNi、Fe、Coや他の合金が知られており、無電解メッキ法により成膜することができる。しかし、軟磁性裏打ち層の膜厚が厚すぎるとノイズの原因となることから、その膜厚は厚くても数μm以下としなければならない。膜厚を薄くするために、アルミ合金製の基板上へ軟磁性裏打ち層を単層形成することもできるが、これでは耐ヘッド衝撃性を満足できない。また、軟磁性裏打ち層は、結晶質で研磨性が悪く、できるだけ研磨量を少なくすることが望ましいが、そのためには、メッキ後のメッキ膜表面の粗さをできるだけ小さくしなければならない。このため、鏡面研磨したNi−高Pメッキ膜上へメッキをすることが必要となる。   The soft magnetic backing layer is known to have a soft magnetic composition of Ni, Fe, Co, and other alloys, and can be formed by an electroless plating method. However, if the thickness of the soft magnetic backing layer is too large, noise will be caused. Therefore, even if the thickness is large, it must be several μm or less. In order to reduce the film thickness, a single soft magnetic backing layer can be formed on an aluminum alloy substrate, but this does not satisfy the head impact resistance. The soft magnetic backing layer is crystalline and has poor polishing properties, and it is desirable to reduce the amount of polishing as much as possible. For this purpose, the roughness of the plated film surface after plating must be as small as possible. For this reason, it is necessary to plate the mirror-polished Ni-high P plating film.

また、軟磁性裏打ち層として、リン濃度が1〜9at%であるNi−低Pメッキ膜は、十分な軟磁性特性を有し、且つ、組成が単純なため管理が容易であり、生産性の点でも優れている。しかし、このようなNi−低Pメッキ膜を鏡面研磨したNi−高Pメッキ膜上に成膜する場合、還元剤の次亜リン酸の濃度を下げる必要があり、そのようにするとメッキの反応性が悪くなり、微小欠陥が発生する。従って、Ni−高Pメッキ膜上へNi−低Pメッキ膜を形成する場合には、Ni−高Pメッキ膜を鏡面研磨したとしても欠陥が生じる問題がある。   In addition, as a soft magnetic backing layer, a Ni-low P plating film having a phosphorus concentration of 1 to 9 at% has sufficient soft magnetic properties and has a simple composition, so that it can be easily managed and has a high productivity. Also excellent in terms. However, when such a Ni-low P plating film is formed on a mirror-polished Ni-high P plating film, it is necessary to lower the concentration of hypophosphorous acid as a reducing agent, and in that case, the reaction of plating The quality deteriorates and micro defects occur. Therefore, when the Ni-low P plating film is formed on the Ni-high P plating film, there is a problem that defects occur even if the Ni-high P plating film is mirror-polished.

加えて、磁気記録媒体に限らず、ニッケル−リン(Ni−P)メッキ膜上へ均質で欠陥のない無電解メッキ膜を形成できる汎用的な方法も望まれている。   In addition, not only a magnetic recording medium but also a general-purpose method capable of forming an electroless plating film that is uniform and free of defects on a nickel-phosphorus (Ni-P) plating film is desired.

従って、本発明の目的は、Ni−Pメッキ膜(第1のメッキ膜)上へ無電解メッキ法でメッキ膜(第2のメッキ膜)を形成する場合に、第2のメッキ膜表面に欠陥を生じさせない方法を提供すること、即ち、無電解メッキの前処理方法を提供することにある。   Accordingly, an object of the present invention is to form defects on the surface of the second plating film when the plating film (second plating film) is formed on the Ni-P plating film (first plating film) by the electroless plating method. It is an object of the present invention to provide a method that does not cause the occurrence of electrolysis, that is, to provide a pretreatment method for electroless plating.

更に本発明の目的は、該前処理方法を含む磁気記録媒体用基板の製造方法を提供することにある。   It is a further object of the present invention to provide a method for manufacturing a magnetic recording medium substrate including the pretreatment method.

更に、本発明の目的は、該製造方法により製造された磁気記録媒体用基板を提供することにある。   Furthermore, the objective of this invention is providing the board | substrate for magnetic recording media manufactured by this manufacturing method.

本発明の第1は、無電解メッキの前処理方法に関する。該方法は、ニッケル−リンからなる第1のメッキ膜を有する基板上に、(1)ニッケルと、(2)リンおよび/またはホウ素と、任意に、(3)V、Cr、Mn、Fe、Co、Cu、Zn、Mo、Pd、Sn、WおよびReからなる群から選択される1種またはそれ以上の元素と、を含む第2のメッキ膜を無電解メッキ法で形成する場合の、第1のメッキ膜の前処理方法であって、前記基板上の第1のメッキ膜表面の酸化膜を除去する活性化工程と、酸化膜を除去した第1のメッキ膜表面を酸化する工程を含む。   The first of the present invention relates to a pretreatment method for electroless plating. The method includes (1) nickel, (2) phosphorus and / or boron, and optionally (3) V, Cr, Mn, Fe, on a substrate having a first plating film made of nickel-phosphorus. In the case where a second plating film containing one or more elements selected from the group consisting of Co, Cu, Zn, Mo, Pd, Sn, W, and Re is formed by an electroless plating method, 1 is a pretreatment method for a plating film, which includes an activation step of removing an oxide film on the surface of the first plating film on the substrate, and a step of oxidizing the surface of the first plating film from which the oxide film has been removed. .

前記前処理方法は、前記基板上のニッケル−リンからなる第1のメッキ膜表面のNi酸化度を下記(1)式によって算出した場合に、前記活性化工程後のニッケル酸化度が0.12以下であり、且つ、前記酸化工程後のニッケル酸化度が0.15〜0.3であることを特徴とする。
ニッケル酸化度=B/(A+B) (1)
但し、AおよびBは、それぞれ、ニッケル−リンからなる第1のメッキ膜表面をX線光電子分光分析(XPS)法で測定して得られたスペクトルの、850eVと860eVの吸収強度の位置を直線で結び、これをベースラインとした場合の以下の値を表す。
(I)A=XPS法のスペクトルの850〜855eV(ニッケルピーク強度)の大値
(II)B=XPS法のスペクトルの855〜860eV(酸化ニッケルピーク強度)の大値。
In the pretreatment method, when the Ni oxidation degree on the surface of the first plating film made of nickel-phosphorus on the substrate is calculated by the following equation (1), the nickel oxidation degree after the activation step is 0.12. The nickel oxidation degree after the oxidation step is 0.15 to 0.3.
Nickel oxidation degree = B / (A + B) (1)
However, A and B are respectively the positions of the absorption intensity of 850 eV and 860 eV of the spectrum obtained by measuring the surface of the first plating film made of nickel-phosphorous by the X-ray photoelectron spectroscopy (XPS) method. And represents the following value when this is used as a baseline.
(I) A = electrode Daine of spectra of the XPS method 850~855eV 855~860eV (nickel oxide peak intensity) of a spectrum pole Daine (II) B = XPS method (nickel peak intensity).

更に本発明の前処理方法は、活性化工程が、酸水溶液に前記第1のメッキ膜を有する基板を浸漬することを含み、酸化工程が40〜80℃の温水に10〜60秒浸漬すること、または、0.2〜1wt%の過酸化水素水に10〜60秒浸漬することを含む。   Furthermore, in the pretreatment method of the present invention, the activation step includes immersing the substrate having the first plating film in an acid aqueous solution, and the oxidation step is immersed in warm water at 40 to 80 ° C. for 10 to 60 seconds. Or immersion in 0.2 to 1 wt% hydrogen peroxide solution for 10 to 60 seconds.

