JPH05509160A - Liquefied gas metering system - Google Patents

Liquefied gas metering system

Info

Publication number
JPH05509160A
JPH05509160A JP51270991A JP51270991A JPH05509160A JP H05509160 A JPH05509160 A JP H05509160A JP 51270991 A JP51270991 A JP 51270991A JP 51270991 A JP51270991 A JP 51270991A JP H05509160 A JPH05509160 A JP H05509160A
Authority
JP
Japan
Prior art keywords
liquefied gas
sensing
gas
metering
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP51270991A
Other languages
Japanese (ja)
Inventor
クラーク,ジョン ケイス
ポール,ロナルド エドウィン
Original Assignee
ガス シリンダー サービス ピーティーワイ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ガス シリンダー サービス ピーティーワイ リミテッド filed Critical ガス シリンダー サービス ピーティーワイ リミテッド
Publication of JPH05509160A publication Critical patent/JPH05509160A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/16Arrangements of liquid meters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0421Mass or weight of the content of the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0426Volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0495Indicating or measuring characterised by the location the indicated parameter is a converted measured parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/024Improving metering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • F17C2265/017Purifying the fluid by separating different phases of a same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Electrochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A liquefied gas metering apparatus for use with liquefied gas dispensing equipment which conveys liquefied gas from a supply to a dispensing point and metering means (17). The metering apparatus has sensing means (50) to sense a measurable parameter of the liquefied gas related to the density of the liquefied gas particularly an electrical parameter such as the dielectric constant and to generate a sensing signal (77) indicative of the sensed parameter. The sensing means (50) includes a capacitive device (56) comprising spaced capacitor plates (71, 72) arranged to be immersed in the liquefied gas. Calculating means (76) is responsive to the sensing signal. The calculating means (76) being operative to control operation of the metering means (17) by compensating the determination by the metering means (17) of the metered liquefied gas dispensed during a dispensing operation for changes in gas composition.

Description

【発明の詳細な説明】 液化ガス計量システム この発胡は、例えば乗物の燃料タンクにLPG又はその他の液化ガスを充填する ための液化ガス引!装置に関する。[Detailed description of the invention] Liquefied gas metering system This is done by, for example, filling a vehicle's fuel tank with LPG or other liquefied gas. Liquefied gas pull for! Regarding equipment.

LPGガスの組成は一様ではなくて、例えば乗物の燃料タンクに液体状態で配給 されるガスを計量するのに使われる討量手段には、ガスの組成が異なることの結 果として著しい不正確さがあり得る。特に、LPGガスは、実質的に純粋なブロ バンガスから、プロパン及びブタンガスの混合物を経て、純粋のブタンに到るま での種々の成分割合を持ち得る。配給動作中に計測される流量は、工場で、又は 現場で設置の際に実施される該計量装置の較正に依存することがある。較正時に 使われるガスは、最も普通の又は予期されるガス組成であり得るのであるが、他 のガス組成が計量されるときには、ガスの測定値に著しいエラーが生じる可能性 がある。この間頚を克服するtこめに開発された装置は無いと思われる。The composition of LPG gas is not uniform; for example, it is distributed in a liquid state to the fuel tank of a vehicle. The weighing methods used to measure the gases used include the consequences of the different compositions of the gases. As a result, there can be significant inaccuracies. In particular, LPG gas is a substantially pure From bang gas, through a mixture of propane and butane gas, to pure butane. can have various component proportions. Flow rates measured during dispensing operations may be measured at the factory or It may depend on the calibration of the metering device performed during installation in the field. during calibration The gas used can be of the most common or expected gas composition, but other Significant errors can occur in gas measurements when the gas composition of There is. It seems that no device has been developed specifically to overcome neck pain.

本発明の目的は、種々のガス組成について、液化ガスの計測された量の補正を可 能にする液化ガス計量装置を提供することである。It is an object of the invention to enable correction of the measured amount of liquefied gas for different gas compositions. It is an object of the present invention to provide a liquefied gas metering device that enables

本発明によって液化ガス配給システムに用いる液化ガス計量装置が提供されるが 、このシステl・は、液化ガス供給源と、使用時に該供給源から配給点へ液化ガ スを運搬する液化ガス配給設備と、該配給システムに付随する計量手段とを持っ ており、該計t装置は、該液化ガス配給システムと関連して動作して該液化ガス の密度と関連する該液化ガスの測定バラメーターを感知すると共に、その感知し たパラメーターを示す感知信号を発生させる感知手役を包含しており、該装置は 、更に、該感知信号に応答する計算手段を包含しており、該計算手段は、駿液化 ガスの計測された量の判定を咳液化ガスの密度の変イしについて補正すると共に 、そのことによって液化ガスの計測された量の判定をガス組成について補正する ために、配給動作時に配給される計量された液化ガスの該計量手役による判定に 影響を与えることによって該配給システムの該計量手段の動作を制御する。The present invention provides a liquefied gas metering device for use in a liquefied gas distribution system. , the system includes a source of liquefied gas and, in use, transports the liquefied gas from the source to a point of distribution. liquefied gas distribution equipment for transporting gas and metering means associated with the distribution system. and the meter operates in conjunction with the liquefied gas distribution system to supply the liquefied gas. sensing a measured parameter of the liquefied gas related to the density of the liquefied gas; the apparatus includes a sensing element for generating a sensing signal indicative of the parameter; , further comprising computing means responsive to the sensing signal, the computing means being responsive to the sensing signal. as well as correcting the determination of the measured amount of gas for changes in the density of cough liquefied gas. , thereby correcting the determination of the measured amount of liquefied gas for gas composition. In order to ensure that the metered liquefied gas dispensed during the dispensing operation is determined by the metering hand. controlling the operation of the metering means of the dispensing system by influencing;

