JPH0551185A - Self-traveling elevator control device - Google Patents

Self-traveling elevator control device

Info

Publication number
JPH0551185A
JPH0551185A JP3215052A JP21505291A JPH0551185A JP H0551185 A JPH0551185 A JP H0551185A JP 3215052 A JP3215052 A JP 3215052A JP 21505291 A JP21505291 A JP 21505291A JP H0551185 A JPH0551185 A JP H0551185A
Authority
JP
Japan
Prior art keywords
car
cage
speed
distance
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3215052A
Other languages
Japanese (ja)
Other versions
JP2732730B2 (en
Inventor
Kazunori Matsubara
和則 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3215052A priority Critical patent/JP2732730B2/en
Publication of JPH0551185A publication Critical patent/JPH0551185A/en
Application granted granted Critical
Publication of JP2732730B2 publication Critical patent/JP2732730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Types And Forms Of Lifts (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

PURPOSE:To prevent the generation of a collision accident by obtaining the minimum inter-cage distance changed according to the travel speed of cages, and performing forced sudden decelerating operation to a following cage so as to prevent the following cage from approaching the minimum inter-cage distance. CONSTITUTION:Cage speed detecting parts 22A-22X are formed of pulse generators fitted to the roller guide or the like of a cage. Cage position-speed signals 23A-23X are generated from pulse signals at the time of rotating in association with the travel of the cages, and the cage position-speed signals 23A-23X cage by cage are inputted from the cage speed detecting parts 22A-22X into a group control device 24 performing a collision preventing function. The inter-cage relative speed and cage speed are computed by constantly detecting the inter-cage distance, and on the basis of this data, the minimum allowed inter-cage distance is computed to perform forced deceleration protective action on the basis of the minimum inter-cage distance reference value corresponding to the travel speed of the cages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自走式エレベータお
いて、複数台の乗りかごを同一走行路内に同時に、かつ
安全に走行させるための自走式エレベータの制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-propelled elevator control device for allowing a plurality of cars to simultaneously and safely travel in the same traveling path in a self-propelled elevator.

【0002】[0002]

【従来の技術】従来から広く用いられているエレベータ
は、油圧プランジャを用いて乗りかごを昇降させる油圧
式エレベータや比較的小容量域に使用される巻胴式エレ
ベータを除いて、その大半が乗りかごと釣合重りをロー
プでつるべ状に結合した方式であり、1つの昇降路に1
つの乗りかごを配置している。
2. Description of the Related Art Most conventional elevators have been widely used except for hydraulic elevators that use a hydraulic plunger to move a car up and down, and reel-type elevators used in relatively small capacity areas. A method in which a basket and a counterweight are connected with a rope in a rope shape.
We have two cages.

【0003】このつるべ式エレベータは、図7に示すよ
うに昇降路中に乗りかご1と釣合重り2を、それぞれ案
内用レール(ガイドレール)3,4を設けてその間に配
置し、昇降路上部の機械室に設置された巻き上げ機5の
シーブ6やそらせシーブ7などを介して、ロープ8で両
者をつるべ状に結合する構成である。そして、近年で
は、巻き上げ機5の駆動用電動機として三相誘導電動
機、制御装置にマイクロプロセッサを搭載したインバー
タ装置が広く用いられている。
As shown in FIG. 7, the trolley type elevator has a car 1 and a counterweight 2 in a hoistway, and guide rails (guide rails) 3 and 4 are provided between the car 1 and the counterweight 2, respectively. The structure is such that the ropes 8 are connected to each other by a rope 8 via the sheave 6 and the deflecting sheave 7 of the hoisting machine 5 installed in the machine room. In recent years, a three-phase induction motor has been widely used as a driving electric motor for the hoisting machine 5, and an inverter device having a microprocessor in its control device has been widely used.

【0004】このようなつるべ式エレベータの制御装置
では、モータの制御異常や機器故障などによって考えら
れるかごの衝突事故は、終端階でのみ発生する可能性が
あり、終端階ではかごの異常なオーバースピードを検出
し、かごを急減速させ、あるいは急停止させる終端階強
制減速装置が設けられており、このシステムは、従来か
ら広く利用されてきている方式であるために性能面、安
全面で技術が確立されていて信頼性がある。
In such a slip-type elevator control device, a car collision accident, which may be caused by a motor control abnormality or equipment failure, may occur only at the terminal floor, and an abnormal car over at the terminal floor may occur. A terminal floor forced deceleration device that detects speed and suddenly decelerates or suddenly stops the car is provided.Since this system is a method that has been widely used from the past, it is a technology in terms of performance and safety. Is established and reliable.

