JPH0550202U - Power transmission device - Google Patents

Power transmission device

Info

Publication number
JPH0550202U
JPH0550202U JP10320991U JP10320991U JPH0550202U JP H0550202 U JPH0550202 U JP H0550202U JP 10320991 U JP10320991 U JP 10320991U JP 10320991 U JP10320991 U JP 10320991U JP H0550202 U JPH0550202 U JP H0550202U
Authority
JP
Japan
Prior art keywords
low
mass body
generating means
power transmission
force generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10320991U
Other languages
Japanese (ja)
Other versions
JP2598472Y2 (en
Inventor
博文 荒
達也 森下
卓 村杉
淳弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1991103209U priority Critical patent/JP2598472Y2/en
Publication of JPH0550202U publication Critical patent/JPH0550202U/en
Application granted granted Critical
Publication of JP2598472Y2 publication Critical patent/JP2598472Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Operated Clutches (AREA)

Abstract

(57)【要約】 【目的】 ロックアップ作動時等の低トルク入力時から
クランクシャフト系の捩り共振点通過時等の高トルク入
力時迄の広範囲に亘り、より一層効果的にダンパ機能を
発揮させる。 【構成】 クランクシャフト1に固定される第1質量体
2に第2質量体8を相対回動できるように組み付け、こ
れら両質量体2,8を、低剛性ばね部材13a,13b
と低摩擦力発生手段17とからなる第1緩衝機構20で
連繋すると共に、この第1緩衝機構20よりも遅れて作
動する高剛性ばね部材14と高摩擦力発生手段18とか
らなる第2緩衝機構21で連繋している。
(57) [Summary] [Purpose] The damper function is exerted even more effectively over a wide range from low torque input such as lockup operation to high torque input such as when the crankshaft system passes through the torsion resonance point. Let [Structure] A second mass body 8 is assembled to a first mass body 2 fixed to a crankshaft 1 so that the second mass body 8 can be rotated relative to each other.
And a low-friction-force generating means 17 and a second shock-absorbing mechanism 20 including a high-rigidity spring member 14 and a high-friction-force generating means 18 which are connected to each other and which operate later than the first shock-absorbing mechanism 20. It is connected by the mechanism 21.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は自動車のクランクシャフトの端部に取り付けられる動力伝達装置に関 する。 The present invention relates to a power transmission device attached to an end of a crankshaft of an automobile.

【0002】[0002]

【従来の技術】[Prior Art]

近年、この種の動力伝達装置は、エンジンのトルク変動に伴うクランクシャフ トの回転変動を少なくすると共に、クランクシャフトの捩り振動を効果的に吸収 ・減衰し、トランスミッションギヤの歯打ち音や所謂こもり音等の異音の発生を 抑制するため、クランクシャフト側に固定される第1質量体と出力軸側に連繋さ れる第2質量体とに分割し、これら両質量体を相対回動できるように組み合わせ ると共に、これら両質量体をばね部材と摩擦力発生手段とからなる緩衝機構で連 繋している(例えば特開平2−66360号公報参照)。 In recent years, this type of power transmission device reduces the rotational fluctuation of the crankshaft due to the torque fluctuation of the engine, and also effectively absorbs and dampens the torsional vibration of the crankshaft, resulting in the rattling noise of transmission gears and the so-called mist. In order to suppress the generation of noise such as noise, it is divided into a first mass body fixed to the crankshaft side and a second mass body connected to the output shaft side, and these two mass bodies can be rotated relative to each other. In addition, the two mass bodies are connected by a buffer mechanism composed of a spring member and a frictional force generating means (see, for example, Japanese Patent Laid-Open No. 2-66360).

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、このような従来例は、摩擦力発生手段が作動領域の全体に亘っ て均一の摩擦減衰力を発生するものであるため、アイドル回転数以下に存在する 捩り共振点通過時等の高トルク入力時において、摩擦力発生手段の摩擦減衰力が 不足する場合があった。そのため、高トルク入力時には摩擦力発生手段の摩擦減 衰力を大きくしてダンパ機能を変化させ、低トルク入力時から高トルク入力時迄 の広範囲に亘り、より一層効果的にダンパ機能を発揮し得る動力伝達装置の提供 が望まれていた。 However, in such a conventional example, since the frictional force generating means generates a uniform frictional damping force over the entire operating region, high torque such as when passing through a torsional resonance point existing at an idling speed or less exists. At the time of input, the frictional damping force of the frictional force generating means was sometimes insufficient. Therefore, when high torque is input, the damping function of the frictional force generating means is increased to change the damper function, and the damper function is exerted even more effectively over a wide range from low torque input to high torque input. It was desired to provide a power transmission device to obtain the power.