一実施例においては、液化ガスの密度に関連するパラメーターは液化ガスの電気 的又は磁気的特性であり、該感知手段は、その感知された電気的又は磁気的特性 を示す感知信号を発生させる。好ましくは、その特性1ま液化ガスの電気的特性 である。液化ガスの組成が変化すると、液化ガスの比重が例えば0 500から 0.580まで下流側に計量手段17も設けられていて、配給動作中に配給され る液化ガスの量を測定する。該計量手段は、シャフト上に回転要素を有する測定 チャンバを有する普通の種類のものでよく、該シャフトの回転は、配給される液 化ガスの総量とコストとを計算するためにシステムの電子装置により使用される 。この計算は、液化ガスの比誘電率の変化に従って変化する感知手段50の出力 に依存して補正又は調整される。これについて、以下に詳細に説明をする。In one embodiment, the parameter related to the density of the liquefied gas is the electricity of the liquefied gas. the sensed electrical or magnetic property, and the sensing means generates a sensing signal indicating the Preferably, the characteristic 1 is the electrical characteristic of the liquefied gas. It is. When the composition of the liquefied gas changes, the specific gravity of the liquefied gas changes from, for example, 0.500 to A metering means 17 is also provided on the downstream side up to 0.580, which is dispensed during the dispensing operation. Measure the amount of liquefied gas. The measuring means has a rotating element on the shaft. It may be of the usual kind with a chamber, the rotation of which used by the system's electronics to calculate the total amount and cost of . This calculation is based on the output of the sensing means 50, which changes according to the change in the dielectric constant of the liquefied gas. is corrected or adjusted depending on the This will be explained in detail below.

計量手段17の下流側には、計量手段17と充填継手16との間の併給ライン1 5中の液化ガスの流れを制御するための配給制御バルブ20がある。制御バルブ 20は、液化ガスを計算手段17から受け入れる人口ボート21と、例えば在来 のr、S、C,バルブ23、視認計器24及びライン断線継手(line br eak coupling) 25を介して継手16へ液化ガスを運ぶたtの出 口ポート22とををする。On the downstream side of the metering means 17, there is a co-feed line 1 between the metering means 17 and the filling joint 16. There is a distribution control valve 20 for controlling the flow of liquefied gas in 5. control valve 20 is an artificial boat 21 that receives liquefied gas from the calculation means 17 and a conventional r, S, C, valve 23, visual instrument 24 and line disconnection joint (line br eak coupling) 25 to the coupling 16. Connect the port 22.

制御バルブ20は、液化ガスがその上流で加圧されたならば供給ラインI5を關 くように作動するものであり、これにより、液化ガス配給の流れは、液化ガスが 加圧された場合に限って発生し、若し制御バルブ20の上流で液化ガスの圧力が 著しく下がれば供給ライン15が閉じられる結果となる。The control valve 20 controls the supply line I5 if the liquefied gas is pressurized upstream thereof. The liquefied gas distribution flow is controlled so that the liquefied gas This occurs only when pressurized, and if the pressure of the liquefied gas is increased upstream of the control valve 20. A significant drop will result in the supply line 15 being closed.

図1において、制御バルブ20は、パイロット・ライン31を介して加圧パイロ ット流体の出所ど選択的に連通ずるパイロット・ライン・ボート30を有するパ イロット動作制御バルブ又は差動バルブである。制御バルブ2Dは、パイロット ・ライン3】内のパイロット流体圧力の選択的適用に応答して開き、人口ポート 21から出口ボート22への液化ガスの流れを許す。パイロット・ライン31は 、蒸気除去装置10内の加圧液化ガスと選択的に連通ずることが出来る。これは 、選択的に動作することの出来るパイロット制御バルブ32をバイ0ツト・ライ ン31内に設けることによって達成される。パイロット制御バルブ32は、パイ ロット・ライン31により制御バルブ20に接続されたパイロット出口33と、 比較的に低い圧力の液化ガスの出所に、即ち蒸気復帰ライン12に、接続された 低圧入口35と、バルブ20の上流で加圧液化ガスに接続された高圧入口34と を包含する。図示の様に、高圧入口34はタンク10に接続されることが出来る 。パイロット制御バルブ32は、低圧入口35をパイロット出口33に接続し、 又は高圧入口34をパイロット出口33に接続する様に選択的に作動することが 出来る。加圧パイロット流体を制御バルブ20に加えることが出来る様にソレノ イド・バルブ61がパイロット・ライン36に設けられており為バルブ61も、 タンク10に付随する感知手段50に応答して制御される。In FIG. 1, the control valve 20 is connected to a pressurized pyrotechnic engine via a pilot line 31. A pilot line boat 30 having a pilot line boat 30 selectively communicates with the source of the pilot fluid. It is a pilot motion control valve or a differential valve. Control valve 2D is a pilot Open in response to selective application of pilot fluid pressure in line 3 to open the artificial port 21 to the outlet boat 22. Pilot line 31 , can be selectively communicated with pressurized liquefied gas within vapor removal device 10 . this is , the pilot control valve 32, which can be operated selectively, is This is achieved by providing it within the tube 31. The pilot control valve 32 a pilot outlet 33 connected to control valve 20 by lot line 31; connected to a source of liquefied gas at a relatively low pressure, i.e. to the vapor return line 12. a low pressure inlet 35 and a high pressure inlet 34 connected to pressurized liquefied gas upstream of valve 20; includes. As shown, high pressure inlet 34 can be connected to tank 10. . A pilot control valve 32 connects the low pressure inlet 35 to the pilot outlet 33; or selectively actuated to connect high pressure inlet 34 to pilot outlet 33. I can do it. solenoid so that pressurized pilot fluid can be applied to control valve 20. An idle valve 61 is provided in the pilot line 36, and the valve 61 is also It is controlled in response to sensing means 50 associated with tank 10.

好ましくは、パイロット制御バルブ32の通常の7エイルセーフ状態があり、そ れは、パイロット出口33への低圧入口35の接続から成り、それは、パイロッ ト・ライン31内に低圧が存在し制御バルブ2oが、その中を通る液化ガスの流 れに対して閉じられる結果となる。Preferably, there is a normal 7-ail safe condition of the pilot control valve 32; This consists of connecting the low pressure inlet 35 to the pilot outlet 33, which A low pressure exists in the gas line 31 and the control valve 2o prevents the flow of liquefied gas therethrough. The result is that it is closed against this.