【0005】ところが、近年、将来的な見通してとし
て、超高層ビルや超々高層ビルなどの要求に答えるため
の新しい階間交通システムの考え方が種々提案されるよ
うになっているが、提案されている新交通システムの1
つが、ロープを用いずに、乗りかご自体が走行する自走
式エレベータであり、これは、上下方向のみならず水平
方向にも走行可能な構成を備えた縦横自在走行エレベー
タの構想である。
However, in recent years, various ideas for a new inter-floor transportation system have been proposed in order to meet the demands of skyscrapers and ultra-high-rise buildings as future prospects, but they have been proposed. One of the new transportation system
One is a self-propelled elevator in which the car itself travels without using a rope. This is a concept of a vertically and horizontally freely propelled elevator having a configuration capable of traveling not only in the vertical direction but also in the horizontal direction.

【0006】この自走式エレベータシステムの構想は、
従来の1昇降路1乗りかごの既成概念を打破するもので
あり、1昇降路に複数台の乗りかごを走行させることが
可能な革新的な技術として注目されつつある。
The concept of this self-propelled elevator system is as follows:
It breaks the existing concept of a single car in one hoistway and is attracting attention as an innovative technology that allows multiple cars to travel in one hoistway.

【0007】図8はそのような縦横走行自在の自走式エ
レベータのシステム構成を示しており、複数台の乗りか
ご9にリニアモータ二次導体10を設置し、昇降路に設
けられたリニアモータ一次導体11との間の磁気力によ
って駆動推力を得るようにしている。そして、安全装置
として、ブレーキ12や乗りかご9相互の衝突による衝
撃を緩和するための緩衝機13が設置され、また連結走
行を行なうための超電導磁石14が設置されている。さ
らに、最上階には、吊り下げ機15と水平走行用可動式
プレート16が設置され、最下階には、同じく油圧ジャ
ッキ17が設置され、1昇降路内に複数台の乗りかご9
を走行させることができるようにしている。
FIG. 8 shows a system configuration of such a self-propelled elevator which can travel vertically and horizontally. A linear motor secondary conductor 10 is installed in a plurality of cars 9 and a linear motor provided in a hoistway. The driving thrust is obtained by the magnetic force between the primary conductor 11. Further, as a safety device, a brake 13 and a shock absorber 13 for absorbing the impact caused by the collision of the car 9 with each other are installed, and a superconducting magnet 14 for performing connected traveling is installed. Further, a suspender 15 and a horizontal traveling movable plate 16 are installed on the uppermost floor, and a hydraulic jack 17 is also installed on the lowermost floor.
So that it can be driven.

【0008】そして、乗りかご9の周辺の詳しい機器配
置は、図9に示すように乗りかご9に推進用リニアモー
タの二次導体10が設置され、リニアモータの一次導体
11が昇降路に施設されている。また、乗りかご9はガ
イドレール18にガイドされる形で昇降し、そのガイド
レール18に対して制動力を得るようにブレーキ12が
配置されている。さらに、乗りかご9の照明や制御機器
などの電源を供給するための集電装置19が乗りかご9
に設置され、乗りかご9との信号伝送を行なうための情
報伝送用ケーブル20が昇降路に設置されている。この
情報伝送用ケーブル20による信号伝送方式としては、
例えば、誘導無線伝送方式が考えられる。
As for detailed equipment arrangement around the car 9, as shown in FIG. 9, the secondary conductor 10 of the propulsion linear motor is installed in the car 9, and the primary conductor 11 of the linear motor is installed in the hoistway. Has been done. Further, the car 9 moves up and down while being guided by the guide rail 18, and the brake 12 is arranged so as to obtain a braking force with respect to the guide rail 18. Further, a current collector 19 for supplying power to the car 9 such as lighting and control equipment is provided with a car 9
An information transmission cable 20 for signal transmission with the car 9 is installed in the hoistway. As a signal transmission system using the information transmission cable 20,
For example, an inductive wireless transmission system can be considered.

【0009】[0009]

【発明が解決しようとする課題】このような提案されて
いる自走式エレベータの制御装置では、上記のように安
全装置の1つとして乗りかご相互の衝突による衝撃を緩
和するために緩衝機13が設けられているが、定格スピ
ードにて走行中であれば、この緩衝機13は最終段の安
全装置であり、乗りかご相互の衝突を防ぐためには、異
常接近する時には後続かごを強制的に急減速させ、常に
安全車間距離をとって各かごを走行させるようにするこ
とが望ましい。
In the proposed control device for a self-propelled elevator as described above, as one of the safety devices as described above, a shock absorber 13 is provided in order to reduce the impact due to the collision between the cars. However, if the vehicle is traveling at the rated speed, this shock absorber 13 is a safety device at the final stage, and in order to prevent collisions between the cars, the following cars are forcibly forced during abnormal approach. It is desirable to suddenly decelerate and keep each car traveling at a safe inter-vehicle distance.