【0004】 本考案はこの要望に応えるために案出されたものである。The present invention was devised to meet this need.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

即ち、本考案の動力伝達装置は、クランクシャフトに固定される第1質量体に 第2質量体を相対回動できるように組み付け、これら両質量体を、低剛性ばね部 材と低摩擦力発生手段とからなる第1緩衝機構で連繋すると共に、該第1緩衝機 構よりも遅れて作動する高剛性ばね部材と高摩擦力発生手段とからなる第2緩衝 機構で連繋したことを特徴としている。 That is, in the power transmission device of the present invention, the first mass body fixed to the crankshaft is assembled so that the second mass body can be rotated relative to each other, and these mass bodies are combined with the low-rigidity spring member and the low frictional force generating member. And a second shock absorbing mechanism including a high-rigidity spring member that operates later than the first shock absorbing mechanism and a high frictional force generating means. ..

【0006】[0006]

【作用】[Action]

低トルク入力時には第1緩衝機構がダンパ機能を発揮し、入力トルクが所定値 以上になると第2緩衝機構がダンパ機能を発揮しだす。 When a low torque is input, the first shock absorbing mechanism exerts a damper function, and when the input torque exceeds a predetermined value, the second shock absorbing mechanism exerts a damper function.

【0007】[0007]

【実施例】【Example】

以下本考案の実施例を図面に基づき詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0008】 図1〜図2において1はクランクシャフトであり、クランクシャフト1の軸端 には第1質量体としての入力部材2をボルト3で固定してある。この入力部材2 の両側には入力部材2に対して回動できるようにドライブプレート4a,4bを 配置し、これら一対のドライブプレート4a,4bの内周側を複数のストップピ ン5で所定の間隔をもって固定すると共に、その外周側を複数のリベット6で固 定してある。そして、ドライブプレート4bの外周端には図外のスタータモータ のピニオンギヤに噛合するリングギヤ7を溶接してあり、これらドライブプレー ト4a,4bとリングギヤ7とで第2質量体8を構成している。1 and 2, reference numeral 1 denotes a crankshaft, and an input member 2 as a first mass body is fixed to a shaft end of the crankshaft 1 with a bolt 3. Drive plates 4a and 4b are arranged on both sides of the input member 2 so as to be rotatable with respect to the input member 2. The inner peripheral sides of the pair of drive plates 4a and 4b are spaced at predetermined intervals by a plurality of stop pins 5. The outer peripheral side is fixed with a plurality of rivets 6. A ring gear 7 that meshes with a pinion gear of a starter motor (not shown) is welded to the outer peripheral end of the drive plate 4b, and these drive plates 4a and 4b and the ring gear 7 form a second mass body 8. ..

【0009】 尚、入力部材2に形成した周方向溝9にストップピン5を係合してストッパ機 構10を構成し、このストッパ機構10でドライブプレート4a,4b(第2質 量体)と入力部材2(第1質量体)の相対回動角度を所定角度に規制している。 又、一方のドライブプレート4aの内周端と入力部材2のショルダー部2aとの 間には軸受11を介装してあり、ドライブプレート4a,4bが入力部材2に対 して円滑に相対回動できるように工夫してある。A stopper mechanism 10 is configured by engaging a stop pin 5 with a circumferential groove 9 formed in the input member 2, and the stopper mechanism 10 serves as a drive plate 4 a, 4 b (second mass body). The relative rotation angle of the input member 2 (first mass body) is restricted to a predetermined angle. A bearing 11 is provided between the inner peripheral end of one drive plate 4a and the shoulder portion 2a of the input member 2 so that the drive plates 4a and 4b smoothly rotate relative to the input member 2. It is designed so that it can move.