パイロット制御バルブ32は、パイロット出口33への低圧入口35の接続と、 パイロット出口33への高圧入口34の接続とにそれぞれ対応する2つの状態間 を切り替わる様に例えばソレノイド操作で電気的に操作され得るものである。特 に、該ソレノイドには2つの状態がある、即ら(1)無給電状M(出口33への 入口35の接続、及び入口34の閉塞に対応していて、パイロット・ライン31 内に低圧が存在し、制御バルブ20が液化ガス流に対して閉じられる結果となる 状!g)と、(2)給電状態(出口33への入口34の接続、及び入口35の閉 塞に対応していて、パイロット・ライン3]内に高圧が存在し、制御バルブ2o がその中を通る液化ガス流に対して開く結果となる状態)、とがある。Pilot control valve 32 connects low pressure inlet 35 to pilot outlet 33; between two states corresponding respectively to the connection of high pressure inlet 34 to pilot outlet 33; It can be electrically operated, for example, by operating a solenoid, so as to switch between the two. Special , the solenoid has two states: (1) non-energized M (outlet 33 It corresponds to the connection of the inlet 35 and the blocking of the inlet 34, and the pilot line 31 There is a low pressure within, resulting in the control valve 20 being closed to the liquefied gas flow. Status! g) and (2) power supply status (connection of inlet 34 to outlet 33 and closing of inlet 35); corresponding to a blockage, high pressure is present in the pilot line 3, and the control valve 2o (conditions resulting in the gas being open to the flow of liquefied gas through it).

図面に示されているシステムは、回路(図示せず)の制御下で動作し、供給ポン プの始動後に、充填継手16を通しての配給が始まる前に配給制御バルブ2oに より供給ライン15を短時間開放させることにより供給ライン15内での加圧又 は蒸気の一掃を許すべくパイロット制御バルブ32のソレノイドを給電し給電停 止することが出来る。この時間は1〜2秒間程度であり得る。この後、該制御回 路は配給制御バルブ20をある時間だけ閉塞させ、その間、計量手段17はゼロ ・リットル及びゼロ・コストにリセットされる。該制御回路は、液化ガスを計量 して供給ライン15及び充填継手16を通して配給することを可能にするために 配給制御バルブ2oを再び開放させる。The system shown in the drawing operates under the control of a circuit (not shown) and a supply pump. After starting the pump and before dispensing through fill fitting 16 begins, dispensing control valve 2o is By opening the supply line 15 for a short time, the pressure inside the supply line 15 can be increased or energizes the pilot control valve 32 solenoid and shuts off the power to allow steam to clear out. It can be stopped. This time can be on the order of 1-2 seconds. After this, the control The channel closes the distribution control valve 20 for a certain period of time, during which time the metering means 17 is zero. - Reset to liters and zero cost. The control circuit meters the liquefied gas to enable dispensing through the supply line 15 and filling fitting 16. The distribution control valve 2o is opened again.

パイロット制御バルブ32の上記の動作は、タンク1oからの蒸気除去後にライ ン36のバルブ61が開放する場合に限って可能となり得るものである6図1に は、システムが2つの同時配給動作を行い得る様になっている第2の、或いは重 複した構成要素の系列が示されている。反復しているシステム構成要素は、同一 の参照数字に「a」という添字が付されている。構成要素の第2の系列の動作は 、上記の構成要素の第1系列と全く同じである。供給ライン15.15aの両方 に液化ガスを供給するために使われる単一の共通蒸気除去タンク1oがある。こ れは、タンク10と計量手段17.17aとの間に供給接合点40を設けること によって達成される。供給接合点40は、入口41と、この人口41に連通ずる 2つの出口42.43とを包含する。出口42は供給ライン15に接続され、出 口43は供給ライン15aに接続されている。供給接合点40の人口41は、タ ンク10の底と流体連通している。人口41のこの場所は、2つの配給ラインの 重複する構成要素を、給油所に設けられている標準的燃料供給ポンプなどのハウ ジング内に密接させて配置することを可能にする。通常、従来はタンク10から の出口が一般にタンク1Gの、人口11の反対の側に設けられていた場合、少な くとも、タンク出口から計量手段17.17aからのラインの長さが割合に大き くなければ、他の構成要素を重複させるための標準的燃料供給ポンプ・ケーシン グ内のスペースは不十分であった。タンク10から計量手段17.17aまでの ラインのこの長さは、計量の精度と抵触するかも知れない蒸気相の当該ライン中 における発生をなるべく少なくするために、最小にされるのが好ましく、この目 的のために供給接合点40の入口41をタンク10の底に密に接続するのが好ま しく、また、出口42.43はそれぞれの計量手段17.17aに密接している 。図1において、タンク10の底から計量手段17.17aまでのこの距離は、 システムの機能を説明するために略図示されているに過ぎないが、実際には物理 的距離は最小限にされる。The above operation of the pilot control valve 32 is performed after the removal of vapor from the tank 1o. This is possible only if the valve 61 of the valve 36 opens. is a second or heavier system that allows the system to perform two simultaneous distribution operations. A series of duplicate components is shown. Repeated system components are identical The suffix "a" is added to the reference numeral. The behavior of the second series of components is , is exactly the same as the first series of components above. Both supply lines 15.15a There is a single common vapor removal tank 1o used to supply liquefied gas to the liquefied gas. child This provides for a supply junction 40 between the tank 10 and the metering means 17.17a. achieved by. A supply junction 40 communicates with an inlet 41 and this population 41 and two outlets 42,43. Outlet 42 is connected to supply line 15 and Port 43 is connected to supply line 15a. The population 41 of the supply junction 40 is It is in fluid communication with the bottom of tank 10. This place, with a population of 41, serves two distribution lines. Replace duplicate components with housings such as standard fuel supply pumps found at service stations. This allows for close placement within the housing. Usually, conventionally from tank 10 If the outlet of tank 1G is generally located on the opposite side of tank 11, the At least, the length of the line from the tank outlet to the metering means 17.17a is relatively large. Standard fuel supply pump casing to duplicate other components if not available There was insufficient space within the group. From tank 10 to metering means 17.17a This length of line may interfere with the vapor phase in the line, which may conflict with metering accuracy. In order to minimize the occurrence of It is preferred to closely connect the inlet 41 of the supply junction 40 to the bottom of the tank 10 for the purpose of and the outlet 42.43 is in close contact with the respective metering means 17.17a. . In FIG. 1, this distance from the bottom of the tank 10 to the metering means 17.17a is: Although shown only schematically to explain the functionality of the system, the physical distance is minimized.