【0010】この発明は、このような技術的課題を解決
するためになされたもので、複数台の乗りかごが同一走
行路内を走行している時に、制御異常や機器不具合など
の何らかの原因で進行方向前方の乗りかごに後続かごが
異常に接近した場合には、強制的に急減速、あるいは急
停止させることにより、常に複数台の乗りかごを相互に
安全車間距離を保持しつつ走行させ、安全で信頼性の高
い運行制御が行なえる自走式エレベータの制御装置を提
供することを目的とする。
The present invention has been made in order to solve such a technical problem, and when a plurality of cars are traveling on the same traveling path, they are caused by some cause such as a control abnormality or a device malfunction. When the following car abnormally approaches the car ahead in the direction of travel, forcibly decelerates or stops suddenly so that multiple cars always run while maintaining a safe inter-vehicle distance, It is an object of the present invention to provide a control device for a self-propelled elevator that enables safe and highly reliable operation control.

【0011】[0011]

【課題を解決するための手段】この発明は、建物に形成
された走行路に沿って複数台の乗りかごが自走するよう
にした自走式エレベータの制御装置において、同一走行
路内に運転中の各乗りかごの位置と速度を検出するかご
位置検出手段と、前記かご位置検出手段によって検出さ
れるかご位置検出信号から各乗りかご間の相対速度を演
算する相対速度演算手段と、前記かご位置検出手段から
のかご位置と速度データ、および前記相対速度演算手段
からの相対速度データをもとにして各乗りかご間の衝突
を回避することができる最小許容接近距離を演算する最
小接近距離演算手段と、前記最小接近距離演算手段が演
算する最小許容接近距離と、実際の乗りかご間距離とを
比較し、異常接近している乗りかごがある時に、当該乗
りかごのうち後続の乗りかごに対して強制急減速を行な
わせる衝突防止手段とを備えたものである。
SUMMARY OF THE INVENTION The present invention is a self-propelled elevator control device in which a plurality of cars are allowed to self-propel along a traveling path formed in a building. Car position detecting means for detecting the position and speed of each car inside, relative speed calculating means for calculating the relative speed between each car from the car position detection signal detected by the car position detecting means, and the car Based on the car position and speed data from the position detection means and the relative speed data from the relative speed calculation means, the minimum approach distance calculation for calculating the minimum allowable approach distance that can avoid a collision between the cars Means and the minimum allowable approach distance calculated by the minimum approach distance calculating means and the actual inter-car distance, and when there is a car that is approaching abnormally, It is obtained by a collision prevention means for causing a forced rapid deceleration with respect to the car.

【0012】[0012]

【作用】この発明の自走式エレベータの制御装置では、
相対速度演算手段により、かご位置検出手段によって検
出されるかご位置検出信号から各乗りかご間の相対速度
を演算し、最小接近距離演算手段により、かご位置検出
手段からのかご位置と速度データ、および相対速度演算
手段からの相対速度データをもとにして各乗りかご間の
衝突を回避することができる最小許容接近距離を演算す
る。
In the controller of the self-propelled elevator according to the present invention,
The relative speed calculation means calculates the relative speed between the cars from the car position detection signal detected by the car position detection means, and the minimum approach distance calculation means calculates the car position and speed data from the car position detection means, and Based on the relative speed data from the relative speed calculation means, a minimum allowable approach distance that can avoid a collision between the cars is calculated.

【0013】そして、衝突防止手段によって、最小接近
距離演算手段が演算する最小許容接近距離と実際の各乗
りかご間距離とを比較し、異常接近している乗りかご同
士がある時に、当該乗りかごのうち後続の乗りかごに対
して強制急減速を行なわせることによって衝突防止を図
り、複数台の乗りかごが同一昇降路内を走行する際の安
全走行を可能とする。
Then, the collision preventing means compares the minimum allowable approach distance calculated by the minimum approach distance calculating means with the actual inter-car distance, and when there are cars that are abnormally close to each other, the car concerned. By forcibly decelerating the following car among them, collisions are prevented and safe driving is possible when multiple cars travel in the same hoistway.

【0014】[0014]

【実施例】以下、この発明の実施例を図に基づいて詳説
する。図1に示すように、各号機の単体制御装置21A
〜21Xは、自号機の乗りかご9の走行速度と位置を周
期的に検出するかご速度検出部22A〜22Xを備えて
いる。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIG. 1, a unit controller 21A for each unit
21X includes car speed detectors 22A to 22X that periodically detect the traveling speed and the position of the car 9 of the own vehicle.

【0015】このかご速度検出部22A〜22Xは、図
3に示すように乗りかご9のローラガイド26などに取
り付けられたパルス発生器により構成することができ、
各乗りかご9の走行にともなって回転する時にパルス信
号をかご位置・速度信号23A〜23Xを発生し、この
かご速度検出部22A〜22Xから各乗りかごごとのか
ご位置・速度信号23A〜23Xがこの発明の特徴であ
る衝突防止機能を司る群制御装置24に入力されるよう
になっている。また、群制御装置24から各単体制御装
置21A〜21Xに強制減速指令信号25A〜25Xが
必要に応じて出力できるように接続されている。
The car speed detectors 22A to 22X can be constituted by a pulse generator attached to the roller guide 26 of the car 9 as shown in FIG.
When the car 9 rotates as it travels, pulse signals are generated to generate car position / speed signals 23A-23X, and car position detectors 22A-22X generate car position / speed signals 23A-23X for each car. The data is input to the group control device 24 that controls the collision prevention function, which is a feature of the present invention. Further, the group control device 24 is connected to the individual control devices 21A to 21X so that forced deceleration command signals 25A to 25X can be output as necessary.