【0010】 12は入力部材2の周方向に複数形成したばね受容部であり、このばね受容部 12には一対の低剛性ばね部材13a,13bとこれらの間に位置する高剛性ば ね部材14とを収容してある。そして、一方の低剛性ばね部材13aと高剛性ば ね部材14との間及びこの高剛性ばね部材14と他方の低剛性ばね部材13bと の間には、入力部材2の外周に係合させた一対の遊動子15,16のアーム15 a,16aをそれぞれ介装してある。尚、遊動子15,16は、ドライブプレー ト4a,4b及び入力部材2に対して回動できるようになっている。A plurality of spring receiving portions 12 are formed in the circumferential direction of the input member 2. The spring receiving portion 12 includes a pair of low-rigidity spring members 13a and 13b and a high-rigidity spring member 14 located between them. It houses and. The outer periphery of the input member 2 is engaged between the low-rigidity spring member 13a on one side and the high-rigidity spring member 14 and between the high-rigidity spring member 14 and the low-rigidity spring member 13b on the other side. The arms 15a and 16a of the pair of idlers 15 and 16 are respectively interposed. The idlers 15 and 16 are rotatable with respect to the drive plates 4a and 4b and the input member 2.

【0011】 17は遊動子15,16とドライブプレート4a,4bとの間にそれぞれ介装 した円板状の低摩擦部材(低摩擦力発生手段)であり、18は一対の遊動子15 ,16の間に介装した円板状の高摩擦部材(高摩擦力発生手段)である。そして 、上記低摩擦部材17と低剛性ばね部材13a,13bとにより第1緩衝機構2 0を構成し、上記高摩擦部材18と高剛性ばね部材14とにより第2緩衝機構2 1を構成してある。Reference numeral 17 is a disk-shaped low friction member (low friction force generating means) interposed between the idlers 15 and 16 and the drive plates 4a and 4b, and 18 is a pair of idlers 15 and 16 It is a disc-shaped high friction member (high friction force generating means) interposed between. The low-friction member 17 and the low-rigidity spring members 13a and 13b constitute a first buffer mechanism 20, and the high-friction member 18 and the high-rigidity spring member 14 constitute a second buffer mechanism 21. is there.

【0012】 22a,22bはドライブプレート4a,4bに形成した窓である。この窓2 2a,22bは、入力部材2のばね受容部12に対応させて形成してあり、遊動 子15,16のアーム15a,16aを介して連繋される低剛性ばね部材13a ,13b及び高剛性ばね部材14に係合させてある。この結果、ドライブプレー ト4a,4b(第2質量体)と入力部材2(第1質量体)は、第1緩衝機構20 及び第2緩衝機構21で連繋されることとなる。Reference numerals 22a and 22b are windows formed in the drive plates 4a and 4b. The windows 22a and 22b are formed so as to correspond to the spring receiving portion 12 of the input member 2, and are connected to the springs 12 and 16 of the idlers 15 and 16 via the arms 15a and 16a. It is engaged with the rigid spring member 14. As a result, the drive plates 4a and 4b (second mass body) and the input member 2 (first mass body) are connected by the first shock absorbing mechanism 20 and the second shock absorbing mechanism 21.

【0013】 23はトルクコンバータ24のコンバータハウジングであり、このコンバータ ハウジング23にドライブプレート4a,4bの外周端部をボルト25で固定し てある。Reference numeral 23 denotes a converter housing of the torque converter 24, and the outer peripheral ends of the drive plates 4 a and 4 b are fixed to the converter housing 23 with bolts 25.