図1に示されている好ましい配給システムは、構成要素の最小限の重複で2つの 配給システムを1つの標準的給油所給油ポンプ内に設けることをも可能にするも のである。The preferred distribution system shown in FIG. It also allows the distribution system to be installed within one standard service station refueling pump. It is.

感知手段55はタンク10の頂部に位置する感知素子56を有していて、該感知 素子が液相の中にあるか、或いはガス相の中にあるかを感知すると共に、タンク 10内の物質の相の変化に応じ、且つ、該感知素子56がそれに曝されていると ころの液体の組成の変化に応じて、その電気的特性を変化させるようになってい る。感知素子56の電気的特性の変化に応じて電気信号をライン57上に発生さ せることが出来、該信号を、第1に、蒸気除去操作の始め又は終わりにそれぞれ ライン12を開き又は閉じるために利用することが出来る。特に、バルブ55は 例えば通常は開いているソレノイド・バルブから成り得るものであるが、感知素 子56が液相に浸ったときにはにれは復帰ライン12を通してタンク10から蒸 気が実質的に又は完全に除去されたときに起こることである)、感知手段50に より発生した信号は、復帰ライン12を閉じるために該ソレノイドへのパワーを 切り換えることが出来る。The sensing means 55 has a sensing element 56 located at the top of the tank 10, which It senses whether the element is in the liquid phase or the gas phase, and the tank 10 and to which the sensing element 56 is exposed. The electrical characteristics of the roller change according to changes in the composition of the liquid in the roller. Ru. An electrical signal is generated on line 57 in response to a change in the electrical characteristics of sensing element 56. The signal can be firstly transmitted at the beginning or end of the steam removal operation, respectively. It can be used to open or close line 12. In particular, valve 55 For example, it can consist of a normally open solenoid valve, but a sensing element When the child 56 is immersed in the liquid phase, the sludge is removed from the tank 10 through the return line 12. (which occurs when air is substantially or completely removed), the sensing means 50 The generated signal applies power to the solenoid to close the return line 12. You can switch.

感知素子56は容量性素子70から成り、そのキャパシタンスは、該素子70が ガスに浸っているかそれとも液体に浸っている゛かに依存して、且つ、完全に液 体に浸っているときには該液体の密度に依存して、変化する。図2において、容 量性素子70は、はぼ平行に且つ離間して配置された2つの伝導板71.72か ら成り、波板はタンク10内の頂部に配置されているので、タンク10内の流体 はくガスであっても液体であっても)板71,72の間を流れ、素子70のキャ パシタンスは、板71.72のサイズ及び間隔と、板が浸っているガス相及び液 相の誘電特性とに依存して変化する。容量性素子70は感知手段50の感知回路 65内に接続されている。図2において、該感知回路構成要素は、波板の1つ( 72)をも支持する回路基板74上に搭載されており、該回路構成要素はハウジ ング75に封入されている。Sensing element 56 consists of a capacitive element 70 whose capacitance is Depending on whether it is immersed in gas or liquid, and completely immersed in liquid. When immersed in the body, it changes depending on the density of the liquid. In Figure 2, the capacity The quantitative element 70 consists of two conductive plates 71 and 72 arranged substantially parallel to each other and spaced apart. Since the corrugated plate is placed at the top of the tank 10, the fluid in the tank 10 is (whether gas or liquid) flows between the plates 71 and 72 and the cap of the element 70. Passitance is determined by the size and spacing of the plates 71, 72 and the gas phase and liquid in which the plates are immersed. It varies depending on the dielectric properties of the phase. The capacitive element 70 is a sensing circuit of the sensing means 50. 65. In FIG. 2, the sensing circuitry includes one of the corrugated plates ( 72), and the circuit components are mounted on a circuit board 74 that also supports a housing. It is enclosed in a ring 75.

図1の感知回路65は発振回路58から成り、その容量性素子70は該発振回路 の周波数を決定する構成要素である。感知手段50は、その回路59により感知 された周波数の所定の変化に応じて出力を生じさせる周波数応答回路59を更に 包含している。この構成では、発振器58の周波数は、容量性素子が最初にガス 相中に位置した後に液相に浸されたことの結果として該液相の密度に依存して変 化し、ライン57及び77上の出力信号が発生され得る。ライン57上の出力信 号は、感知された相変化に応じて固体リレー60をスイッチングさせるのに使わ れ、リレー60は復帰ライン12に位置するソレノイド・バルブ55への、及び 該バルブからのパワーをスイッチングさせる。The sensing circuit 65 of FIG. 1 consists of an oscillator circuit 58, the capacitive element 70 of which It is a component that determines the frequency of The sensing means 50 senses by means of its circuit 59 further comprising a frequency response circuit 59 that produces an output in response to a predetermined change in frequency. Contains. In this configuration, the frequency of oscillator 58 is such that the capacitive element is initially varies depending on the density of the liquid phase as a result of being immersed in the liquid phase after being located in the liquid phase. , and output signals on lines 57 and 77 can be generated. Output signal on line 57 The number is used to switch the solid state relay 60 in response to a sensed phase change. , the relay 60 is connected to the solenoid valve 55 located in the return line 12 and Switching power from the valve.

ライン57上の出力信号は、パイロット操作配給制御バルブ32まで伸びるパイ ロット供給ライン36中に位置するソレノイド・バルブ6Iにもスイッチング・ リレー62を介して中継される。配給制御バルブ32の位置及び橙能については 前述した。配給制御バルブ32へのパイロット・ライン36に更なるソレノイド ・バルブ61を設けることにより、蒸気の除去が進行している限りは配給制御バ ルブ32の開放を阻止することが可能となる。実際上、これは、配給液化ガスの 不正確な計量につながる時期尚早の配給動作の防止を可能にする更なる制御機能 を与えるものである。The output signal on line 57 is connected to a pipe extending to pilot operated distribution control valve 32. The solenoid valve 6I located in the lot supply line 36 also has a switching valve. It is relayed via relay 62. Regarding the position and orange power of the distribution control valve 32 As mentioned above. Additional solenoid in pilot line 36 to distribution control valve 32 - By providing valve 61, the distribution control valve is maintained as long as steam removal is in progress. It becomes possible to prevent the valve 32 from opening. In practice, this means that the distribution of liquefied gas Additional control features that allow the prevention of premature dispensing actions that lead to inaccurate weighing It gives