【0016】図2に示すように群制御装置24は、通常
はマイクロコンピュータにより実現されるものである
が、必要な機能手段として、かご位置・速度入力および
走行順序検出手段24aと、最小かご間距離演算手段2
4bと、強制減速検出手段24cとから構成されてい
る。次に、上記構成の自走式エレベータの制御装置の動
作について説明する。
As shown in FIG. 2, the group control device 24 is usually realized by a microcomputer, but the necessary car position / speed input / running sequence detecting means 24a and minimum car distance are provided as necessary functional means. Distance calculation means 2
4b and forced deceleration detecting means 24c. Next, the operation of the control device for the self-propelled elevator having the above configuration will be described.

【0017】図5のフローチャートに示すように、かご
位置・速度および走行順序検出手段24aは、各単体制
御装置21A〜21Xから逐次入力したかご位置データ
より乗りかごの走行位置、走行速度および走行順序を認
識し(ステップS1)、図4に示すようなかご位置・速
度のデータテーブルTBを作成する(ステップS2)。
As shown in the flowchart of FIG. 5, the car position / speed / running order detecting means 24a uses the car position data sequentially input from the individual control devices 21A to 21X to read the car running position, running speed and running order. Is recognized (step S1), and a car position / speed data table TB as shown in FIG. 4 is created (step S2).

【0018】一例を示すと、図8の上昇運転専用昇降路
ASHAFTにおいて、進行方向に対する走行順序は、
No.5−No.2−No.6−No.1…となってお
り、かご位置・速度および走行順序検出手段24aによ
り、図4に示すようなかご位置・速度および走行順序の
データテーブルTBが作成され、かご位置データ、かご
速度データがセットされる。
As an example, in the hoistway ASHAFT for ascending operation shown in FIG. 8, the traveling order in the traveling direction is as follows.
No. 5-No. 2-No. 6-No. 1 ..., and the car position / speed / running order detection means 24a creates a car position / speed / running order data table TB as shown in FIG. 4, and sets car position data and car speed data. It

【0019】なおここで、各号機の乗りかごの位置検
出、速度検出は各単体制御装置21A〜21X側で行な
われるものであり、乗りかごのローラガイド26に取り
付けられたパルス発生器からの走行パルス信号により位
置検出を行ない、このパルス信号が誘導無線伝送方式な
どによって単体制御装置21A〜21Xに伝送され、こ
こで各乗りかごのかご位置データとかご速度データが演
算され、そのデータ信号23A〜23Xが群制御装置2
4側に伝送されるのである。
Here, the position detection and speed detection of the cars of each car are performed on the side of the individual control devices 21A to 21X, and traveling from a pulse generator attached to the roller guides 26 of the cars. Position detection is performed by a pulse signal, and this pulse signal is transmitted to the unit control devices 21A to 21X by an inductive wireless transmission system or the like, where car position data and car speed data of each car are calculated, and the data signal 23A to 23X is the group control device 2
It is transmitted to the 4 side.

【0020】かご位置・速度および走行順序検出手段2
4aで求められた各乗りかごのかご位置・速度および走
行順序データは、最小かご間距離演算手段24bに出力
され、図6のフローチャートに従って各かご間の相対速
度V(n+1)と実際のかご間距離S(n+1) が演算される
(ステップS3〜S6)。
Car position / speed and traveling order detection means 2
The car position / speed and running order data of each car determined in 4a are output to the minimum car distance calculating means 24b, and the relative speed V (n + 1) between the cars and the actual car speed are output according to the flowchart of FIG. The inter-car distance S (n + 1) is calculated (steps S3 to S6).

【0021】まず、前方のかごの速度vn と後続のかご
の速度vn+1をもとにして、n番目とn+1番目のかご
間の許容最小かご間距離Strip(n+1) が次のようにして
求められる。すなわち、前方かごと後続かごとが異常接
近して、許容最小かご間距離Strip(n+1) よりも接近し
た場合に行なう強制減速運転時の減速度をβ(β>α;
αは通常運転時の減速度)とすると、図3に示すよう
に、後続かごが初速vn+1 で強制減速運転動作した時の
走行距離は、vn+1 2 /2βである。
First, based on the speed vn of the front car and the speed vn + 1 of the following car, the allowable minimum car distance Strip (n + 1) between the nth car and the (n + 1) th car is as follows. Is required. That is, the deceleration during the forced deceleration operation performed when the front car and the rear car are abnormally approached and are closer than the allowable minimum inter-car distance Strip (n + 1) is β (β>α;
Assuming that α is a deceleration during normal operation), as shown in FIG. 3, the traveling distance when the following car performs the forced deceleration operation at the initial speed vn + 1 is vn + 1 2 / 2β.