【0014】 又、26は出力軸27にスプライン嵌合させたタービンハブであり、このター ビンハブ26のフランジ部26aにはタービン・ランナ28を固定し、ボス部2 6bにはロックアップクラッチとしてのピストン29をスライドできるように嵌 合してある。ピストン29は、その背面に形成した複数の爪30をタービンハブ 26のフランジ部26aの外周端に形成した溝31に係合してあるため、タービ ンハブ26と一体回動する。そして、このピストン29は、車両速度が所定速度 以上となり、ピストン29の背面側の油圧力P1がピストン29の正面側の油圧 力P2よりも大きくなると、図1中左側方向へスライドしてコンバータハウジン グ23の内側壁23aに接合(ロックアップ)する。A turbine hub 26 is spline-fitted to the output shaft 27. A turbine runner 28 is fixed to a flange portion 26a of the turbine hub 26, and a boss portion 26b serves as a lockup clutch. The piston 29 is fitted so that it can slide. The piston 29 has a plurality of pawls 30 formed on the back surface thereof engaged with a groove 31 formed on the outer peripheral end of the flange portion 26 a of the turbine hub 26, and therefore rotates integrally with the turbine hub 26. When the vehicle speed becomes equal to or higher than a predetermined speed and the hydraulic pressure P 1 on the back side of the piston 29 becomes larger than the hydraulic force P 2 on the front side of the piston 29, the piston 29 slides to the left side in FIG. It is joined (locked up) to the inner wall 23a of the converter housing 23.

【0015】 以上の実施例構造によれば、ロックアップ時等の低トルク(図3中T1以下の 捩りトルク)入力時には、低剛性ばね部材13a,13bが変形し、遊動子15 ,16がドライブプレート4a,4bに対して回動するため、低摩擦部材17が 他部と摺接して低摩擦力を発生する。この際、高剛性ばね部材14は、それ自身 が低剛性ばね部材13a,13bに比較して高剛性であり、かつ、高摩擦部材1 8の摩擦係数が大きいため、ほとんど変形しない。即ち、低トルク入力時には第 1緩衝機構20がダンパ機能を発揮する。従って、エンジンのトルク変動及びそ れに伴うクランクシャフト系の捩り振動が第1緩衝機構20により吸収・減衰さ れることとなり、エンジンの動力が動力伝達装置Aを介してクランクシャフト1 からコンバータハウジング23に円滑に伝達される。この結果、車室内のこもり 音等の異音が効果的に低減されることとなる。According to the structure of the embodiment described above, when a low torque (torsional torque of T 1 or less in FIG. 3) is input at the time of lockup or the like, the low-rigidity spring members 13a and 13b are deformed and the idlers 15 and 16 are moved. Since it rotates with respect to the drive plates 4a and 4b, the low-friction member 17 comes into sliding contact with the other parts and generates a low-friction force. At this time, the high-rigidity spring member 14 itself has a higher rigidity than the low-rigidity spring members 13a and 13b, and since the high-friction member 18 has a large friction coefficient, it is hardly deformed. That is, the first buffer mechanism 20 exerts a damper function when a low torque is input. Therefore, the torque fluctuation of the engine and the torsional vibration of the crankshaft system associated therewith are absorbed and damped by the first damping mechanism 20, and the power of the engine is transmitted from the crankshaft 1 to the converter housing 23 via the power transmission device A. Be transmitted smoothly. As a result, noise such as muffled noise in the vehicle compartment is effectively reduced.

【0016】 エンジンの始動時や停止時における過渡的運転状態においては、クランクシャ フト系の共振点がエンジンのアイドル回転数以下の回転数で生じるように設定さ れているため、エンジンの回転変動が増幅されて、瞬間的に高トルク(図3中T 1 以上の捩りトルク)が動力伝達装置Aに作用する。この際、低剛性ばね部材1 3a,13bは密着して変形せず、高剛性ばね部材18が変形するようになる。 従って、遊動子15,16とドライブプレート4a,4bとの間に介装した低摩 擦部材17,17のうちのいずれか一方及び遊動子15,16の間に介装した高 摩擦部材18とが協働して摩擦力を発生するため、図3に示すような高摩擦トル ク(高摩擦減衰力)Tf2が生じることとなる。即ち、本実施例の動力伝達装置 Aは、この高トルク入力時に、第1緩衝機構20の低摩擦部材17及び第2緩衝 機構21を作用させ、従来例よりも効果的に過大入力エネルギーを吸収すること ができ、より一層円滑な動力伝達を可能にする。In a transient operating state when the engine is started or stopped, the resonance point of the crankshaft system is set to occur at a rotation speed equal to or lower than the idle rotation speed of the engine, so that the rotation fluctuation of the engine Is amplified and momentarily high torque (T in Fig. 3 1 The above-mentioned torsional torque) acts on the power transmission device A. At this time, the low-rigidity spring members 13a and 13b come into close contact with each other and are not deformed, and the high-rigidity spring member 18 is deformed. Therefore, one of the low friction members 17 and 17 interposed between the idlers 15 and 16 and the drive plates 4a and 4b and the high friction member 18 interposed between the idlers 15 and 16 are provided. Generate a frictional force in cooperation with each other, so that a high friction torque (high friction damping force) Tf as shown in FIG.2Will occur. That is, the power transmission device A of this embodiment causes the low friction member 17 and the second shock absorbing mechanism 21 of the first shock absorbing mechanism 20 to act at the time of this high torque input, and absorbs excessive input energy more effectively than the conventional example. This enables more smooth power transmission.