液化ガス配給システムの動作中、配給動作開始のためのシステムの最初の始動後 に、可撓性ホースであり得る供給ライン15は一時的に開放されることがあり、 ライン15が液相で満たされることを保証するためにポンプが始動される。この 一時的開放は、特にシステムが例えば15分はどの時間にわたって使われていな かったり、或いは前の配給動作中に蒸気が検出されたりした場合に実行されるこ とが出来る。この準備的手順の後、システムは、蒸気除去装置内の蒸気の存在に ついてチェックをすることが出来る。若し蒸気が検出されれば、システムは、蒸 気が検出されなくなるまで配給流を止めることが出来る。配給動作中、蒸気の存 在を連続的に監視することが出来、若し蒸気が検出されたならば配給動作を終わ らせ、同時に次の配給動作開始時に上記のホース充填動作を開始するフラグをセ ットすることが出来る。During operation of the liquefied gas distribution system, after the first start-up of the system for the start of distribution operation In addition, the supply line 15, which may be a flexible hose, may be temporarily opened; The pump is started to ensure that line 15 is filled with liquid phase. this Temporary opening is especially important if the system has not been used for any length of time, e.g. 15 minutes. or if vapor is detected during a previous dispensing operation. I can do that. After this preparatory step, the system detects the presence of vapor in the vapor removal device. You can check it out. If vapor is detected, the system The flow of rations can be stopped until no Qi is detected. During the dispensing operation, the presence of steam vapor can be continuously monitored and the dispensing operation can be terminated if vapor is detected. and at the same time set a flag to start the above hose filling operation at the start of the next dispensing operation. can be cut.

図1に戻ると、該装置は、ライン77上の感知信号に応答する計算手段76を更 に包含している。感知素子56が液化ガスに浸っているとき、ガスの比誘電率の 変化についてガスの計測された量の判定を補正し、且つそれによってガスの組成 の変化についてガスの計測された量の判定を補正するために、計算手段76は、 配給動作中に配給される計測されたガスの計量手段17による判定に影響を与え る様に動作することが出来る。Returning to FIG. It is included in When the sensing element 56 is immersed in liquefied gas, the dielectric constant of the gas is Correcting the determination of the measured amount of gas for changes and thereby determining the composition of the gas In order to correct the determination of the measured amount of gas for changes in influencing the determination by the metering means 17 of the metered gas dispensed during the dispensing operation; It is possible to operate as shown below.

素子56の感知されたキャパシタンス変化は、感知手段50によってライン77 上のデジタル出力に変換されることが出来、この出力は例えば比誘電率の尺度を 与える。比誘電率と、計量手段17の測定動作のエラーとの間の関係の較正又は 予定から、所要の補正を決定することが出来る。この様にして、感知手段50か らのライン77上の感知信号は計算手段76に供給されることが出来、計算手段 76は、感知された比誘電率の変化について補正を行うことによって、配給され る液化ガスの計測された量の判定を制御することが出来る。The sensed capacitance change of element 56 is detected by sensing means 50 on line 77. This output can be converted into a digital output, for example, a measure of the dielectric constant. give. Calibration of the relationship between the dielectric constant and the error of the measuring operation of the metering means 17 or From the schedule, the necessary corrections can be determined. In this way, the sensing means 50 The sensing signals on these lines 77 can be supplied to calculation means 76, which 76 is distributed by making a correction for the sensed dielectric constant change. The determination of the measured amount of liquefied gas can be controlled.

配給されるガスの正確な測定を保証するため、比重、又は、判定された比重に依 と比較して、計量動作に適用する補正係数を該テーブルから得ることが出来る様 に、補正係数の決定は、メモリー78に記憶されている補正係数の所定のテーブ ルによることが出来る。その代わりとして、計算手段76は、プログラマブルで あることが出来、プログラムされた公式から、測定動作を調整し又は補正するた めの係数を計算又は決定する様に動作することも出来る。例えば、計算手段76 はプログラマブルな計算手段から成ることが出来、その手段は、使用の際には、 配給される液化ガスの量の決定に適用されるべき補正係数を適当な公式又はアル ゴリズムから計算するためにプログラムされる。To ensure accurate measurement of the gas being delivered, the specific gravity, or dependence on the determined specific gravity. Compared to In addition, the determination of the correction coefficient is performed using a predetermined table of correction coefficients stored in the memory 78. This can be done according to the rules. Alternatively, the calculation means 76 may be programmable. can be used to adjust or correct measurement behavior from programmed formulas. It may also be operative to calculate or determine coefficients. For example, calculation means 76 may consist of a programmable computing means which, when used, A suitable formula or algorithm should be used to determine the correction factor to be applied in determining the amount of liquefied gas delivered. programmed to calculate from the algorithm.

周波数応答回路59により監視される発振回路58内に感知素子56を配置する 必要はないことが理解されるであろう。例えば、容量性素子70はAC電源から 給電されるブリッジ回路内に配置されることが出来、該容量性素子がその中に配 置されているところの該ブリッジのアームのりアクタンスの変化によって、感知 されることが出来て且つガスの計測された量を補正するために使うことの出来る 出力の変化を生じさせる。A sensing element 56 is placed within an oscillator circuit 58 that is monitored by a frequency response circuit 59. It will be understood that this is not necessary. For example, capacitive element 70 may be The capacitive element may be placed in a powered bridge circuit, and the capacitive element may be placed within a powered bridge circuit. It is sensed by the change in the actance of the arm of the bridge where it is placed. and can be used to correct the measured amount of gas. Causes a change in output.