【0022】また、前方かごが初速vn で何らかの故障
で強制停止動作した場合の走行距離は、vn 2 /2γで
ある。ここで、γは、ブレーキ動作による減速度であ
り、γ>β>αである。そこで、これらのデータをもと
にして、かごの衝突防止を目的として強制減速動作を行
なうべき最小かご間距離Strip(n+1) は、
When the front car is forced to stop due to some failure at the initial speed vn, the running distance is vn 2 / 2γ. Here, γ is the deceleration due to the brake operation, and γ>β> α. Therefore, based on these data, the minimum car distance Strip (n + 1) to perform the forced deceleration operation for the purpose of car collision prevention is

【0023】[0023]

【数1】 より、[Equation 1] Than,

【0024】[0024]

【数2】 となり、実際のStrip(n+1) の値としては、検出保護動
作遅延などに対する余裕度Sαを加味し、
[Equation 2] Therefore, as the actual value of Strip (n + 1), the margin Sα for the detection protection operation delay is added,

【0025】[0025]

【数3】 とする。なお、余裕度Sαは、保護動作遅延を十分に補
償できる余裕距離とする必要がある。同様にして、かご
衝突防止を目的とした強制停止動作を行なうべき最小か
ご間距離S′trip(n+1) は、
[Equation 3] And The margin Sα needs to be a margin distance that can sufficiently compensate for the delay of the protection operation. Similarly, the minimum inter-car distance S'trip (n + 1) where the forced stop operation for the purpose of preventing car collision should be performed is

【0026】[0026]

【数4】 となる。[Equation 4] Becomes

【0027】次に、同一昇降路内を走行中の乗りかごの
うち、前方走行かごであるn番目の速度vn のかごと、
後続走行かごであるn+1番目の速度vn+1 のかごとの
相対速度をV(n+1) を、 V(n+1) =vn+1 −vn として算出する。
Next, of the cars traveling in the same hoistway, the car at the n-th speed vn which is the car traveling in front,
The relative speed for each car of the (n + 1) th speed vn + 1 which is the following traveling car is calculated as V (n + 1) = vn + 1-vn.

【0028】こうして最小かご間距離演算手段24bに
よって算出された最小かご間距離Strip(n+1) 、相対速
度V(n+1) 、各かご間データをもとにして、強制減速検
出手段24cが衝突回避のための強制減速運転指令の必
要性を判定する(ステップS7〜S10)。
The forced deceleration detecting means 24c is based on the minimum inter-car distance Strip (n + 1), the relative speed V (n + 1) and the inter-car data calculated by the minimum inter-car distance calculating means 24b. Determines the necessity of a forced deceleration operation command for avoiding a collision (steps S7 to S10).

【0029】すなわち、相対速度データV(n+1) から、
V(n+1) <0、つまり、前方かご速度の方が速い場合に
は、衝突可能性はないので、この処理ルーチンを終了す
る。他方、相対速度データV(n+1) から、V(n+1) ≧0
の場合には、かご間距離検出データS(n+1) と許容最小
かご間距離Strip(n+1) を比較し(ステップS8)、S
(n+1) ≦Strip(n+1) を検出した場合には(ステップS
9)、強制減速指令25A〜25Xを出力し、該当する
乗りかごを強制減速運転することにより衝突を回避する
(ステップS10)。
That is, from the relative velocity data V (n + 1),
If V (n + 1) <0, that is, if the forward car speed is faster, there is no possibility of collision, so this processing routine is ended. On the other hand, from the relative speed data V (n + 1), V (n + 1) ≧ 0
In the case of, the car distance detection data S (n + 1) is compared with the allowable minimum car distance Strip (n + 1) (step S8), and S
If (n + 1) ≤ Strip (n + 1) is detected (step S
9), the forced deceleration commands 25A to 25X are output, and the collision is avoided by forcibly decelerating the relevant car (step S10).

【0030】以下、上記の処理を同一昇降路内を走行す
るすべての乗りかごについて繰り返し演算して判断し、
必要な衝突防止運転を該当する乗りかごに対して行なう
(ステップS11,S12)。
Hereinafter, the above-mentioned processing is repeatedly calculated for all the cars traveling in the same hoistway to make a judgment,
The necessary collision prevention operation is performed for the car in question (steps S11, S12).

【0031】このようにして、各乗りかご間距離を常に
検出することによって、各かご間の相対速度と各かごの
速度を演算し、そのデータに基づいて許容最小かご間距
離を算出し、この最小かご間距離データを基準値とし
て、実かご間距離と比較判別し、各かご速度が時々刻々
変化する状況の中で、各かごの走行速度に対応した最小
かご間距離基準値に基づいて強制減速保護動作を行なう
のである。
In this way, the relative speed between each car and the speed of each car are calculated by constantly detecting the distance between each car, and the allowable minimum inter-car distance is calculated based on this data. The minimum inter-car distance data is used as a reference value for comparison with the actual inter-car distance, and in the situation where each car speed changes from moment to moment, it is forced based on the minimum car distance reference value corresponding to the running speed of each car. The deceleration protection operation is performed.