本発明の第2は、上記前処理方法を含む磁気記録媒体用基板の製造方法に関する。該製造方法は、(A)アルミ合金基板上に、ニッケル−リンからなる第1のメッキ膜を形成する工程と、(B)該基板上の第1のメッキ膜上に、(1)ニッケルと、(2)リンおよび/またはホウ素と、任意に、(3)V、Cr、Mn、Fe、Co、Cu、Zn、Mo、Pd、Sn、WおよびReからなる群から選択される1種またはそれ以上の元素と、を含む無電解メッキ膜を形成する工程を含み、前記工程(A)の後に、ニッケル−リンからなる第1のメッキ膜表面の酸化膜を除去する活性化工程と、酸化工程を含むことを特徴とする。   A second aspect of the present invention relates to a method for manufacturing a magnetic recording medium substrate including the pretreatment method. The manufacturing method includes (A) a step of forming a first plating film made of nickel-phosphorous on an aluminum alloy substrate, and (B) (1) nickel on the first plating film on the substrate. (2) phosphorus and / or boron and optionally (3) one or more selected from the group consisting of V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Pd, Sn, W and Re An activation step of removing an oxide film on the surface of the first plating film made of nickel-phosphorus after the step (A), and a step of forming an electroless plating film containing more elements. Including a process.

本発明の製造方法では、上記(1)式によって算出されるニッケル酸化度が、活性化工程後に0.12以下であり、且つ、酸化工程後に0.15〜0.3となることを特徴とする。   In the production method of the present invention, the nickel oxidation degree calculated by the above formula (1) is 0.12 or less after the activation step and becomes 0.15 to 0.3 after the oxidation step. To do.

更に、本発明の製造方法は、活性化工程が、酸水溶液に前記ニッケル−リンからなる第1のメッキ膜を有する基板を浸漬することを含み、酸化工程が40〜80℃の温水に10〜60秒浸漬すること、または、0.2〜1wt%の過酸化水素水に10〜60秒浸漬することを含む。   Furthermore, in the manufacturing method of the present invention, the activation step includes immersing the substrate having the first plating film made of nickel-phosphorous in an acid aqueous solution, and the oxidation step is performed in hot water at 40 to 80 ° C. Soaking for 60 seconds, or soaking for 10 to 60 seconds in 0.2 to 1 wt% of hydrogen peroxide.

本発明の第3は、上記磁気記録媒体用基板の製造方法により製造される磁気記録媒体用基板に関する。本発明の磁気記録媒体用基板は、工程(A)で形成されるニッケル−リンからなる第1のメッキ膜のリン濃度が20〜25at%であり、工程(B)で形成される第2のメッキ膜が1〜9at%のリン濃度のニッケル−リンメッキ膜であることを特徴とする。   A third aspect of the present invention relates to a magnetic recording medium substrate manufactured by the method for manufacturing a magnetic recording medium substrate. In the magnetic recording medium substrate of the present invention, the phosphorus concentration of the first plating film made of nickel-phosphorus formed in the step (A) is 20 to 25 at%, and the second plating formed in the step (B). The plating film is a nickel-phosphorous plating film having a phosphorus concentration of 1 to 9 at%.

本発明の前処理方法を適用することにより、例えばNi−Pメッキ膜上に欠陥のない無電解ニッケルメッキ膜を形成することができる。   By applying the pretreatment method of the present invention, for example, an electroless nickel plating film having no defect can be formed on a Ni-P plating film.

また、本発明の磁気記録媒体用基板の製造方法によれば、軟磁性裏打ち層の欠陥のない磁気記録媒体用基板を提供できる。特に本発明の製造方法は、Al合金/Ni−Pメッキ基板上に、リン濃度1〜9at%の低リンメッキを適用する場合に有効であり、欠陥が極小で安価な、軟磁性裏打ち層付き垂直磁気記録媒体用基板を提供できる。   In addition, according to the method for manufacturing a magnetic recording medium substrate of the present invention, it is possible to provide a magnetic recording medium substrate free from defects in the soft magnetic underlayer. In particular, the manufacturing method of the present invention is effective when low phosphorus plating with a phosphorus concentration of 1 to 9 at% is applied on an Al alloy / Ni-P plated substrate, and the vertical defect with a soft magnetic backing layer is minimal and inexpensive. A substrate for a magnetic recording medium can be provided.

更に、本発明の磁気記録媒体用基板は、軟磁性裏打ち層に欠陥のない基板である。   Furthermore, the magnetic recording medium substrate of the present invention is a substrate having no defect in the soft magnetic underlayer.

本発明の第1は、Ni−Pからなる第1のメッキ膜を有する基板上に無電解メッキ法により第2のメッキ膜を形成する場合の前処理方法に関する。なお、本明細書では、基板上に設けられるNi−Pからなる第1のメッキ膜をNi−Pメッキ下地層とも称する。   The first of the present invention relates to a pretreatment method in the case where a second plating film is formed by an electroless plating method on a substrate having a first plating film made of Ni-P. In the present specification, the first plating film made of Ni—P provided on the substrate is also referred to as a Ni—P plating underlayer.

本発明の前処理方法に使用される基板は、Ni−Pメッキを施すことができるものであれば特に限定されない。例えば、アルミニウム合金、ソーダライムガラス、リチウムシリケートガラス、アルミノシリケートガラスなどのガラス、アルミナセラミック、シリコン、プラスチックなどの非磁性基板を用いることができる。特にAl−Mg合金のようなアルミニウム合金が好ましい。   The board | substrate used for the pre-processing method of this invention will not be specifically limited if Ni-P plating can be given. For example, nonmagnetic substrates such as glass such as aluminum alloy, soda lime glass, lithium silicate glass, and aluminosilicate glass, alumina ceramic, silicon, and plastic can be used. An aluminum alloy such as an Al—Mg alloy is particularly preferable.

本発明の前処理方法は、Ni−Pメッキ膜を有する基板を1.活性化処理する工程および2.酸化処理する工程を含む。   In the pretreatment method of the present invention, a substrate having a Ni-P plating film is formed as follows. 1. an activation process; A step of oxidizing treatment.

1.活性化工程
本発明の前処理方法の活性化工程は、Ni−Pメッキ下地層を有する基板を酸溶液に浸漬することにより行われる。酸溶液は塩酸、硫酸、硝酸、リン酸、フッ酸などが好ましいが、これらに限定されない。酸の濃度は、処理する酸の種類、浸漬条件などにより異なるが、前記の酸の場合1規定以上であることが好ましい。
1. Activation Step The activation step of the pretreatment method of the present invention is performed by immersing a substrate having a Ni—P plating underlayer in an acid solution. The acid solution is preferably hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, but is not limited thereto. The acid concentration varies depending on the type of acid to be treated, the immersion conditions, and the like, but in the case of the above acid, it is preferably 1 N or more.