配給動作中に配給されるガスの測定に適用されるべき補正の決定は、[ワンス・ オフJ (once off)方式で実行され得るものである。例えば、比誘電 率は配給動作開始時に感知されることが出来、補正係数が決定され、この係数は 後に液化ガス配給動作の残りの過程で計量手段17の動作に適用される。その代 わりとして、ガスの計測された量の補正を配給動作中に連続的に実施し得る様に 、比重の決定を配給動作中に連続的に又は間隔を置いて実行してもよい。Determination of corrections to be applied to measurements of gas delivered during a dispensing operation It can be executed in a once off manner. For example, dielectric The rate can be sensed at the beginning of the dispensing operation and a correction factor determined, this factor being It is later applied to the operation of the metering means 17 during the remaining course of the liquefied gas distribution operation. That cost Alternatively, correction of the measured amount of gas can be carried out continuously during the dispensing operation. , the determination of specific gravity may be performed continuously or at intervals during the dispensing operation.

ここに記載し図示した本発明の好ましい実施例である装置は、供給される液化ガ スの組成の変動に伴って生じる比重の変化について補正を行うことによって、配 給動作中に配給される液化ガスの正確な判定を可能にし得るものであることが理 解されよう。計量動作の精度のこの様な向上は、過去に発生した、計量の不正確 さにより液化ガスの購入者又は供給者が損をするという不公平な取引を著しく少 なくすることが出来る。The preferred embodiment of the invention described and illustrated herein is a device that By correcting for changes in specific gravity that occur with changes in the composition of the It is reasonable that this could enable accurate determination of the liquefied gas delivered during the feeding operation. It will be understood. This improvement in the accuracy of weighing operations is due to the inaccuracy of weighing that occurred in the past. This will significantly reduce unfair transactions that result in losses for liquefied gas purchasers or suppliers. It can be eliminated.

比重は、液化ガスの密度に関連する特性である。過去においては、計量動作中に 補正係数を適用することを可能にするために温度変化が感知されていた。本発明 を用いて、密度関連感知に基づいて補正係数を決定し適用すれば、密度に、従っ て計量精度に影響を与える温度の変動が本発明によって自動的に補正されること になるので、温度感知を無くすることが可能となる。Specific gravity is a property related to the density of liquefied gas. In the past, during weighing operation Temperature changes were sensed to allow correction factors to be applied. present invention Determine and apply a correction factor based on the density-related sensing using Temperature fluctuations that affect weighing accuracy are automatically corrected by the present invention. Therefore, it is possible to eliminate temperature sensing.

クレームにおいて定義されている発明の範囲から逸脱することなく、ここに記載 した発明の可能で且つ好ましい実施例の特徴に種々の変更、修正及び/又は付加 をなし得ることが理解されなければならない。As herein described without departing from the scope of the invention as defined in the claims. Various changes, modifications and/or additions to the features of possible and preferred embodiments of the invention It must be understood that this can be done.

要約 液化ガスを供給源から配給点及び計量手段(17)まで運ぶ液化ガス配給設備に 用いる液化ガス計量装置。この計量装置は、特に比誘電率等の電気的パラメータ ーである液化ガスの密度に関連する液化ガスの測定可能なパラメーターを感知し て、その感知したパラメーターを示す感知信号(77)を発生させる感知手段( 50)を有する。感知手段(50)は、液化ガスに浸るように構成された離間し たコンデンサー板(71,72)から成る容量性装置(56)を包含する。計算 手段(76)は該感知信号に応答する。計算手段(76)は、配給動作中に配給 される計測された液化ガスの該計量手段(17)による判定をガス組成の変化に ついて補正することによって該計量手段(17)の動作を制御するようになって いる。summary Liquefied gas distribution equipment for transporting the liquefied gas from the supply source to the distribution point and metering means (17) Liquefied gas measuring device used. This metering device is especially suitable for electrical parameters such as dielectric constant. to sense a measurable parameter of the liquefied gas that is related to the density of the liquefied gas. sensing means (77) for generating a sensing signal (77) indicating the sensed parameter; 50). The sensing means (50) comprises a spaced apart sensor configured to be immersed in the liquefied gas. It includes a capacitive device (56) consisting of capacitor plates (71, 72). calculation Means (76) are responsive to the sensing signal. The calculation means (76) calculates the distribution during the distribution operation. The determination by the measuring means (17) of the measured liquefied gas is based on the change in gas composition. The operation of the measuring means (17) is controlled by correcting the There is.

Claims (1)