【0032】なお、この発明は上記の実施例に限定され
ることはなく、上記実施例では、各号機の単体制御装置
からかご位置データと速度データを入力して処理するよ
うにしているが、これをかご位置データのみの入力と
し、速度演算は群制御装置側で行なうようにしてもよ
い。
The present invention is not limited to the above embodiment, and in the above embodiment, the car position data and the speed data are input from the unit control device of each machine and processed. This may be done by inputting only the car position data, and the speed calculation may be performed on the group control device side.

【0033】また、上記実施例のようにかご位置データ
と速度データを入力し、かご位置データから演算した速
度データと入力した速度データを比較し、各号機の単体
制御装置から入力する各データの合理性のチェックを実
施し、異常時にはその異常を検出した号機とその後方の
号機の運転を停止させる機能を付加することにより、さ
らに信頼性、安全性を高めることができる。
Further, as in the above embodiment, the car position data and the speed data are input, the speed data calculated from the car position data and the input speed data are compared, and each data input from the unit control device of each unit is compared. By performing a rationality check and adding a function of stopping the operation of the machine that detected the abnormality and the machine behind it when an abnormality occurs, reliability and safety can be further enhanced.

【0034】[0034]

【発明の効果】以上のようにこの発明によれば、同一走
行路内に複数台の自走式エレベータを走行させている場
合に、何らかの異常の発生によって前後の乗りかごが異
常接近する恐れが生じる時には、衝突を防止するために
両乗りかごの走行速度に応じて変化する最小かご間距離
を求めて、その最小かご間距離内に後続かごが接近しな
いように後続かごに対して強制急減速運転を行なうよう
にしているため、複数台の乗りかごを同一走行路内に走
行させる場合にも追突事故の発生を防止することができ
て安全性を高めることができる。
As described above, according to the present invention, when a plurality of self-propelled elevators are traveling in the same traveling path, the front and rear cars may be abnormally approached due to some abnormality. When it occurs, find the minimum car distance that changes according to the traveling speed of the two-seater car to prevent a collision, and forcibly decelerate the following car so that the following car does not approach within the minimum car distance. Since the vehicle is driven, it is possible to prevent the occurrence of a rear-end collision accident and improve the safety even when a plurality of cars are traveling in the same traveling path.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】上記実施例の制御装置の機能ブロック図。FIG. 2 is a functional block diagram of the control device of the above embodiment.

【図3】上記実施例の動作を説明する説明図。FIG. 3 is an explanatory diagram for explaining the operation of the above embodiment.

【図4】上記実施例におけるかご位置・速度および走行
順序検出手段の作成するデータテーブル。
FIG. 4 is a data table created by the car position / speed and traveling order detection means in the above embodiment.

【図5】上記実施例におけるかご位置・速度および走行
順序検出手段の動作を示すフローチャート。
FIG. 5 is a flowchart showing the operation of the car position / speed and traveling order detection means in the above embodiment.

【図6】上記実施例における最小かご間距離演算手段お
よび強制減速検出手段の動作を示すフローチャート。
FIG. 6 is a flowchart showing the operations of the minimum car distance calculation means and the forced deceleration detection means in the above embodiment.

【図7】従来のつるべ式エレベータシステムの構成図。FIG. 7 is a configuration diagram of a conventional slip-type elevator system.

【図8】提案されている自走式エレベータシステムの構
成図。
FIG. 8 is a block diagram of a proposed self-propelled elevator system.

【図9】上記自走式エレベータシステムの乗りかごの周
辺機器配置を示す平面図。
FIG. 9 is a plan view showing peripheral equipment arrangement of a car of the self-propelled elevator system.

【符号の説明】[Explanation of symbols]