【0017】 尚、動力伝達装置Aへの入力トルクが所定値(図3中における捩りトルクT2 )以上となると、ストップピン5が周方向溝9の側壁に当接し、ドライブプレー ト4a,4bと入力部材2の相対回動が停止する。When the input torque to the power transmission device A exceeds a predetermined value (torsional torque T 2 in FIG. 3), the stop pin 5 contacts the side wall of the circumferential groove 9 and the drive plates 4a, 4b. And the relative rotation of the input member 2 stops.

【0018】[0018]

【考案の効果】[Effect of the device]

以上の説明から明らかなように本考案は、クランクシャフトに固定される第1 質量体に第2質量体を相対回動できるように組み付け、これら両質量体を、低剛 性ばね部材と低摩擦力発生手段とからなる第1緩衝機構で連繋すると共に、該第 1緩衝機構よりも遅れて作動する高剛性ばね部材と高摩擦力発生手段とからなる 第2緩衝機構で連繋するため、低トルク入力時から高トルク入力時迄の広範囲に 亘り、より一層効果的にダンパ機能を発揮し、動力伝達時の静粛性及び円滑性を 向上することができる。 As is apparent from the above description, the present invention assembles the second mass body so that the first mass body fixed to the crankshaft can relatively rotate, and these both mass bodies are combined with the low-rigidity spring member and the low friction member. Since the first shock absorbing mechanism including the force generating means is connected to the second shock absorbing mechanism including the high-rigidity spring member and the high frictional force generating means that operates later than the first shock absorbing mechanism, low torque is achieved. The damper function can be more effectively exerted over a wide range from input to high torque input, and quietness and smoothness during power transmission can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例を示す動力伝達装置の取付状態
断面図。
FIG. 1 is a sectional view of a power transmission device in an attached state showing an embodiment of the present invention.

【図2】左半分を省略して示す動力伝達装置の正面図。FIG. 2 is a front view of the power transmission device with the left half omitted.

【図3】同動力伝達装置の捩りトルク特性図。FIG. 3 is a torsion torque characteristic diagram of the power transmission device.

【符号の説明】[Explanation of symbols]

1…クランクシャフト、2…入力部材(第1質量体)、
8…第2質量体、13a,13b…低剛性ばね部材、1
4…高剛性ばね部材、17…低摩擦部材(低摩擦力発生
手段)、18…高摩擦部材(高摩擦力発生手段)、20
…第1緩衝機構、21…第2緩衝機構、A…動力伝達装
置。
1 ... Crank shaft, 2 ... Input member (first mass body),
8 ... 2nd mass body, 13a, 13b ... Low rigidity spring member, 1
4 ... High rigidity spring member, 17 ... Low friction member (low friction force generating means), 18 ... High friction member (high friction force generating means), 20
... 1st buffer mechanism, 21 ... 2nd buffer mechanism, A ... Power transmission device.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 村杉 卓 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)考案者 森 淳弘 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taku Murasugi 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Atsuhiro Mori 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 クランクシャフトに固定される第1質量
体に第2質量体を相対回動できるように組み付け、これ
ら両質量体を、低剛性ばね部材と低摩擦力発生手段とか
らなる第1緩衝機構で連繋すると共に、該第1緩衝機構
よりも遅れて作動する高剛性ばね部材と高摩擦力発生手
段とからなる第2緩衝機構で連繋したことを特徴とする
動力伝達装置。
1. A first mass body fixed to a crankshaft, a second mass body being assembled so as to be able to rotate relative to each other, and both mass bodies comprising a low-rigidity spring member and a low frictional force generating means. A power transmission device, which is connected by a shock absorbing mechanism and is connected by a second shock absorbing mechanism composed of a high-rigidity spring member and a high frictional force generating means which operates later than the first shock absorbing mechanism.
JP1991103209U 1991-12-16 1991-12-16 Power transmission device Expired - Lifetime JP2598472Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991103209U JP2598472Y2 (en) 1991-12-16 1991-12-16 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991103209U JP2598472Y2 (en) 1991-12-16 1991-12-16 Power transmission device

Publications (2)

Publication Number Publication Date
JPH0550202U true JPH0550202U (en) 1993-07-02
JP2598472Y2 JP2598472Y2 (en) 1999-08-09

Family

ID=14348123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991103209U Expired - Lifetime JP2598472Y2 (en) 1991-12-16 1991-12-16 Power transmission device

Country Status (1)

Country Link
JP (1) JP2598472Y2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169715A (en) * 1996-12-06 1998-06-26 Exedy Corp Damper mechanism
JP2010084852A (en) * 2008-09-30 2010-04-15 Toyota Motor Corp Driving force transmitting device
WO2013045994A1 (en) 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
WO2013046008A1 (en) 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
WO2013046006A1 (en) 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
JP2015094423A (en) * 2013-11-12 2015-05-18 株式会社エクセディ Dynamic damper device and lock-up device of torque converter
JP2015161371A (en) * 2014-02-27 2015-09-07 株式会社エクセディ damper device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125439A (en) * 1983-11-15 1985-07-04 ルーク・ラメレン・ウント・クツプルングスバウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for compensating rotary impact force

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125439A (en) * 1983-11-15 1985-07-04 ルーク・ラメレン・ウント・クツプルングスバウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for compensating rotary impact force

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169715A (en) * 1996-12-06 1998-06-26 Exedy Corp Damper mechanism
JP2010084852A (en) * 2008-09-30 2010-04-15 Toyota Motor Corp Driving force transmitting device
WO2013045994A1 (en) 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
WO2013046008A1 (en) 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
WO2013046006A1 (en) 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
US9435389B2 (en) 2011-09-29 2016-09-06 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
DE112012004081B4 (en) * 2011-09-29 2017-01-05 Aisin Aw Co., Ltd. Vehicle hydraulic power transmission device
US9551237B2 (en) 2011-09-29 2017-01-24 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
US9695797B2 (en) 2011-09-29 2017-07-04 Toyota Jidosha Kabushiki Kaisha Vehicular fluid power transmitting device
JP2015094423A (en) * 2013-11-12 2015-05-18 株式会社エクセディ Dynamic damper device and lock-up device of torque converter
JP2015161371A (en) * 2014-02-27 2015-09-07 株式会社エクセディ damper device

Also Published As

Publication number Publication date
JP2598472Y2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
KR100242376B1 (en) Power transfer apparatus having a vibration damping mechanism
US7942749B2 (en) Damper mechanism
US7229357B2 (en) Flywheel assembly
JP2938219B2 (en) Power transmission for automatic transmission
JP2546637B2 (en) Torsion damping mechanism
JPH0266360A (en) Power transmitting device for automatic transmission
US3514974A (en) Noise prevention device in torsional vibration
JP3558462B2 (en) Flywheel assembly
US4932286A (en) Flywheel assembly
JPH04211744A (en) Automobile power transmission device
JP4073666B2 (en) Fluid torque transmission device with lock-up device
JP3355008B2 (en) Vibration damping device for fluid transmission
JPH0550202U (en) Power transmission device
US6481552B1 (en) Clutch apparatus
JP3638400B2 (en) Torque converter lockup damper
JP2604705Y2 (en) Power transmission device
JP2582854Y2 (en) Power transmission for automatic transmission
JP2585099Y2 (en) Power transmission for automatic transmission
JP3523320B2 (en) Torsional vibration reduction device
JPH0550164U (en) Power transmission device
JP3474620B2 (en) Damper device
JP2606949Y2 (en) Torsional vibration reduction device
JPH0534339U (en) Flywheel
JP3474625B2 (en) Damper device
JPH07259926A (en) Device for reducing torsional vibration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term