【特許請求の範囲】 1.液化ガス配給システムに用いる液化ガス計量装置であって、このシステムは 、液化ガス供給源と、使用時に該供給源から配給点へ液化ガスを運搬する液化ガ ス配給設備と、該配給システムに付随する計量手段(17)とを持っており、該 計量装置は、該液化ガス配給システムと関連して動作して該液化ガスの密度と関 連する該液化ガスの測定可能なパラメーターを感知すると共に、その感知したパ ラメーターを示す感知信号(17)を発生させる感知手段(50)を特徴として おり、該装置は、更に、該感知信号に応答する計算手段(76)を特徴としてお り、該計算手段は、該液化ガスの計測された量の判定を該液化ガスの密度の変化 について補正すると共に、そのことによって液化ガスの計測された量の判定をガ ス組成について補正するために、配給動作時に配給される計量された液化ガスの 該計量手段による判定に影響を与えることによって該配給システムの該計量手段 (17)の動作を制御することを特徴とする液化ガス計量装置。 2.液化ガスの密度に関連するパラメーターは液化ガスの電気的又は磁気的特性 であり、該感知手段(50)は、その感知された電気的又は磁気的特性を示す感 知信号(77)を発生させることを特徴とする請求の範囲第1項に記載の装置。 3.該感知手段(50)は、液化ガスの電気的特性を感知することを特徴とする 請求の範囲第2項に記載の装置。 4.該感知手段(50)は液化ガスの比誘電率を感知することを特徴とする請求 の範囲第3項に記載の装置。 5.該感知手段(50)は、使用時には該配給システム内の液化ガスに浸される こととなるように配置されている容量性装置(56)を包含しており、この容量 性装置(56)は、液化ガスに浸るように構成された離間したコンデンサー板( 71、72)から成っていて、該コンデンサー板が浸っている液化ガスの比誘電 率の変化が該容量性装置のキャパシタンスを決定することを特徴とする請求の範 囲第4項に記載の装置。 6.該感知信号(77)は電気信号から成り、その強さ、周波数、位相シフト又 はその他の電気的特性は該容量性装置(56)のキャパシタンスに依存し、これ により液化ガスの感知された比誘電率の示度を提供することを特徴とする請求の 範囲第5に記載の装置。 7.該感知手段(50)は、発振回路(58)を含む感知回路(65)を包含し ており、その容量性装置(56)は該発振回路(56)の出力信号の周波数を決 定する構成要素であり、該感知手段(50)は、該発振回路出力信号の周波数の 変化に応答して出力信号を発生する周波数応答回路(59)を更に包含しており 、これにより、液化ガスの密度に、従って液化ガスの組成に依存する出力信号( 77)を生じさせることを特徴とする請求の範囲第5項又は第6項に記載の装置 。 8.該感知手段(50)は、AC電源から給電されるブリッジ回路を含む感知回 路(65)を包含しており、該ブリッジ回路は該容量性装置(56)を包含して おり、該容量性装置がその中に配置されているところの該ブリッジ回路のアーム のキャパシタンスの変化が該ブリッジ回路からの出力の変化を生じさせるように なっており、該計算手段(76)は該ブリッジ回路の出力に応答することを特徴 とする請求の範囲第5項又は第6項に記載の装置。 9.該計算手段(76)は、液化ガスの密度に関連する感知されたパラメーター の変化に依存する補正係数を決定することによって、配給動作中に配給される液 化ガスの計測された量の判定を制御することを特徴とする上記請求項のいずれか 1つに記載の装置。 10.該計算手段(76)はメモリ−(78)を包含しており、該計算手段(7 6)は、液化ガスの密度に関連する感知されたパラメーターの測定値を、該メモ リー(78)に記憶されている補正係数と比較することによって、配給される液 化ガスの量の該計量手段(17)による判定に適用する補正係数を該メモリーか ら得ることによって補正係数を決定することを特徴とする請求の範囲第9項に記 載の装置。 11.該計算手段(76)はプログラマブルであって、液化ガスの密度に関連す る感知されたパラメーターの特定の値について配給される液化ガスの計量された 量の判定に適用されるべき補正係数をプログラムされた公式から決定することに よって補正係数を計算することを特徴とする請求の範囲第9項に記載の装置。 12.液化ガスの密度に関連するパラメーターは液化ガスの屈折率から成り、該 感知手段(50)は、感知された屈折率を示す感知信号(77)を発生させるこ とを特徴とする請求の範囲第1項に記載の装置。 13.液化ガス供給源に接続される液化ガス配給システムであって、該システム は、配給動作中に配給される液化ガスの量を計測し判定する計量手段(17、1 7a)と、上記請求項のいずれか1つに記載の液化ガス計量装置とを包含してお り、該計量手段(17、17a)は、該計算手段(76)に応答して、液化ガス の密度の変動について補正された計測された液化ガス測定値を提供することを特 徴とする液化ガス配給システム。[Claims] 1. A liquefied gas metering device used in a liquefied gas distribution system, which , a liquefied gas source and a liquefied gas that, in use, conveys the liquefied gas from the source to the point of distribution. and measuring means (17) associated with the distribution system. A metering device operates in conjunction with the liquefied gas distribution system to determine the density of the liquefied gas. detecting a measurable parameter of the liquefied gas associated with the liquefied gas; characterized by sensing means (50) for generating a sensing signal (17) indicative of the parameter and the apparatus further features computing means (76) responsive to the sensed signal. and the calculation means determines the measured amount of the liquefied gas based on a change in the density of the liquefied gas. and thereby guide the determination of the measured amount of liquefied gas. of the metered liquefied gas delivered during a dispensing operation to correct for gas composition. the metering means of the dispensing system by influencing the determination by the metering means; A liquefied gas metering device characterized by controlling the operation of (17). 2. The parameters related to the density of liquefied gas are the electrical or magnetic properties of liquefied gas. and the sensing means (50) comprises a sensing means (50) indicative of the sensed electrical or magnetic property. Device according to claim 1, characterized in that it generates an intelligence signal (77). 3. The sensing means (50) is characterized in that it senses the electrical characteristics of the liquefied gas. Apparatus according to claim 2. 4. Claim characterized in that the sensing means (50) senses the dielectric constant of the liquefied gas. Apparatus according to scope 3. 5. The sensing means (50) is immersed in liquefied gas within the delivery system in use. It includes a capacitive device (56) arranged in such a way that the capacitance The device (56) includes spaced apart condenser plates (56) configured to be immersed in the liquefied gas. 71, 72) and the dielectric constant of the liquefied gas in which the capacitor plate is immersed. Claims characterized in that the change in rate determines the capacitance of the capacitive device. Apparatus according to paragraph 4. 6. The sensing signal (77) consists of an electrical signal, and its strength, frequency, phase shift or The other electrical characteristics depend on the capacitance of the capacitive device (56), which providing an indication of the sensed dielectric constant of the liquefied gas by the The device according to range 5. 7. The sensing means (50) includes a sensing circuit (65) including an oscillating circuit (58). The capacitive device (56) determines the frequency of the output signal of the oscillator circuit (56). The sensing means (50) is a component that determines the frequency of the oscillation circuit output signal. It further includes a frequency response circuit (59) that generates an output signal in response to the change. , which results in an output signal ( 77) The apparatus according to claim 5 or 6, characterized in that . 8. The sensing means (50) is a sensing circuit comprising a bridge circuit powered from an AC power source. (65), and the bridge circuit includes the capacitive device (56). and an arm of the bridge circuit in which the capacitive device is disposed. such that a change in the capacitance of causes a change in the output from the bridge circuit. and the calculation means (76) is responsive to the output of the bridge circuit. The device according to claim 5 or 6. 9. The calculation means (76) calculates the sensed parameter related to the density of the liquefied gas. The liquid dispensed during the dispensing operation by determining a correction factor that depends on the change in Any one of the above claims, characterized in that the determination of the measured amount of chemical gas is controlled. Apparatus according to one. 10. The calculation means (76) includes a memory (78), and the calculation means (76) includes a memory (78). 6) Record the measurements of the sensed parameters related to the density of the liquefied gas in the memo. The liquid to be dispensed is determined by comparing it with the correction factor stored in the battery (78). The correction coefficient to be applied to the determination of the amount of chemical gas by the measuring means (17) is stored in the memory. According to claim 9, the correction coefficient is determined by obtaining the correction coefficient from equipment. 11. The calculation means (76) are programmable and are metered amount of liquefied gas delivered for a specific value of the sensed parameter. Determining from a programmed formula the correction factor to be applied to the determination of the quantity. 10. Device according to claim 9, characterized in that it calculates a correction factor accordingly. 12. Parameters related to the density of the liquefied gas consist of the refractive index of the liquefied gas; The sensing means (50) is operable to generate a sensing signal (77) indicative of the sensed refractive index. The device according to claim 1, characterized in that: 13. A liquefied gas distribution system connected to a liquefied gas supply source, the system comprising: includes measuring means (17, 1) for measuring and determining the amount of liquefied gas distributed during the distribution operation. 7a) and a liquefied gas metering device according to any one of the above claims. The measuring means (17, 17a) responds to the calculating means (76) to measure the liquefied gas. is characterized in that it provides measured liquefied gas measurements corrected for variations in the density of Liquefied gas distribution system.
JP51270991A 1990-08-03 1991-08-02 Liquefied gas metering system Pending JPH05509160A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPK155490 1990-08-03
AU1554 1993-10-13