21A〜21X…単体制御装置 22A〜22X…速度検出装置 23A〜23X…かご位置・速度信号 24…群制御装置 24a…かご位置・速度および走行順序検出手段 24b…最小かご間距離演算手段 24c…強制減速検出手段 25A〜25X…強制減速指令信号 21A to 21X ... Single control device 22A to 22X ... Speed detection device 23A to 23X ... Car position / speed signal 24 ... Group control device 24a ... Car position / speed and traveling sequence detection means 24b ... Minimum car distance calculation means 24c ... Forced Deceleration detection means 25A to 25X ... Forced deceleration command signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 建物に形成された走行路に沿って複数台
の乗りかごが自走するようにした自走式エレベータの制
御装置において、 同一走行路内に運転中の各乗りかごの位置と速度を検出
するかご位置検出手段と、 前記かご位置検出手段によって検出されるかご位置検出
信号から各乗りかご間の相対速度を演算する相対速度演
算手段と、 前記かご位置検出手段からのかご位置・速度データ、お
よび前記相対速度演算手段からの相対速度データをもと
にして各乗りかご間の衝突を回避することができる最小
許容接近距離を演算する最小接近距離演算手段と、 前記最小接近距離演算手段が演算する最小許容接近距離
と、実際の乗りかご間距離とを比較し、異常接近してい
る乗りかごがある時に当該乗りかごのうち後続の乗りか
ごに対して強制急減速を行なわせる衝突防止手段とを備
えて成る自走式エレベータの制御装置。
1. A control device for a self-propelled elevator in which a plurality of cars are allowed to self-propel along a traveling path formed in a building, and a position of each car that is operating in the same traveling path. A car position detecting means for detecting a speed, a relative speed calculating means for calculating a relative speed between each car from a car position detection signal detected by the car position detecting means, and a car position from the car position detecting means. Minimum approach distance calculation means for calculating a minimum allowable approach distance capable of avoiding a collision between cars based on the speed data and the relative speed data from the relative speed calculation means; and the minimum approach distance calculation The minimum permissible approach distance calculated by the means is compared with the actual inter-car distance, and when there is a car that is approaching abnormally, it is forcibly sharply reduced to the following car of the car concerned. Control device for self-propelled elevator comprising a collision preventing means to perform.
JP3215052A 1991-08-27 1991-08-27 Control device for self-propelled elevator Expired - Fee Related JP2732730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3215052A JP2732730B2 (en) 1991-08-27 1991-08-27 Control device for self-propelled elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3215052A JP2732730B2 (en) 1991-08-27 1991-08-27 Control device for self-propelled elevator

Publications (2)

Publication Number Publication Date
JPH0551185A true JPH0551185A (en) 1993-03-02
JP2732730B2 JP2732730B2 (en) 1998-03-30

Family

ID=16665969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3215052A Expired - Fee Related JP2732730B2 (en) 1991-08-27 1991-08-27 Control device for self-propelled elevator

Country Status (1)