本発明の前処理方法では、ニッケル酸化度が0.12以下となるように活性化処理を行う。ここで、ニッケル酸化度とは、下式(1)により定義されるNi−Pメッキ下地層の表面のニッケルの酸化度をいう。
ニッケル酸化度=B/(A+B) (1)
但し、AおよびBは、それぞれ、ニッケル−リンメッキ表面をXPS法で測定して得られたスペクトルの、850eVと860eVの吸収強度の位置を直線で結び、これをベースラインとした場合の以下の値を表す。
(I)A=XPS法のスペクトルの850〜855eV(ニッケルピーク強度)の大値
(II)B=XPS法のスペクトルの855〜860eV(酸化ニッケルピーク強度)の大値
In the pretreatment method of the present invention, the activation treatment is performed so that the nickel oxidation degree is 0.12 or less. Here, the nickel oxidation degree means the oxidation degree of nickel on the surface of the Ni-P plating underlayer defined by the following formula (1).
Nickel oxidation degree = B / (A + B) (1)
However, A and B are the following values when the positions of the absorption intensities of 850 eV and 860 eV are connected by a straight line in the spectrum obtained by measuring the nickel-phosphorous plating surface by the XPS method, respectively. Represents.
(I) A = poles 850~855eV spectrum of XPS method 855~860EV (nickel oxide peak intensity) of a spectrum pole Daine (II) B = XPS method (nickel peak intensity) Daine

図1を参照してより具体的に式(1)のニッケル酸化度を説明する。図1は、XPS法によるNi 2Pスペクトル図である。図1のスペクトルの850eVの点(図1の(a)の位置)と860eVの点(図1の(b)の位置)を結んだ直線をベースラインとする。このベースラインから、ニッケルに相当するピーク(850〜855eV)の大値(図1の(c)の位置)までの強度をニッケル強度(A)とする。また、ベースラインから、酸化ニッケルに相当するピーク(855〜860eV)の大値(図1の(d)の位置)までの強度をニッケル強度(B)とする。そして、ニッケル酸化度を、下式(1)から算出する。
ニッケル酸化度=B/(A+B) (1)
The nickel oxidation degree of Formula (1) will be described more specifically with reference to FIG. FIG. 1 is a Ni 2P spectrum diagram by XPS method. A straight line connecting the 850 eV point (position (a) in FIG. 1) and the 860 eV point (position (b) in FIG. 1) in the spectrum of FIG. From the base line, the intensity of up pole Daine (position in FIG. 1 (c)) of the peak corresponding to the nickel (850~855EV) nickel intensity (A). Further, from baseline, the strength up pole Daine peaks corresponding to nickel oxide (855~860eV) (position of the to FIG. 1 (d)) and a nickel intensity (B). Then, the nickel oxidation degree is calculated from the following equation (1).
Nickel oxidation degree = B / (A + B) (1)

ニッケル酸化度が0.12以下となる条件を満足する浸漬条件としては、例えば、浸漬温度は10〜60℃が好ましく、浸漬時間は30〜300秒が好ましい。   As immersion conditions that satisfy the condition that the nickel oxidation degree is 0.12 or less, for example, the immersion temperature is preferably 10 to 60 ° C., and the immersion time is preferably 30 to 300 seconds.

浸漬後、基板を純水(18MΩ)などでよく洗浄することが好ましい。洗浄後は、そのまま次の工程(酸化工程)を行うことができる。   After the immersion, it is preferable to clean the substrate thoroughly with pure water (18 MΩ). After washing, the next step (oxidation step) can be performed as it is.

2.酸化工程
本発明の前処理方法では、活性化工程後にNi−P下地層表面を酸化する。酸化工程は、所定の溶液に基板を浸漬することを含む。その他、スプレー法などを用いて酸化工程を実施することができる。酸化工程では、Ni−P下地層表面のニッケル酸化度(ニッケル酸化度は上記式(1)で定義される)が0.15〜0.3の範囲となるように酸化を行なう。
2. Oxidation Step In the pretreatment method of the present invention, the Ni—P underlayer surface is oxidized after the activation step. The oxidation step includes immersing the substrate in a predetermined solution. In addition, the oxidation step can be performed using a spray method or the like. In the oxidation step, oxidation is performed so that the nickel oxidation degree (nickel oxidation degree is defined by the above formula (1)) on the Ni—P underlayer surface is in the range of 0.15 to 0.3 .

酸化工程での浸漬溶液は、ニッケル酸化度を上記範囲内にできるものであれば特に限定されないが、所定温度の純水、過酸化水素水などを挙げることができる。純水の場合、液温は25〜100℃、好ましくは40〜80℃である。また、過酸化水素水の場合、その濃度は0.2〜1wt%であることが好ましく、温度は常温が好ましい。浸漬条件は、上記ニッケル酸化度の範囲内となる条件であれば特に限定されないが、40〜80℃の純水の場合、10〜60秒、好ましくは、20〜40秒、最も好ましくは30秒である。また、過酸化水素水の場合、10〜60秒、好ましくは、20〜40秒、最も好ましくは30秒である。   The immersion solution in the oxidation step is not particularly limited as long as the nickel oxidation degree can be within the above range, and examples thereof include pure water and hydrogen peroxide solution at a predetermined temperature. In the case of pure water, the liquid temperature is 25 to 100 ° C, preferably 40 to 80 ° C. In the case of hydrogen peroxide solution, the concentration is preferably 0.2 to 1 wt%, and the temperature is preferably room temperature. The immersion conditions are not particularly limited as long as the conditions are within the above nickel oxidation degree range, but in the case of pure water at 40 to 80 ° C., 10 to 60 seconds, preferably 20 to 40 seconds, and most preferably 30 seconds. It is. In the case of aqueous hydrogen peroxide, it is 10 to 60 seconds, preferably 20 to 40 seconds, and most preferably 30 seconds.

浸漬後は、必要に応じて純水(18MΩ)などで洗浄することができる。洗浄後は、そのまま次の工程(メッキ工程)を行うことができる。   After immersion, it can be washed with pure water (18 MΩ) or the like as required. After washing, the next step (plating step) can be performed as it is.

本発明の前処理方法では、活性化工程後のニッケル酸化度が0.12以下であり、且つ、酸化工程後のニッケル酸化度が0.15〜0.3であることが必要である。活性化工程後のニッケル酸化度が0.12以下であっても、酸化工程後のニッケル酸化度が上記範囲外である場合、例えば、酸化の処理が不十分な場合には、後の無電解メッキを行う際に、反応が起こらずメッキが析出しなかったり、後の無電解メッキで欠陥が多数発生する。また、酸化の処理が過度である場合、Ni−P下地層と第2のメッキ膜の接着性が不十分でフクレが発生したりする。更に、活性化工程後のニッケル酸化度が0.12以上であると、酸化工程後のニッケル酸化度が上記範囲内であっても、後の無電解メッキで多数の欠陥が生じる。 In the pretreatment method of the present invention, it is necessary that the nickel oxidation degree after the activation step is 0.12 or less, and the nickel oxidation degree after the oxidation step is 0.15 to 0.3 . Even if the nickel oxidation degree after the activation step is 0.12 or less, if the nickel oxidation degree after the oxidation step is outside the above range, for example, if the oxidation treatment is insufficient, When plating is performed, no reaction occurs and plating does not deposit, or many defects are generated by subsequent electroless plating. Further, when the oxidation treatment is excessive, the adhesion between the Ni-P underlayer and the second plating film is insufficient, and blisters are generated. Furthermore, if the nickel oxidation degree after the activation process is 0.12 or more, even if the nickel oxidation degree after the oxidation process is within the above range, a number of defects are generated in the subsequent electroless plating.

本発明の第2は、本発明の前処理方法を含む磁気記録媒体用基板の製造方法に関する。本発明の製造方法は、(A)アルミ合金基板上に、ニッケル−リンからなる第1のメッキ膜を形成する工程と、(B)該基板上の第1のメッキ膜上に、(1)ニッケルと、(2)リンおよび/またはホウ素と、任意に、(3)V、Cr、Mn、Fe、Co、Cu、Zn、Mo、Pd、Sn、WおよびReからなる群から選択される1種またはそれ以上の元素と、を含む無電解メッキを行う工程を含み、前記工程(A)の後に、ニッケル−リンメッキの表面の酸化膜を除去する活性化工程と、酸化工程を含むことを特徴とする。   2nd of this invention is related with the manufacturing method of the board | substrate for magnetic recording media containing the pre-processing method of this invention. The manufacturing method of the present invention includes (A) a step of forming a first plating film made of nickel-phosphorous on an aluminum alloy substrate, and (B) a first plating film on the substrate, (1) 1 selected from the group consisting of nickel, (2) phosphorus and / or boron, and optionally (3) V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Pd, Sn, W and Re And a step of performing electroless plating containing a seed or more element, and after the step (A), an activation step of removing an oxide film on the surface of nickel-phosphorous plating and an oxidation step are included. And

工程(A)では、アルミ合金基板にNi−Pメッキ下地層を形成する。
本発明の製造方法で用いることができるアルミ合金製基板は、ハードディスク等に通常使用されるものである。例えば、加熱溶融したアルミ合金材料を圧延、加熱焼鈍した後、規定の寸法に加工が行われたアルミ合金のブランク材を使用することができる。このブランク材に、従来の手順に従って、アルカリ脱脂、酸エッチング、ジンケート処理を順次行う。次に、得られたアルミ合金基板にNi−Pメッキを施す。メッキは無電解メッキにより行われる。Ni−Pメッキ下地層の厚さは、通常の磁気記録媒体用基板に適用される厚さであれば特に限定されないが、例えば5〜20μmの厚さとすることができる。Ni−Pメッキは、定法に従って行うことができる。Ni−Pメッキ下地層のリン濃度は特に限定されないが、磁気記録媒体用基板で用いられる、リン濃度が20〜25at%のNi−Pメッキ下地層が好ましい。
In the step (A), a Ni—P plating base layer is formed on the aluminum alloy substrate.
The aluminum alloy substrate that can be used in the production method of the present invention is usually used for a hard disk or the like. For example, it is possible to use an aluminum alloy blank material that has been rolled and heat-annealed and then processed to a specified dimension. This blank is sequentially subjected to alkali degreasing, acid etching, and zincate treatment in accordance with conventional procedures. Next, Ni-P plating is applied to the obtained aluminum alloy substrate. Plating is performed by electroless plating. The thickness of the Ni—P plating underlayer is not particularly limited as long as it is a thickness applied to a normal magnetic recording medium substrate, and can be, for example, 5 to 20 μm. Ni-P plating can be performed according to a conventional method. The phosphorus concentration of the Ni—P plating underlayer is not particularly limited, but a Ni—P plating underlayer having a phosphorus concentration of 20 to 25 at% used for a magnetic recording medium substrate is preferable.

本発明では、上述のようにして得られた基板の第1のメッキ膜表面を研磨することが好ましい。   In the present invention, it is preferable to polish the surface of the first plating film of the substrate obtained as described above.

研磨には、例えば、アルミナ研磨スラリーと発泡ウレタンを用いて一次研磨を行い、次いでコロイダルシリカと発泡ウレタンを用いて二次研磨することが含まれる。研磨条件は従来の条件に従えばよいが、例えば、上記一次研磨では、0.2〜2m/秒の速度、30〜150g/cmの圧力で5〜20分間研磨を行うことが好ましい。また、上記二次研磨では、0.2〜2m/秒の速度、30〜150g/cmの圧力で5〜20分間研磨を行うことが好ましい。 The polishing includes, for example, primary polishing using an alumina polishing slurry and foamed urethane, and then secondary polishing using colloidal silica and foamed urethane. The polishing conditions may follow conventional conditions. For example, in the primary polishing, it is preferable to perform polishing for 5 to 20 minutes at a speed of 0.2 to 2 m / sec and a pressure of 30 to 150 g / cm 2 . Moreover, in the said secondary grinding | polishing, it is preferable to grind | polish for 5 to 20 minutes with the speed | rate of 0.2-2 m / sec and the pressure of 30-150 g / cm < 2 >.

本発明の磁気記録媒体用基板の製造方法では、Ni−Pメッキ下地層を形成した後、第1の発明で説明した無電解メッキの前処理方法を適用する。即ち、本発明の製造方法は、Ni−Pメッキ下地層を活性化する工程と、酸化する工程を含む。   In the method for manufacturing a magnetic recording medium substrate according to the present invention, after the Ni—P plating underlayer is formed, the electroless plating pretreatment method described in the first invention is applied. That is, the manufacturing method of the present invention includes a step of activating the Ni-P plating underlayer and a step of oxidizing.

具体的に両工程を説明すれば、まず、Ni−Pメッキ下地層を有する基板を、例えば1〜6規定の塩酸、硫酸、または硝酸水溶液などの溶液に浸漬し、Ni−Pメッキ下地層表面を活性化する。次いで、活性化された基板を、温水または過酸化水素水のような溶液に浸漬し、酸化する。活性化および酸化の条件は先に説明した通りである。また、先に示した、活性化工程後のニッケル酸化度および酸化工程後のニッケル酸化度を満足するように、各処理工程を行う。   Specifically, both steps will be described. First, a substrate having a Ni—P plating underlayer is immersed in a solution such as 1 to 6 N hydrochloric acid, sulfuric acid, or a nitric acid aqueous solution, and the surface of the Ni—P plating underlayer Activate. Then, the activated substrate is immersed in a solution such as warm water or hydrogen peroxide solution and oxidized. The conditions for activation and oxidation are as described above. In addition, each processing step is performed so as to satisfy the nickel oxidation degree after the activation step and the nickel oxidation degree after the oxidation step.

前処理を行った基板は、次の無電解メッキ工程(工程(B))へ供される。
工程(B)では、前処理を行ったNi−Pメッキ下地層上に無電解メッキを行う。本発明では、(1)ニッケルと、(2)リンおよび/またはホウ素と、任意に、(3)V、Cr、Mn、Fe、Co、Cu、Zn、Mo、Pd、Sn、WおよびReからなる群から選択される1種またはそれ以上の元素とを含む第2のメッキ膜を形成する無電解メッキを行う。
The substrate that has been pretreated is subjected to the next electroless plating step (step (B)).
In the step (B), electroless plating is performed on the pretreated Ni—P plating base layer. In the present invention, (1) nickel, (2) phosphorus and / or boron, optionally (3) from V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Pd, Sn, W and Re Electroless plating for forming a second plating film containing one or more elements selected from the group is performed.

本発明の製造方法では、本工程の無電解メッキで形成される膜は、(1)のNiを1〜99at%、(2)のリンおよび/またはホウ素を1〜25at%、(3)の元素を0〜98at%含む(但し、(1)、(2)および(3)の合計は100at%である)ことができる。   In the manufacturing method of the present invention, the film formed by electroless plating in this step is (1) 1 to 99 at% of Ni, (2) phosphorus and / or boron of 1 to 25 at%, (3) It is possible to contain 0 to 98 at% of elements (provided that the total of (1), (2) and (3) is 100 at%).

本発明では、リン濃度1〜13%、好ましくはリン濃度1〜9%のNi−Pメッキ膜を形成する無電解メッキを行うことが好ましい。特に、形成された膜のリン濃度が1〜9at%となる低リン濃度Ni−Pメッキを行うことが好ましい。リン濃度が1〜9at%の低リン濃度Ni−Pメッキ膜は、垂直磁気記録媒体用基板の軟磁性裏打ち層として十分な軟磁性特性を有し、組成が簡単であるため管理が容易であるため、磁気記録媒体用基板のメッキとして優れる。   In the present invention, electroless plating for forming a Ni-P plating film having a phosphorus concentration of 1 to 13%, preferably a phosphorus concentration of 1 to 9% is preferably performed. In particular, it is preferable to perform low phosphorus concentration Ni—P plating in which the formed film has a phosphorus concentration of 1 to 9 at%. A low phosphorus concentration Ni—P plating film having a phosphorus concentration of 1 to 9 at% has sufficient soft magnetic properties as a soft magnetic backing layer of a perpendicular magnetic recording medium substrate, and is easy to manage because of its simple composition. Therefore, it is excellent as a plating for a magnetic recording medium substrate.

本工程の無電解メッキは、上記元素を含むメッキ液を調製し、前処理された磁気記録媒体用基板を所定の温度および時間浸漬することで行うことができる。例えば、本発明の一実施形態である低リン濃度Ni−Pメッキの場合、硫酸ナトリウム、次亜リン酸ナトリウム、クエン酸ナトリウム若しくは酢酸ナトリウム、乳酸ナトリウム、グリシン、硫酸、および苛性ソーダを含むメッキ液(例えばpH4.5〜6.5)を調製し、浴温70〜100℃、好ましくは85〜95℃で、30〜60分、基板を浸漬すればよい。   The electroless plating in this step can be performed by preparing a plating solution containing the above elements and immersing the pretreated magnetic recording medium substrate at a predetermined temperature and time. For example, in the case of low phosphorus concentration Ni—P plating which is an embodiment of the present invention, a plating solution containing sodium sulfate, sodium hypophosphite, sodium citrate or sodium acetate, sodium lactate, glycine, sulfuric acid, and caustic soda ( For example, pH 4.5 to 6.5) is prepared, and the substrate may be immersed for 30 to 60 minutes at a bath temperature of 70 to 100 ° C., preferably 85 to 95 ° C.

本工程の無電解メッキ法で作成される膜は、1〜5μm、好ましくは2〜3μmの膜厚を有することができる。   The film produced by the electroless plating method in this step can have a thickness of 1 to 5 μm, preferably 2 to 3 μm.

得られた基板は、第2のメッキ膜表面を鏡面化するため研磨工程に付される。研磨は、例えばコロイダルシリカと発泡ウレタンを用いて行うことができる。研磨条件は研磨剤などにより異なるが、Ni−Pメッキ膜の場合、該メッキ膜をコロイダルシリカと発泡ウレタンを用いて研磨することができる。この場合、例えば30rpm、90g/cmを挙げることができる。研磨後の基板は、定法に従い洗浄および乾燥を行う。 The obtained substrate is subjected to a polishing process in order to make the surface of the second plating film a mirror surface. Polishing can be performed using, for example, colloidal silica and urethane foam. The polishing conditions vary depending on the abrasive and the like, but in the case of a Ni-P plating film, the plating film can be polished using colloidal silica and urethane foam. In this case, for example, 30 rpm and 90 g / cm 2 can be mentioned. The polished substrate is cleaned and dried according to a conventional method.

本発明の製造方法は、第2のメッキ膜表面の欠陥を最小限にするメッキ方法を提供する。特に、本発明の磁気記録媒体用基板の製造方法は、第2のメッキ表面の欠陥を最小限にした磁気記録媒体用基板を提供できる。   The manufacturing method of the present invention provides a plating method that minimizes defects on the surface of the second plating film. In particular, the method for manufacturing a magnetic recording medium substrate according to the present invention can provide a magnetic recording medium substrate in which defects on the second plating surface are minimized.

本発明の第3は、上記第2の発明の方法で製造された磁気記録媒体用基板である。
本発明の磁気記録媒体用基板は、図2に示されるように、基板1上に、Ni−P下地層3を有し、該下地層上に軟磁性裏打ち層5を有する。なお、図2は、内周および外周を有する円盤状の基板の一部を示す断面図である。
A third aspect of the present invention is a magnetic recording medium substrate manufactured by the method of the second aspect of the present invention.
As shown in FIG. 2, the magnetic recording medium substrate of the present invention has a Ni—P underlayer 3 on a substrate 1 and a soft magnetic backing layer 5 on the underlayer. FIG. 2 is a cross-sectional view showing a part of a disk-shaped substrate having an inner periphery and an outer periphery.

本発明の磁気記録媒体用基板は、(1)ニッケルと、(2)リンおよび/またはホウ素と、任意に、(3)V、Cr、Mn、Fe、Co、Cu、Zn、Mo、Pd、Sn、WおよびReからなる群から選択される1種またはそれ以上の元素とを含むことができ、その組成としては、例えば、(1)のNiを1〜99at%、(2)のリンおよび/またはホウ素を1〜9at%、(3)の元素を0〜98at%含むことができる(但し、(1)、(2)および(3)の合計は100at%である)。   The magnetic recording medium substrate of the present invention comprises (1) nickel, (2) phosphorus and / or boron, and optionally (3) V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Pd, One or more elements selected from the group consisting of Sn, W, and Re can be included, and as the composition, for example, Ni in (1) is 1 to 99 at%, phosphorus in (2) and It is possible to contain 1 to 9 at% of boron and 0 to 98 at% of the element of (3) (provided that the sum of (1), (2) and (3) is 100 at%).

本発明の磁気記録媒体用基板では、第2のメッキ膜はNi−P軟磁性裏打ち層、特にリン濃度1〜9at%である低リン濃度のNi−P軟磁性裏打ち層が好ましい。このような低リン濃度Ni−Pメッキ膜は、垂直磁気記録媒体用基板の軟磁性裏打ち層として十分な軟磁性特性を有し、組成が簡単であるため管理が容易である。本発明の磁気記録媒体用基板の各層の膜厚等は、垂直磁気記録媒体用基板で用いられるものが適用可能である。   In the magnetic recording medium substrate of the present invention, the second plating film is preferably a Ni—P soft magnetic backing layer, particularly a low phosphorus concentration Ni—P soft magnetic backing layer having a phosphorus concentration of 1 to 9 at%. Such a low phosphorus concentration Ni—P plating film has sufficient soft magnetic properties as a soft magnetic underlayer of the perpendicular magnetic recording medium substrate, and is easy to manage because of its simple composition. As the film thickness of each layer of the magnetic recording medium substrate of the present invention, those used in the perpendicular magnetic recording medium substrate can be applied.

本発明の磁気記録媒体用基板は、メッキ表面の欠陥を最小限に抑えたものである。   The magnetic recording medium substrate of the present invention is one in which defects on the plating surface are minimized.

(実施例1〜15)
Al合金/Ni−P基板
内径φ25mm、外形φ95mm、厚さ1.27mmのAl−Mg合金円盤を、従来の条件に従って、アルカリ脱脂、酸エッチング、ジンケート処理を順次行った。次いで、硫酸ニッケル(25g/L)、次亜リン酸ナトリウム(30g/L)、クエン酸ナトリウム(30g/L)、乳酸ナトリウム(10g/L)、グリシン(30g/L)からなるメッキ液(硫酸および苛性ソーダでpH4.6に調節し、90℃に加温したもの)中に90分浸漬して下地層を形成した。蛍光X線分析装置を用いて下地層のリン濃度と膜厚を測定した。リン濃度は21at%、膜厚は15μmであった。
(Examples 1 to 15)
Al alloy / Ni-P substrate An Al—Mg alloy disk having an inner diameter of 25 mm, an outer diameter of 95 mm, and a thickness of 1.27 mm was subjected to alkaline degreasing, acid etching, and zincate treatment in accordance with conventional conditions. Next, a plating solution (sulfuric acid) composed of nickel sulfate (25 g / L), sodium hypophosphite (30 g / L), sodium citrate (30 g / L), sodium lactate (10 g / L), and glycine (30 g / L). And adjusted to pH 4.6 with caustic soda and heated to 90 ° C. for 90 minutes to form an undercoat layer. The phosphorus concentration and film thickness of the underlayer were measured using a fluorescent X-ray analyzer. The phosphorus concentration was 21 at% and the film thickness was 15 μm.

次に、Ni−Pメッキを施した基板の表面を、平均粒径80nmのアルミナ研磨スラリーと発泡ウレタンパッドを貼った9B型両面研磨装置(条件:0.5〜1m/秒、90g/cm)で10分間一次研磨した。次に、平均粒径30nmのコロイダルシリカと発泡ウレタンパッドを貼った9B型両面研磨装置(条件:0.5〜1m/秒、90g/cm)を用いて、15分間二次研磨を行った。得られた基板は、膜厚11.5μmのNi−P下地層を有する鏡面Al/Ni−P基板であった。 Next, a 9B double-side polishing apparatus (conditions: 0.5 to 1 m / second, 90 g / cm 2) on which the surface of the Ni-P plated substrate is pasted with an alumina polishing slurry having an average particle size of 80 nm and a foamed urethane pad ) For 10 minutes. Next, secondary polishing was performed for 15 minutes using a 9B type double-side polishing apparatus (conditions: 0.5 to 1 m / sec, 90 g / cm 2 ) on which colloidal silica having an average particle size of 30 nm and a urethane foam pad was attached. . The obtained substrate was a mirror surface Al / Ni—P substrate having a Ni—P underlayer having a thickness of 11.5 μm.

前処理
1.活性化工程
Ni−P下地層の酸化膜を除去する活性化処理には、塩酸、硫酸、硝酸水溶液のいずれかを用いた。実施例1〜15で用いた溶液の種類、浸漬時間、活性化処理後のNi−P下地層表面のニッケル酸化度を表1に示した。活性化処理後、基板を純水(18MΩ)でよく濯いだ。表面のニッケル酸化度を測定するサンプル以外はそのまま次の酸化処理の工程に進めた。表面のニッケル酸化度を測定するサンプルは、エアーブロー乾燥した基板表面をXPS測定して得られたスペクトルの、850eVと860eVの吸収強度の位置を直線で結び、これをベースラインとした場合の以下の(I)および(II)の値を基に、式(1)に従って算出した。
(I)A=XPS法のスペクトルの850〜855eV(ニッケルピーク強度)の大値
(II)B=XPS法のスペクトルの855〜860eV(酸化ニッケルピーク強度)の大値
ニッケル酸化度=B/(A+B) (1)
Pretreatment 1. Activation Step For the activation treatment for removing the oxide film of the Ni—P underlayer, any one of hydrochloric acid, sulfuric acid, and nitric acid aqueous solution was used. Table 1 shows the types of the solutions used in Examples 1 to 15, the immersion time, and the nickel oxidation degree of the Ni-P underlayer surface after the activation treatment. After the activation treatment, the substrate was thoroughly rinsed with pure water (18 MΩ). Except for the sample for measuring the nickel oxidation degree on the surface, the process proceeded directly to the next oxidation process. The sample for measuring the nickel oxidation degree of the surface is the following when the absorption intensity positions of 850 eV and 860 eV of the spectrum obtained by XPS measurement of the air blow dried substrate surface are connected by a straight line. Based on the values of (I) and (II), it was calculated according to the formula (1).
(I) A = electrode Daine nickel oxide of the 850~855eV spectrum of XPS method 855~860EV (nickel oxide peak intensity) of a spectrum pole Daine (II) B = XPS method (nickel peak intensity) = B / (A + B) (1)

Figure 0004285222
Figure 0004285222

2.酸化処理
活性化処理を施した基板を、温水または過酸化水素水に浸漬することで、Ni−P下地層表面を酸化した。実施例1〜15における酸化の条件および処理後のニッケル酸化度を表2に示した。酸化処理後、基板を純水(18MΩ)でよく濯いだ。表面のニッケル酸化度を測定するサンプル以外はそのまま次のメッキ工程に進めた。
2. Oxidation treatment The surface of the Ni-P underlayer was oxidized by immersing the substrate subjected to the activation treatment in warm water or hydrogen peroxide solution. Table 2 shows the oxidation conditions and the nickel oxidation degree after the treatment in Examples 1 to 15. After the oxidation treatment, the substrate was thoroughly rinsed with pure water (18 MΩ). Except for the sample for measuring the nickel oxidation degree on the surface, the process proceeded directly to the next plating step.

Figure 0004285222
Figure 0004285222

3.メッキ処理(第2のメッキ膜の成膜)
前処理の終了した基板を表3に示すメッキ液(表中、メッキ液A〜DのNi−Pメッキ液では組成としてリン濃度(P濃度)を示した)に浸漬し、所定のメッキ膜を形成した。メッキ時間は、膜厚が2.5μmとなるように調製した。各実施例で使用したメッキ液の種類は、後述する表6に示した。
3. Plating treatment (deposition of second plating film)
The substrate after the pretreatment is immersed in the plating solution shown in Table 3 (in the table, the Ni-P plating solutions of plating solutions A to D showed phosphorus concentration (P concentration) as a composition), and a predetermined plating film was formed Formed. The plating time was adjusted so that the film thickness was 2.5 μm. The types of plating solutions used in each example are shown in Table 6 to be described later.

Figure 0004285222
Figure 0004285222

Figure 0004285222
Figure 0004285222

メッキを施した基板を、平均粒径30nmのコロイダルシリカと発泡ウレタンを貼った両面研磨装置(条件:30rpm、90g/cm)を用いて研磨した。研磨量は、減重で制御し、膜厚に換算して0.5±0.1μmとなるように研磨した。研磨後の基板を、PVAスポンジとアルカリ洗剤によるスクラブ洗浄、シャワー水洗、純水MS浸漬、IPAベーパー乾燥を順次行うことにより清浄化し、正常な鏡面を有する基板を得た。 The plated substrate was polished using a double-side polishing apparatus (conditions: 30 rpm, 90 g / cm 2 ) on which colloidal silica having an average particle size of 30 nm and urethane foam were attached. The polishing amount was controlled by weight reduction, and polishing was performed so that the film thickness was 0.5 ± 0.1 μm. The polished substrate was cleaned by sequentially performing scrub cleaning with PVA sponge and an alkaline detergent, shower water cleaning, pure water MS immersion, and IPA vapor drying to obtain a substrate having a normal mirror surface.

(比較例1〜7)
下記表4および5に示す条件でニッケル−リン下地層表面を前処理した後、上記実施例のメッキ液を用いて第2のメッキ膜(Ni−Pメッキ膜)を形成した。表4および5には、それぞれ、処理後のニッケル酸化度を併せて示した。また、各比較例で使用したメッキ液の種類は、後述する表6に示した。
(Comparative Examples 1-7)
After pre-treating the surface of the nickel-phosphorus underlayer under the conditions shown in Tables 4 and 5 below, a second plating film (Ni-P plating film) was formed using the plating solution of the above example. Tables 4 and 5 also show the nickel oxidation degree after the treatment. The types of plating solutions used in each comparative example are shown in Table 6 described later.

Figure 0004285222
Figure 0004285222

Figure 0004285222
Figure 0004285222

評価
実施例1〜15および比較例1〜7で得られた基板を、レーザー散乱式欠陥解析装置(システム精工製SDA、検出最小径0.2μm)を用いて欠陥数を測定した。各実施例および比較例に対して、それぞれ、20枚(40面)の基板の欠陥数を測定し、平均の欠陥数を算出した。結果を表6に示す。表6には、各実施例および比較例のメッキ液の種類、生成された膜の組成(実施例1〜11および比較例はリン濃度のみ)、および、欠陥数を示した。
Evaluation The number of defects of the substrates obtained in Examples 1 to 15 and Comparative Examples 1 to 7 was measured using a laser scattering type defect analyzer (SDA manufactured by System Seiko Co., Ltd., detection minimum diameter 0.2 μm). For each of the examples and comparative examples, the number of defects on 20 substrates (40 faces) was measured, and the average number of defects was calculated. The results are shown in Table 6. Table 6 shows the types of plating solutions of the examples and comparative examples, the compositions of the films formed (in the examples 1 to 11 and comparative examples, only the phosphorus concentration), and the number of defects.

Figure 0004285222
Figure 0004285222

上記評価結果で欠陥数が10個/面であれば許容範囲である。実施例1〜15の基板は全てこの要件を満足し、磁気記録媒体用基板として適用可能であった。本発明の前処理方法および磁気記録媒体用基板の製造方法を用いれば、基板のNi−P表面が均質化され、第2のメッキ膜の欠陥を最小にすることができる。   If the number of defects is 10 / surface as a result of the evaluation, it is acceptable. All the substrates of Examples 1 to 15 satisfied this requirement and were applicable as substrates for magnetic recording media. By using the pretreatment method and the method for manufacturing a magnetic recording medium substrate according to the present invention, the Ni-P surface of the substrate can be homogenized, and defects in the second plating film can be minimized.

一方、従来法である比較例1では、メッキは析出するが、欠陥が多数発生した。活性化処理を行っていない比較例2では、Ni−P下地層表面に不動態膜(酸化膜)が残っており、メッキ反応が起こらなかった。比較例3は、活性化処理および酸化処理を行ったが、酸化が不十分であり、Ni−P下地層表面に酸化の不均一な箇所があり、欠陥が多数発生した。比較例4および5は、活性化処理および酸化処理を行ったが、酸化が過度であり、Ni−P下地層上でメッキが十分に密着せず、フクレが発生した。比較例6は、活性化処理および酸化処理を行ったが、酸化が過度であり、Ni−P下地層表面が不動態膜となりメッキ反応が起こらなかった。比較例7は、活性化処理および酸化処理を行ったが、活性化が不十分であり、その後の酸化処理が機能せず、Ni−P下地層表面が不均質となり、欠陥が多く発生した。   On the other hand, in Comparative Example 1, which is a conventional method, plating is deposited, but many defects are generated. In Comparative Example 2 where no activation treatment was performed, a passive film (oxide film) remained on the surface of the Ni—P underlayer, and no plating reaction occurred. In Comparative Example 3, the activation treatment and the oxidation treatment were performed, but the oxidation was insufficient, the Ni—P underlayer surface had uneven oxidation portions, and many defects occurred. In Comparative Examples 4 and 5, the activation treatment and the oxidation treatment were performed, but the oxidation was excessive, the plating did not adhere sufficiently on the Ni-P underlayer, and blisters were generated. In Comparative Example 6, the activation treatment and the oxidation treatment were performed, but the oxidation was excessive, and the Ni—P underlayer surface became a passive film, and no plating reaction occurred. In Comparative Example 7, the activation treatment and the oxidation treatment were performed, but the activation was insufficient, the subsequent oxidation treatment did not function, the Ni—P underlayer surface became inhomogeneous, and many defects were generated.

ニッケル酸化度の算出の仕方を説明するためのXPSスペクトル図である。It is an XPS spectrum figure for demonstrating the method of calculation of a nickel oxidation degree. 本発明の磁気記録媒体用基板の一部を示す概略断面図である。It is a schematic sectional drawing which shows a part of board | substrate for magnetic recording media of this invention.

符号の説明Explanation of symbols

1 基板
3 下地層
5 第2メッキ膜
1 Substrate 3 Underlayer 5 Second plating film

Claims (7)

ニッケル−リンからなる第1のメッキ膜を有する基板上に、(1)ニッケルと、(2)リンおよび/またはホウ素と、任意に、(3)V、Cr、Mn、Fe、Co、Cu、Zn、Mo、Pd、Sn、WおよびReからなる群から選択される1種またはそれ以上の元素と、を含む第2のメッキ膜を無電解メッキ法で形成する場合の、第1のメッキ膜の前処理方法であって、前記基板上の第1のメッキ膜表面の酸化膜を除去する活性化工程と、酸化膜を除去した第1のメッキ膜表面を酸化する工程を含み、
前記基板上のニッケル−リンからなる第1のメッキ膜表面のニッケル酸化度を下記(1)式によって算出した場合に、前記活性化工程後のニッケル酸化度が0.12以下であり、且つ、前記酸化工程後のニッケル酸化度が0.15〜0.3であることを特徴とする前処理方法。
ニッケル酸化度=B/(A+B) (1)
[但し、AおよびBは、それぞれ、ニッケル−リンからなる第1のメッキ膜表面をXPS法で測定して得られたスペクトルの、850eVと860eVの吸収強度の位置を直線で結び、これをベースラインとした場合の以下の値を表す。
(I)A=XPS法のスペクトルの850〜855eV(ニッケルピーク強度)の極大値
(II)B=XPS法のスペクトルの855〜860eV(酸化ニッケルピーク強度)の極大値]
(1) nickel, (2) phosphorus and / or boron, and optionally (3) V, Cr, Mn, Fe, Co, Cu, First plating film in the case of forming a second plating film containing one or more elements selected from the group consisting of Zn, Mo, Pd, Sn, W and Re by an electroless plating method a pretreatment method, viewed including the activation step of removing the oxide film on the first plating film surface on the substrate, a step of oxidizing the first plating film surface to remove the oxide film,
When the nickel oxidation degree of the surface of the first plating film made of nickel-phosphorus on the substrate is calculated by the following equation (1), the nickel oxidation degree after the activation step is 0.12 or less, and A pretreatment method characterized in that the nickel oxidation degree after the oxidation step is 0.15 to 0.3.
Nickel oxidation degree = B / (A + B) (1)
[However, for A and B, the absorption intensity at 850 eV and 860 eV of the spectrum obtained by measuring the surface of the first plating film made of nickel-phosphorous by XPS is connected by a straight line. The following values are shown for a line.
(I) A = Maximum value of 850 to 855 eV (nickel peak intensity) of spectrum of XPS method
(II) B = maximum value of 855 to 860 eV (nickel oxide peak intensity) of spectrum of XPS method]
前記活性化工程が、酸水溶液に前記第1のメッキ膜を有する基板を浸漬することを含み、前記酸化工程が40〜80℃の温水に10〜60秒浸漬することを含むことを特徴とする請求項1に記載の前処理方法。   The activation step includes immersing the substrate having the first plating film in an acid aqueous solution, and the oxidation step includes immersing in warm water at 40 to 80 ° C. for 10 to 60 seconds. The pretreatment method according to claim 1. 前記活性化工程が、酸水溶液に前記第1のメッキ膜を有する基板を浸漬することを含み、前記酸化工程が0.2〜1wt%の過酸化水素水に10〜60秒浸漬することを含むことを特徴とする請求項1に記載の前処理方法。   The activation step includes immersing the substrate having the first plating film in an acid aqueous solution, and the oxidation step includes immersing in a 0.2 to 1 wt% hydrogen peroxide solution for 10 to 60 seconds. The pre-processing method according to claim 1. (A)アルミ合金基板上に、ニッケル−リンからなる第1のメッキ膜を形成する工程と、
(B)該基板上の第1のメッキ膜上に、(1)ニッケルと、(2)リンおよび/またはホウ素と、任意に、(3)V、Cr、Mn、Fe、Co、Cu、Zn、Mo、Pd、Sn、WおよびReからなる群から選択される1種またはそれ以上の元素と、を含む無電解メッキ膜を形成する工程、
を含み、前記工程(A)の後に、ニッケル−リンからなる第1のメッキ膜表面の酸化膜を除去する活性化工程と、ニッケル−リンからなる第1のメッキ膜表面を酸化する酸化工程を含み、
前記基板上のニッケル−リンからなる第1のメッキ膜表面のニッケル酸化度を下記(1)式によって算出した場合に、前記活性化工程後のニッケル酸化度が0.12以下であり、前記酸化処工程のニッケル酸化度が0.15〜0.3であることを特徴とする磁気記録媒体用基板の製造方法。
ニッケル酸化度=B/(A+B) (1)
[但し、AおよびBは、それぞれ、ニッケル−リンからなる第1のメッキ膜表面をXPS法で測定して得られたスペクトルの、850eVと860eVの吸収強度の位置を直線で結び、これをベースラインとした場合の以下の値を表す。
(I)A=XPS法のスペクトルの850〜855eV(ニッケルピーク強度)の極大値
(II)B=XPS法のスペクトルの855〜860eV(酸化ニッケルピーク強度)の極大値]
(A) forming a first plating film made of nickel-phosphorous on an aluminum alloy substrate;
(B) On the first plating film on the substrate, (1) nickel, (2) phosphorus and / or boron, and optionally (3) V, Cr, Mn, Fe, Co, Cu, Zn Forming an electroless plating film containing one or more elements selected from the group consisting of Mo, Pd, Sn, W and Re,
And after the step (A), an activation step of removing the oxide film on the surface of the first plating film made of nickel-phosphorus and an oxidation step of oxidizing the surface of the first plating film made of nickel-phosphorus seen including,
When the nickel oxidation degree of the surface of the first plating film made of nickel-phosphorus on the substrate is calculated by the following equation (1), the nickel oxidation degree after the activation step is 0.12 or less, and the oxidation A method for producing a substrate for a magnetic recording medium, wherein the nickel oxidation degree in the treatment step is 0.15 to 0.3.
Nickel oxidation degree = B / (A + B) (1)
[However, A and B are obtained by connecting the absorption intensity positions of 850 eV and 860 eV with a straight line in the spectrum obtained by measuring the surface of the first plating film made of nickel-phosphorus by the XPS method. The following values are shown for a line.
(I) A = Maximum value of 850 to 855 eV (nickel peak intensity) of spectrum of XPS method
(II) B = maximum value of 855 to 860 eV (nickel oxide peak intensity) of spectrum of XPS method]
前記活性化工程が、酸水溶液に前記第1のメッキ膜を有する基板を浸漬することを含み、前記酸化工程が40〜80℃の温水に10〜60秒浸漬することを含むことを特徴とする請求項に記載の磁気記録媒体用基板の製造方法。 The activation step includes immersing the substrate having the first plating film in an acid aqueous solution, and the oxidation step includes immersing in warm water at 40 to 80 ° C. for 10 to 60 seconds. The manufacturing method of the board | substrate for magnetic recording media of Claim 4 . 前記活性化工程が、酸水溶液に前記第1のメッキ膜を有する基板を浸漬することを含み、前記酸化工程が0.2〜1wt%の過酸化水素水に10〜60秒浸漬することを含むことを特徴とする請求項に記載の磁気記録媒体用基板の製造方法。 The activation step includes immersing the substrate having the first plating film in an acid aqueous solution, and the oxidation step includes immersing in a 0.2 to 1 wt% hydrogen peroxide solution for 10 to 60 seconds. The method for producing a magnetic recording medium substrate according to claim 4 . 請求項4から6のいずれかに記載の磁気記録媒体用基板の製造方法により製造される磁気記録媒体用基板であって、工程(A)で形成されるニッケル−リンからなる第1のメッキ膜のリン濃度が20〜25at%であり、工程(B)で形成される第2のメッキ膜が1〜9at%のリン濃度のニッケル−リンメッキ膜であることを特徴とする磁気記録媒体用基板。 A magnetic recording medium substrate manufactured by the method for manufacturing a magnetic recording medium substrate according to claim 4, wherein the first plating film is made of nickel-phosphorus formed in step (A). A substrate for a magnetic recording medium, wherein the second plating film formed in the step (B) is a nickel-phosphorous plating film having a phosphorus concentration of 1 to 9 at%.
JP2003408138A 2003-12-05 2003-12-05 Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method Expired - Fee Related JP4285222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408138A JP4285222B2 (en) 2003-12-05 2003-12-05 Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408138A JP4285222B2 (en) 2003-12-05 2003-12-05 Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method

Publications (2)

Publication Number Publication Date
JP2005171268A JP2005171268A (en) 2005-06-30
JP4285222B2 true JP4285222B2 (en) 2009-06-24

Family

ID=34729973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408138A Expired - Fee Related JP4285222B2 (en) 2003-12-05 2003-12-05 Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method

Country Status (1)

Country Link
JP (1) JP4285222B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176860A (en) * 2007-01-18 2008-07-31 Showa Denko Kk Storage method of brush, cleaning method of substrate for magnetic recording medium, and method for manufacturing magnetic recording medium
EP1978128A2 (en) * 2007-03-29 2008-10-08 Ebara Corporation Electroless plating bath and method for producing high-temperature apparatus member using the bath
JP5707247B2 (en) * 2011-06-22 2015-04-22 日本化学工業株式会社 Method for producing conductive particles

Also Published As

Publication number Publication date
JP2005171268A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP5177087B2 (en) Glass substrate for information recording medium, manufacturing method thereof, and magnetic recording medium
JP4479528B2 (en) Method of plating on glass substrate, method of manufacturing disk substrate for magnetic recording medium using the plating method, and method of manufacturing perpendicular magnetic recording medium
US7700205B2 (en) Process for manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium obtained by the process, and magnetic recording medium obtained using the substrate
WO2012093516A1 (en) Glass substrate for information recording medium, manufacturing method for same and magnetic recording medium
US7514118B2 (en) Method of electroless plating on a glass substrate and method of manufacturing a magnetic recording medium using the method of electroless plating
JP4479571B2 (en) Method for manufacturing magnetic recording medium
JP2006291270A (en) Plating method for glass substrate, method for manufacturing disk substrate for perpendicular magnetic recording medium, disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP4475026B2 (en) Electroless plating method, magnetic recording medium, and magnetic recording apparatus
JP4285222B2 (en) Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method
JP3601325B2 (en) Method of forming electroless Ni-P plating layer on glass substrate for magnetic disk
JP5654538B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2005206866A (en) Pretreatment method for electroless plating, method for manufacturing substrate for magnetic recording media including the pretreatment method, and substrate for magnetic recording media manufactured by the manufacturing method
JP2001209925A (en) Aluminum substrate for magnetic recording medium and method for producing same
JP3665777B2 (en) Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium
JP2004241089A (en) Manufacturing method of glass substrate for magnetic disk, and manufacturing method of the magnetic disk
JP5608133B2 (en) Method for manufacturing aluminum substrate for magnetic recording medium
JP4228902B2 (en) Magnetic recording medium and method for manufacturing the same
JP4352398B2 (en) Magnetic recording medium substrate and method for manufacturing the same
JP4010359B2 (en) Cleaning method for substrate with metal film
JP2001229531A (en) Method of cleaning glass substrate
JP6088545B2 (en) Manufacturing method of HDD glass substrate, manufacturing method of information recording medium, and glass substrate for HDD
JP2000173050A (en) Magnetic recording medium and its fabricating method
JP2001043528A (en) Method for reforming surface of aluminum substrate
JP2000086301A (en) Cleaning of glass substrate for magnetic disc
JP4161869B2 (en) Magnetic recording medium and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees