JPH0551689A - Production of high density sintered stainless steel material - Google Patents

Production of high density sintered stainless steel material

Info

Publication number
JPH0551689A
JPH0551689A JP3209443A JP20944391A JPH0551689A JP H0551689 A JPH0551689 A JP H0551689A JP 3209443 A JP3209443 A JP 3209443A JP 20944391 A JP20944391 A JP 20944391A JP H0551689 A JPH0551689 A JP H0551689A
Authority
JP
Japan
Prior art keywords
powder
stainless steel
steel material
sintered
sintered stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209443A
Other languages
Japanese (ja)
Inventor
Shuji Matsumoto
修二 松本
Tsutomu Morioka
勉 森岡
Kunpei Kobayashi
薫平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3209443A priority Critical patent/JPH0551689A/en
Publication of JPH0551689A publication Critical patent/JPH0551689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a high density sintered stainless steel material increased in density as compared with the conventional material and excellent in strength and airtightness. CONSTITUTION:This high density sintered stainless steel material can be produced by adding 2-14wt.% Ni powder to an alloy powder of stainless steel and further adding a solid lubricant to form a uniform powder mixture, compacting this powder mixture, and subjecting the resulting green compact to degreasing and to sintering. Moreover, the average grain size of the alloy powder of stainless steel is set at >=40mum and also the average grain size of the Ni powder is set at <=10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度焼結ステンレス材
の製造方法に係り、特に従来材と比較して高密度であ
り、強度および気密性に優れた高密度焼結ステンレス材
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high density sintered stainless steel material, and more particularly to a method for producing a high density sintered stainless steel material which has a higher density than conventional materials and is excellent in strength and airtightness. Regarding

【0002】[0002]

【従来の技術】耐食性および耐熱性に優れたステンレス
材合金粉末を原料とし、この合金粉末を加圧成形後焼結
して、製造した焼結ステンレス材が家電製品、機械部
品、装飾材料として広く利用されている。例えば、空調
機の冷暖房、サイクルの切換のために冷媒を仕切るバル
ブシート、や機械の軸封装置として装着されるメカニカ
ルシールの本体材料や装飾品分野では時計の側板、ブレ
スレッドなどに利用されている。
2. Description of the Related Art Sintered stainless steel manufactured by pressure-molding and sintering this alloy powder made of stainless steel alloy powder having excellent corrosion resistance and heat resistance is widely used as home electric appliances, machine parts and decoration materials. It's being used. For example, it is used for air conditioner air conditioning and heating, valve seats that partition the refrigerant for cycle switching, mechanical seal body materials used as mechanical shaft sealing devices, and side plates of watches and bracelets in the decorative field. ..

【0003】この製造方法によれば、溶製材の鍛造切削
加工による製造方法と比較して、大幅に加工工数を削減
することができ、生産性の向上による製品のコストダウ
ンを図ることが可能になる。
According to this manufacturing method, it is possible to significantly reduce the number of processing steps as compared with the manufacturing method by forging and cutting the ingot, and it is possible to reduce the cost of the product by improving the productivity. Become.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の製
造方法においては、原料ステンレス合金粉末を圧縮成形
する際の成形圧力を高めた場合においても高密度の焼結
ステンレス材を得ることは困難であり、その焼結密度
は、6.5〜6.6g/cm3 程度の値が限界であった。
However, in the conventional manufacturing method, it is difficult to obtain a high-density sintered stainless steel material even when the molding pressure during compression molding of the raw material stainless alloy powder is increased. The sintered density was limited to a value of about 6.5 to 6.6 g / cm 3 .

【0005】このような低密度の焼結ステンレス材に
は、連通した焼結孔が多数形成されており、部品材料と
して使用した場合には、下記のような問題点があった。
すなわち、このような従来の焼結ステンレス材を、空調
機用バルブシート材に採用した場合には、炉中において
ろう付け施工を行っても、ろう材が焼結孔内に浸透して
しまうため、接合強度が充分に上がらない欠点がある。
また連通した焼結孔が存在するため、気密性が低く圧力
差を有する冷媒を完全に仕切ることが困難であり、空調
機の運転効率を低下させる要因にもなっている。
In such a low-density sintered stainless steel material, a large number of communicating sintering holes are formed, and when it is used as a component material, there are the following problems.
That is, when such a conventional sintered stainless steel material is used as a valve seat material for an air conditioner, the brazing material penetrates into the sintering holes even if brazing is performed in the furnace. However, there is a drawback that the bonding strength is not sufficiently increased.
Further, since the sintered pores are in communication with each other, it is difficult to completely partition the refrigerant having a low airtightness and a pressure difference, which also causes a decrease in operating efficiency of the air conditioner.

【0006】一方装飾品材料として採用した場合には、
充分に表面を研摩した場合においても材料内部から残存
する焼結孔(ポア)が出現する確率が高く、研摩工程に
おいて多大な加工工数を要し、製品歩留りが低下すると
いう問題点があった。
On the other hand, when adopted as a decorative material,
Even when the surface is sufficiently polished, there is a high probability that residual sintered pores (pores) will appear from the inside of the material, which requires a large number of processing steps in the polishing step, resulting in a reduction in product yield.

【0007】本発明は上記の問題点を解決するためにな
されたものであり、従来材と比較して高密度であり、強
度および気密性に優れた高密度焼結ステンレス材の製造
方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides a method for producing a high-density sintered stainless steel material which has a higher density than conventional materials and is excellent in strength and airtightness. The purpose is to do.

【0008】[0008]

【課題を解決するための手段と作用】本発明者らは、上
記目的を達成するために、種々の材料組成から成るステ
ンレス焼結体を種々の製造方法によって製作し、その強
度特性および気密性等について、比較検討した。その結
果、ステンレス合金粉末と所定量のNi粉末とを所定量
配合した混合体を圧縮成形後焼結したときに、密度が高
く、強度および気密性が優れたステンレス焼結体が得ら
れた。本発明は、この知見に基づいて完成されたもので
ある。
In order to achieve the above-mentioned object, the present inventors have produced stainless sintered bodies made of various material compositions by various manufacturing methods, and have their strength characteristics and airtightness. Etc. were compared and examined. As a result, when a mixture obtained by mixing a predetermined amount of stainless alloy powder and a predetermined amount of Ni powder was sintered after compression molding, a stainless sintered body having a high density and excellent strength and airtightness was obtained. The present invention has been completed based on this finding.

【0009】すなわち本発明に係る高密度焼結ステンレ
ス材の製造方法は、ステンレス合金粉末に2〜14重量
%のNi粉末を添加し、さらに固体潤滑材を添加して均
一な粉末混合体を形成し、得られた粉末混合体を圧縮成
形して形成した成形体を脱脂焼結することを特徴とす
る。またステンレス合金粉末の平均粒径を40μm以上
に設定するとともにNi粉末の平均粒径を10μm以下
に設定するとよい。
That is, in the method for producing a high-density sintered stainless steel material according to the present invention, 2 to 14% by weight of Ni powder is added to stainless alloy powder, and a solid lubricant is further added to form a uniform powder mixture. Then, the obtained powder mixture is compression-molded, and the molded body formed is degreased and sintered. The average particle size of the stainless alloy powder may be set to 40 μm or more, and the average particle size of the Ni powder may be set to 10 μm or less.

【0010】ここで主原料であるステンレス合金粉末と
しては、組成が重量%で、Niを6〜22%、Crを1
1.5〜26%、Moを5%以下、Cを0.2%以下、
Siを15%以下、Cuを5%以下、残部実質的にFe
から成るマルテンサイト系、フェライト系、オーステナ
イト系のいずれのステンレス合金を使用することができ
る。
Here, as the main raw material, a stainless alloy powder, the composition is wt%, Ni is 6 to 22%, and Cr is 1%.
1.5-26%, Mo 5% or less, C 0.2% or less,
Si 15% or less, Cu 5% or less, balance substantially Fe
Any of the martensitic, ferritic, and austenitic stainless steel alloys can be used.

【0011】また副原料としてのNi粉末は、焼結時に
おいて焼結性を改善し高密度の焼結体を形成するために
粉末混合体に対して2〜14重量%添加される。添加量
が2%未満の場合には上記焼結密度の改善効果が少ない
一方、添加量が14%を超える程度に過量に添加しても
顕著な改善効果の上昇は望めない。従って、Ni粉末の
添加量は上記範囲に設定される。すなわち汎用のSUS
304,SUS304L等のステンレス合金では、Ni
含有量が8〜13%程度であるが、本発明に係る製造方
法では、さらに純Ni粉末を添加することにより、最終
的に得られる焼結体に含有されるNi量を11〜35重
量%の範囲に設定するものである。
Ni powder as an auxiliary material is added to the powder mixture in an amount of 2 to 14% by weight in order to improve the sinterability during sintering and form a high-density sintered body. When the added amount is less than 2%, the above-mentioned effect of improving the sintered density is small, but even if the added amount exceeds 14%, the remarkable improvement effect cannot be expected. Therefore, the amount of Ni powder added is set within the above range. That is, general-purpose SUS
In stainless steel alloys such as 304 and SUS304L, Ni
Although the content is about 8 to 13%, in the manufacturing method according to the present invention, by adding pure Ni powder, the Ni content contained in the finally obtained sintered body is 11 to 35% by weight. The range is set to.

【0012】本発明の目的とする高密度焼結ステンレス
材は、下記の工程によって製造される。すなわち、ステ
ンレス合金粉末88〜98重量%に対して純Ni粉末を
2〜14%添加して調合粉を形成し、この調合粉100
重量部に対して成形用固体潤滑材を1重量部添加して均
一な粉末混合体を調製し、得られた粉末混合体を圧力4
〜8ton /cm2 で圧縮成形して得た成形体を温度500
〜800℃の水素または非酸化性雰囲気において1〜2
時間脱脂して固体潤滑材を揮散せしめ、しかる後に非酸
化性雰囲気中で温度1200〜1350℃で1〜5時間
焼結して製造される。
The high-density sintered stainless steel material aimed at by the present invention is manufactured by the following steps. That is, 2 to 14% of pure Ni powder is added to 88 to 98% by weight of stainless alloy powder to form a blended powder, and the blended powder 100
1 part by weight of the solid lubricant for molding was added to 1 part by weight to prepare a uniform powder mixture, and the obtained powder mixture was subjected to pressure 4
Molded product obtained by compression molding at ~ 8 ton / cm 2 at a temperature of 500
1-2 in hydrogen or non-oxidizing atmosphere at ~ 800 ° C
It is manufactured by degreasing for a period of time to volatilize the solid lubricant, and then sintering in a non-oxidizing atmosphere at a temperature of 1200 to 1350 ° C. for 1 to 5 hours.

【0013】また上記製造方法において、使用するステ
ンレス合金粉末の平均粒系を40μm以上に設定すると
ともに、Ni粉末の平均粒径を10μm以下に設定する
ことにより成形性がより改善され、酸素の混入の影響が
少ない高強度の焼結体を形成することができる。
Further, in the above manufacturing method, the formability is further improved by setting the average grain size of the stainless alloy powder to be used to 40 μm or more and the average grain size of the Ni powder to 10 μm or less. It is possible to form a high-strength sintered body that is less affected by.

【0014】すなわち、本来、高密度の焼結体を形成す
るためには、可及的に粒径が小さい原料粉末を使用する
ことが望ましい。しかしながら、ステンレス合金粉末お
よびNi粉末ともに微小粒径のものを使用した場合に
は、粉末同志の付着割合が少ないため、バインダの添加
等が必須要件となる一方、原料粉末の流動性が低下する
ため、成形型への均一な充填が困難になり、成形性が悪
化してしまう。また粒径が小さくなると、アトマイズ法
等によって調製される粉末粒子表面に付着する酸素量が
増大し、焼結体の靭性値や衝撃値を低下させるおそれが
ある。
That is, originally, in order to form a high-density sintered body, it is desirable to use a raw material powder having a particle size as small as possible. However, when both the stainless alloy powder and the Ni powder have a small particle size, since the adhering ratio of the powders is small, the addition of a binder is an essential requirement, but the fluidity of the raw material powder decreases. However, it becomes difficult to uniformly fill the mold, and the moldability deteriorates. When the particle size is small, the amount of oxygen attached to the surface of the powder particles prepared by the atomizing method or the like is increased, which may reduce the toughness value and impact value of the sintered body.

【0015】そこでステンレス合金粉末の平均粒径は4
0μmに設定して、付着酸素量を低減すると同時に、N
i粉末の平均粒径を10μm以下として、両原料粉末の
付着割合を高めることが有効な対策となる。
Therefore, the average particle size of the stainless alloy powder is 4
By setting it to 0 μm, the amount of attached oxygen is reduced and at the same time N
An effective measure is to make the average particle size of the i powder 10 μm or less and increase the attachment ratio of both raw material powders.

【0016】本発明に係る高密度焼結ステンレス材の製
造方法によれば、従来のステンレス合金にNi粉末を添
加しているため、焼結性が大幅に改善され、高密度で強
度および気密性に優れた焼結ステンレス材を提供するこ
とができる。
According to the method for producing a high-density sintered stainless steel material according to the present invention, since Ni powder is added to the conventional stainless alloy, the sinterability is greatly improved, and the high density, strength and airtightness are obtained. An excellent sintered stainless steel material can be provided.

【0017】[0017]

【実施例】次に本発明に係る製造方法によって製造した
焼結ステンレス材の一実施例について、従来材と比較し
て、説明する。
EXAMPLE Next, an example of a sintered stainless steel material manufactured by the manufacturing method according to the present invention will be described in comparison with a conventional material.

【0018】実施例1〜5として、平均粒径が50〜7
0μmであり、重量%でNiを8〜13%、Crを17
〜21%、Moを0.1%以下、Cを0.05%以下、
Siを1%以下、Cuを1%以下、残部実質的に鉄から
成るステンレス合金(SUS304,SUS304L)
粉末89〜92重量部に対して、平均粒径が4〜8μm
の純Ni粉末を4〜8重量部、および固体潤滑材1重量
部添加して表1左欄に示すような均一な粉末混合体を調
製した。
In Examples 1 to 5, the average particle size is 50 to 7
0 μm, 8 to 13% by weight of Ni and 17% of Cr
~ 21%, Mo 0.1% or less, C 0.05% or less,
A stainless alloy containing 1% or less of Si, 1% or less of Cu, and the balance substantially iron (SUS304, SUS304L)
The average particle diameter is 4 to 8 μm with respect to 89 to 92 parts by weight of the powder.
4 to 8 parts by weight of pure Ni powder and 1 part by weight of solid lubricant were added to prepare a uniform powder mixture as shown in the left column of Table 1.

【0019】一方比較例1,3として、実施例1,4で
使用したステンレス合金粉末のみを使用し、純Ni粉末
を添加しない、混合体100重量部に、同様に固体潤滑
材を1重量部添加して、従来汎用の粉末混合体を調製し
た。
On the other hand, as Comparative Examples 1 and 3, 100 parts by weight of the mixture prepared by using only the stainless alloy powder used in Examples 1 and 4 and not adding pure Ni powder, and similarly 1 part by weight of the solid lubricant. A conventional general-purpose powder mixture was prepared by adding.

【0020】また比較例2として、添加する純Ni粉末
の平均粒径を60μmとした以外は実施例1と同一の組
成を有する粉末混合体を調製した。
As Comparative Example 2, a powder mixture having the same composition as in Example 1 was prepared, except that the pure Ni powder to be added had an average particle size of 60 μm.

【0021】こうして調製した実施例1〜5および比較
例1〜3の各粉末混合体を成形圧力4〜8ton /cm2
金型成形し、直径26mm、厚さ10mmの円板状の成形体
を形成した。次に各成形体を水素ガス雰囲気において温
度500〜600℃で2時間加熱することにより脱脂し
た。
The powder mixture of each of Examples 1 to 5 and Comparative Examples 1 to 3 thus prepared was molded with a molding pressure of 4 to 8 ton / cm 2 into a disk-shaped molded body having a diameter of 26 mm and a thickness of 10 mm. Formed. Next, each molded body was degreased by heating in a hydrogen gas atmosphere at a temperature of 500 to 600 ° C. for 2 hours.

【0022】次に脱脂した各成形体を減圧した水素ガス
雰囲気において温度1200〜1350℃で2時間焼結
し徐冷した。
Next, the degreased molded bodies were sintered in a depressurized hydrogen gas atmosphere at a temperature of 1200 to 1350 ° C. for 2 hours and gradually cooled.

【0023】そして得られた各焼結ステンレス材の焼結
密度および抗折強度を測定するとともに気密度を測定す
る試験を実施した。ここで気密度測定試験は、円板状の
各焼結ステンレス材の一方の端面側に各圧力の窒素ガス
を作用させ、焼結孔を通って他方の端面に流出する窒素
ガス量で判定した。なお、測定可能範囲は、0.2ml/
min 以上なので、リーク量が0.2ml/min 以下の場合
をその時の気密圧力とした。
Then, a test was conducted to measure the sintered density and bending strength of each of the obtained sintered stainless steel materials and the airtightness. Here, in the airtightness measurement test, nitrogen gas of each pressure was applied to one end surface side of each disc-shaped sintered stainless steel material, and the amount of nitrogen gas flowing out to the other end surface through the sintering hole was determined. .. The measurable range is 0.2 ml /
Since it is above min, the case where the leak rate is 0.2 ml / min or less was taken as the airtight pressure at that time.

【0024】以上の測定試験結果を下記表1に示す。The results of the above measurement tests are shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示す結果から明らかなように、本実
施例1〜5に係る焼結ステンレス材によれば、比較例
1,2と比較していずれも焼結密度が7.2g/cm3
上と高く、気密度は、8kgG/cm2 以上と大幅に改善され
る上に抗折強度においても優れている。
As is clear from the results shown in Table 1, the sintered stainless steel materials according to Examples 1 to 5 had a sintered density of 7.2 g / cm2 as compared with Comparative Examples 1 and 2. The airtightness is as high as 3 or more, the airtightness is significantly improved to 8 kgG / cm 2 or more, and the bending strength is excellent.

【0027】また各円板状の焼結ステンレス材の焼結孔
のうち上下端面に連通して形成された連通孔(オープン
ポア)の容積割合を測定したところ、実施例1〜5では
1.5vol %以下であり、気密性が極めて優れている。
Further, when the volume ratio of the communication holes (open pores) formed by communicating with the upper and lower end surfaces of the sintering holes of each disc-shaped sintered stainless steel material was measured, it was found that in Examples 1 to 5, 1. It is 5 vol% or less, and the airtightness is extremely excellent.

【0028】また各焼結ステンレス材を空調機用バルブ
シート材として使用し、ろう付けにより接合してその接
合強度を測定したところ、実施例1〜5は比較例1,2
と比較して15倍以上の強度が得られ、ろう付性が飛躍
的に改善されることが判明した。
When each sintered stainless material was used as a valve seat material for an air conditioner and joined by brazing and the joining strength was measured, Examples 1 to 5 were Comparative Examples 1 and 2.
It was found that a strength of 15 times or more was obtained as compared with, and brazing property was dramatically improved.

【0029】[0029]

【発明の効果】以上説明の通り、本発明に係る高密度焼
結ステンレス材の製造方法によれば、従来のステンレス
合金にNi粉末を添加しているため、焼結性が大幅に改
善され、高密度で強度および気密性に優れた焼結ステン
レス材を提供することができる。
As described above, according to the method for producing a high-density sintered stainless steel material according to the present invention, since Ni powder is added to the conventional stainless alloy, the sinterability is greatly improved, It is possible to provide a sintered stainless material having a high density and excellent strength and airtightness.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス合金粉末に2〜14重量%の
Ni粉末を添加し、さらに固体潤滑材を添加して均一な
粉末混合体を形成し、得られた粉末混合体を圧縮成形し
て形成した成形体を脱脂焼結することを特徴とする高密
度焼結ステンレス材の製造方法。
1. Formed by adding 2 to 14% by weight of Ni powder to stainless alloy powder and further adding a solid lubricant to form a uniform powder mixture, and compression-molding the obtained powder mixture. A method for producing a high-density sintered stainless steel material, which comprises degreasing and sintering the formed body.
【請求項2】 ステンレス合金粉末の平均粒径を40μ
m以上に設定するとともにNi粉末の平均粒径を10μ
m以下に設定することを特徴とする請求項1記載の高密
度焼結ステンレス材の製造方法。
2. The average particle diameter of the stainless alloy powder is 40 μm.
and the average particle size of the Ni powder is 10μ.
The method for producing a high-density sintered stainless steel material according to claim 1, wherein m is set to m or less.
JP3209443A 1991-08-21 1991-08-21 Production of high density sintered stainless steel material Pending JPH0551689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209443A JPH0551689A (en) 1991-08-21 1991-08-21 Production of high density sintered stainless steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209443A JPH0551689A (en) 1991-08-21 1991-08-21 Production of high density sintered stainless steel material

Publications (1)

Publication Number Publication Date
JPH0551689A true JPH0551689A (en) 1993-03-02

Family

ID=16572950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209443A Pending JPH0551689A (en) 1991-08-21 1991-08-21 Production of high density sintered stainless steel material

Country Status (1)

Country Link
JP (1) JPH0551689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994896A (en) * 2011-09-07 2013-03-27 日立粉末冶金株式会社 Sintered alloy and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994896A (en) * 2011-09-07 2013-03-27 日立粉末冶金株式会社 Sintered alloy and manufacturing method thereof
JP2013057094A (en) * 2011-09-07 2013-03-28 Hitachi Powdered Metals Co Ltd Sintered alloy and manufacturing method thereof
CN102994896B (en) * 2011-09-07 2016-08-10 日立粉末冶金株式会社 Sintered alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100768700B1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
US20050274222A1 (en) Method for making sintered body with metal powder and sintered body prepared therefrom
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
CN105063394B (en) A kind of preparation method of titanium or titanium alloy material
JP2002146403A (en) Alloy steel powder for powder metallurgy
WO2018053940A1 (en) Non-magnetic steel product and powder metallurgy manufacturing method therefor
WO2005102564A1 (en) Mixed powder for powder metallurgy
CN111560564A (en) Resource-saving high-nitrogen duplex stainless steel and near-net forming method thereof
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JPH0551689A (en) Production of high density sintered stainless steel material
CN110508820B (en) High-permeability copper infiltrated powder and manufacturing method thereof
JPWO2019111834A1 (en) Partially diffused alloy steel powder
KR20070112875A (en) Fe-based sintered alloy
JPS6345306A (en) Production of sintered member
US20020159910A1 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
EP0252048B1 (en) Heat-insulating component and a method of making same
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JP2012511629A (en) Semi-finished product for producing a sintered metal member, semi-finished product production method and member production
JP2007182593A (en) Method for manufacturing high-nitrogen sintered alloy steel
JPS5819738B2 (en) Koumitsudoshiyouketsukouno Seizouhouhou
JP3788385B2 (en) Manufacturing method of iron-based sintered alloy members with excellent dimensional accuracy, strength and slidability
JP2579171B2 (en) Manufacturing method of sintered material
JPH05263181A (en) Manufacture of fe base sintered alloy member having high strength and high toughness
JPS5819722B2 (en) koumitsudoshiyouketsukou no seizouhouhou
JPH026827B2 (en)