Publications (1)

Publication Number Publication Date
JPH05509160A true JPH05509160A (en) 1993-12-16

Family

ID=3774866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51270991A Pending JPH05509160A (en) 1990-08-03 1991-08-02 Liquefied gas metering system

Country Status (6)

Country Link
EP (1) EP0542798A1 (en)
JP (1) JPH05509160A (en)
KR (1) KR100231452B1 (en)
CA (1) CA2088784A1 (en)
NZ (1) NZ239255A (en)
WO (1) WO1992002788A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4226441A1 (en) * 1992-08-10 1994-02-17 Siemens Ag Arrangement for measuring vaporisation rate of liquefied gases - has evaporation opening flow measurement device, press. sensors, level measurement device and computer unit
DE29615876U1 (en) * 1996-09-12 1996-11-21 Preussag Wasser Und Rohrtechni Measuring system for CNG filling stations
US6595048B1 (en) * 2000-08-04 2003-07-22 Chart Inc. Accurate cryogenic liquid dispenser
JP3520855B2 (en) * 2001-02-22 2004-04-19 株式会社タツノ・メカトロニクス Liquefied gas measuring device
US9052065B2 (en) * 2010-12-01 2015-06-09 Gp Strategies Corporation Liquid dispenser
FR2975772B1 (en) * 2011-05-25 2014-02-28 Air Liquide PRESSURE FOR DIPHASIC FLUIDS GAS / CRYOGENIC LIQUID
FR3047538B1 (en) * 2016-02-04 2018-06-15 Cryostar Sas CRYOGENIC LIQUID DELIVERY SYSTEM
RU2622242C1 (en) * 2016-04-18 2017-06-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for determining percentage ratio of liquid phase in cryogenic gas-liquid flow
CN110282591B (en) * 2019-06-05 2020-03-31 江阴市富仁高科股份有限公司 Metering system for real-time profit and loss calculation of gas station
CN114408847B (en) * 2021-12-29 2023-06-23 中国航空工业集团公司西安飞机设计研究所 Electric control device for filling cooling liquid on ground
CN117386998A (en) * 2023-12-11 2024-01-12 厚普智慧物联科技有限公司 Pipe section gas quality metering method and metering device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626450C3 (en) * 1976-06-12 1979-01-18 Agefko Kohlensaeure-Industrie Gmbh, 4000 Duesseldorf Device for mass flow measurement
FR2447012A1 (en) * 1979-01-19 1980-08-14 Faure Herman Ets Electronic correction for measurements of liquid flow - uses memory to contain tables of correction coefficients, with stepped ranges and sizes
GB2085597B (en) * 1980-10-17 1985-01-30 Redland Automation Ltd Method and apparatus for detemining the mass flow of a fluid
JPS5834321A (en) * 1981-08-25 1983-02-28 Aichi Tokei Denki Co Ltd Correcting device for dual rotor type volumetric flow meter
AU3111589A (en) * 1987-04-13 1989-07-06 Gas Cylinder Services Pty Ltd Liquefied gas dispenser system
US4835456A (en) * 1988-02-01 1989-05-30 Quantum Dynamics Company, Inc. Cryogenic density and mass-flow measurement system

Also Published As

Publication number Publication date
CA2088784A1 (en) 1992-02-04
NZ239255A (en) 1993-05-26
EP0542798A4 (en) 1994-01-05
WO1992002788A1 (en) 1992-02-20
KR100231452B1 (en) 1999-11-15
EP0542798A1 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
CA2819610C (en) Lng dispenser including measuring devices
JPH05509160A (en) Liquefied gas metering system
EP1184616B1 (en) Accurate cryogenic liquid dispenser
US5616838A (en) Metering apparatus for cryogenic liquids
US20070186982A1 (en) Method for dispensing compressed gas
JPH01163621A (en) Apparatus and method for measuring amount of material in tank
WO1995032405A1 (en) Density compensated gas flow meter
US5471867A (en) Inventory reconciliation for above ground storage tanks
WO2016186960A1 (en) Blending apparatus and method
US20120312418A1 (en) Installation for packaging no using mass flow meters
JP4616979B2 (en) A device that continuously measures the dynamic fuel consumption of a consumer
US6109311A (en) Method of recovering vapors emitted when a liquid is dispensed
WO1996029577A1 (en) Method and apparatus for measuring volume correction using molar quantities
AU646486B2 (en) Liquefied gas metering system
KR100466317B1 (en) Liquid measuring equipment
JP2001301900A (en) Lorry delivery apparatus of liquefied gas fuel
JPH0116758B2 (en)
RU2178153C2 (en) Method of calibration of tanks and device for its implementation
JPH03295419A (en) Flow rate measuring instrument
CN219334138U (en) Liquid material reation kettle feeding metering system
JP3163442B2 (en) Fuel supply system with fuel leak detection function
KR100317051B1 (en) A meter for gas charger in charging station
SU1760361A1 (en) Method and device for checking continuous batcher and flow meters
JPH07198446A (en) Instrument for measuring liquid level in tank
JPH02240600A (en) Device for controlling dissipation of gaseous phase of pressurizer