Country Link
JP (1) JP2732730B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074105A (en) * 1993-06-16 1995-01-10 Furukawa Co Ltd Elevator type parking device
EP0769469A1 (en) * 1995-10-17 1997-04-23 Inventio Ag Safety device for multi-mobile elevator groups
JPH10508821A (en) * 1995-04-21 1998-09-02 ヴィットゥール・アウフツークタイレ・ゲー・エム・ベー・ハー・ウント・コー Method of controlling and monitoring operation of an elevator system and antifriction bearing for use in the method
JP2003261276A (en) * 2003-04-04 2003-09-16 Mitsubishi Electric Corp Elevator device
WO2004043841A1 (en) * 2002-11-09 2004-05-27 Thyssenkrupp Elevator Ag Safety device for an elevator system comprising a number of elevator cars inside a shaft
JP2007076909A (en) * 2005-09-16 2007-03-29 Toshiba Elevator Co Ltd Safety device for multi-car elevator
JP2009256109A (en) * 2009-08-12 2009-11-05 Mitsubishi Electric Corp Elevator device
US7650967B2 (en) 2005-02-17 2010-01-26 Otis Elevator Company Communicating to elevator passengers re car movement to pit or overhead
US7650966B2 (en) 2004-06-21 2010-01-26 Otis Elevator Company Elevator system including multiple cars in a hoistway, destination entry control and parking positions
US7753175B2 (en) 2005-02-25 2010-07-13 Otis Elevator Company Elevator car having an angled underslung roping arrangement
US7784588B2 (en) 2005-02-04 2010-08-31 Otis Elevator Company Calls assigned to one of two cars in a hoistway to minimize delay imposed on either car
JP2010202411A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Elevator system
US7819228B2 (en) 2005-02-17 2010-10-26 Otis Elevator Company Collison prevention in hoistway with two elevator cars
US8087497B2 (en) 2004-12-29 2012-01-03 Otis Elevator Company Compensation in an elevator system having multiple cars within a single hoistway
US8136635B2 (en) 2006-12-22 2012-03-20 Otis Elevator Company Method and system for maintaining distance between elevator cars in an elevator system with multiple cars in a single hoistway
US8292038B2 (en) 2007-12-05 2012-10-23 Otis Elevator Company Control device for operating two elevator cars in a single hoistway
US8307952B2 (en) 2004-12-16 2012-11-13 Otis Elevator Company Elevator system with multiple cars in a hoistway
WO2017005864A1 (en) * 2015-07-09 2017-01-12 Thyssenkrupp Elevator Ag Method for operating a lift system, control system, and lift system
JP2019006588A (en) * 2017-06-28 2019-01-17 株式会社日立製作所 Multi-car elevator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074105A (en) * 1993-06-16 1995-01-10 Furukawa Co Ltd Elevator type parking device
JPH10508821A (en) * 1995-04-21 1998-09-02 ヴィットゥール・アウフツークタイレ・ゲー・エム・ベー・ハー・ウント・コー Method of controlling and monitoring operation of an elevator system and antifriction bearing for use in the method
EP0769469A1 (en) * 1995-10-17 1997-04-23 Inventio Ag Safety device for multi-mobile elevator groups
US5877462A (en) * 1995-10-17 1999-03-02 Inventio Ag Safety equipment for multimobile elevator groups
EP1371596A1 (en) * 1995-10-17 2003-12-17 Inventio Ag Safety device for a group of elevators
WO2004043841A1 (en) * 2002-11-09 2004-05-27 Thyssenkrupp Elevator Ag Safety device for an elevator system comprising a number of elevator cars inside a shaft
WO2004043842A1 (en) * 2002-11-09 2004-05-27 Thyssenkrupp Elevator Ag Safety system for elevator system, comprising several elevator cars in a cage
JP2006505473A (en) * 2002-11-09 2006-02-16 ティッセンクルップ エレバートル アーゲー Elevator system
JP2003261276A (en) * 2003-04-04 2003-09-16 Mitsubishi Electric Corp Elevator device
US7650966B2 (en) 2004-06-21 2010-01-26 Otis Elevator Company Elevator system including multiple cars in a hoistway, destination entry control and parking positions
US7917341B2 (en) 2004-06-21 2011-03-29 Otis Elevator Company Elevator system including multiple cars in a hoistway destination entry control and parking positions
US8307952B2 (en) 2004-12-16 2012-11-13 Otis Elevator Company Elevator system with multiple cars in a hoistway
US8087497B2 (en) 2004-12-29 2012-01-03 Otis Elevator Company Compensation in an elevator system having multiple cars within a single hoistway
US7784588B2 (en) 2005-02-04 2010-08-31 Otis Elevator Company Calls assigned to one of two cars in a hoistway to minimize delay imposed on either car
US7819228B2 (en) 2005-02-17 2010-10-26 Otis Elevator Company Collison prevention in hoistway with two elevator cars
US7650967B2 (en) 2005-02-17 2010-01-26 Otis Elevator Company Communicating to elevator passengers re car movement to pit or overhead
US7753175B2 (en) 2005-02-25 2010-07-13 Otis Elevator Company Elevator car having an angled underslung roping arrangement
JP2007076909A (en) * 2005-09-16 2007-03-29 Toshiba Elevator Co Ltd Safety device for multi-car elevator
US8136635B2 (en) 2006-12-22 2012-03-20 Otis Elevator Company Method and system for maintaining distance between elevator cars in an elevator system with multiple cars in a single hoistway
US8292038B2 (en) 2007-12-05 2012-10-23 Otis Elevator Company Control device for operating two elevator cars in a single hoistway
JP2009256109A (en) * 2009-08-12 2009-11-05 Mitsubishi Electric Corp Elevator device
JP2010202411A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Elevator system
WO2017005864A1 (en) * 2015-07-09 2017-01-12 Thyssenkrupp Elevator Ag Method for operating a lift system, control system, and lift system
CN107848746A (en) * 2015-07-09 2018-03-27 蒂森克虏伯电梯股份公司 For operating the method, control system and lifter apparatus of lifter apparatus
JP2019006588A (en) * 2017-06-28 2019-01-17 株式会社日立製作所 Multi-car elevator

Also Published As

Publication number Publication date
JP2732730B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP2732730B2 (en) Control device for self-propelled elevator
AU2016231585B2 (en) Elevator component separation assurance system and method of operation
KR101530469B1 (en) Multi-car elevator and method for controlling same
JP2835206B2 (en) Control device for self-propelled elevator
JP3029168B2 (en) Operation control device for multi-car type elevator
JP4113760B2 (en) Elevator equipment
EP3643666B1 (en) Elevator system
JP4403123B2 (en) Elevator equipment
EP3309104A1 (en) Method for avoiding unwanted safety gear tripping in an elevator system, controller adapted to perform such a method, governor brake and elevator system each having such a controller
US3587785A (en) Elevator control system safety arrangement
JP5062412B2 (en) Method for preventing collision of transport vehicles
JP2001247265A (en) Elevator control system
JP3090769B2 (en) Control device for self-propelled elevator
JP4397720B2 (en) Elevator equipment
JP2883776B2 (en) Self-propelled elevator
JP2788369B2 (en) Elevator speed monitoring device
JPH04354772A (en) Control device for self-propelling type elevator
JPH08225268A (en) Safety system for circulation type elevator operation system
JP2008133091A (en) Terminal floor speed control system of elevator
CN115535762A (en) Car safe operation control method of multi-car parallel elevator system
JPH07106850B2 (en) Elevator equipment
JP2004323175A (en) Collision preventive device for automatic crane
KR100275576B1 (en) Elevator control apparatus and its method.
JPH04365759A (en) Method for supplying power to self-traveling elevator
JPH0114147B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees