JPH0549606B2 - - Google Patents

Info

Publication number
JPH0549606B2
JPH0549606B2 JP59275250A JP27525084A JPH0549606B2 JP H0549606 B2 JPH0549606 B2 JP H0549606B2 JP 59275250 A JP59275250 A JP 59275250A JP 27525084 A JP27525084 A JP 27525084A JP H0549606 B2 JPH0549606 B2 JP H0549606B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
carbide
concentration
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59275250A
Other languages
Japanese (ja)
Other versions
JPS61151012A (en
Inventor
Moryuki Matsushima
Tadayoshi Fujimoto
Taizo Okajima
Shigeya Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP59275250A priority Critical patent/JPS61151012A/en
Publication of JPS61151012A publication Critical patent/JPS61151012A/en
Publication of JPH0549606B2 publication Critical patent/JPH0549606B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、マクロポア又は、ミクロポアの改善
された活性炭を得るための炭化物の賦活方法に関
する。 従来、活性炭は各種の炭素質原料を、それに適
応した加熱条件下で炭化し、ついで水蒸気、炭酸
ガス、あるいは空気等の酸化性ガスと高温反応さ
せて賦活することによつて製造されている。(特
公昭57−60284)ところが、これらの方法では熱
収支上、賦活ガスの濃度設定範囲が狭く、且つ濃
度設定に限界がある、更には同一濃度設定での水
蒸気等の使用量が多い等の欠点がある。そこで、
本発明者等はこれらの欠点の改善された賦活方法
につき鋭意検討を重ねた結果、酸素ガス源として
純酸素又は79容量%よりも少ない不活性ガスを含
有する酸素含有ガスを使用すれば、広い濃度範囲
にわたり賦活ガスの濃度、使用量を調節でき、特
に同一の酸素濃度の場合に水素気及び/又は炭酸
ガスの濃度を極めて自在かつ経済的有利に高水準
に選択できることを見出して、本発明に到達し
た。 すなわち、本発明の要旨は、粉状乃至は粉状の
炭化物を、水蒸気及び/又は炭酸ガス並びに炭素
ガスの存在下、700〜1100℃の温度に加熱して賦
活する方法において、酸素ガス源として純酸素又
は、79容量%より少ない不活性ガスを含有する酸
素含有ガスを使用し、系内の水蒸気濃度及び/又
は炭酸ガス濃度を高水準に保持することを特徴と
する炭化物の賦活方法に存する。 次に本発明を詳細に説明する。本発明に用いら
れる炭化物は、従来、活性炭製造用として用いら
れていたものであればよく、例えば泥炭、亜炭、
褐炭、亜瀝青炭、瀝青炭等の石炭系、アスフアル
トピツチ等の石油系、木炭等の木質系、ヤシガラ
等の果実殻系等の炭素質原料を、そのまま又は微
粉砕したものを成形した後解砕したもの、更には
0.1〜2.0ml程度のペンシル、アーモンド、ハニカ
ム状に成形したものを500−900℃程度のそれぞれ
の炭素質原料に適応した温度で炭化することによ
り製造される。該炭化物は、通常、平均粒径0.5
〜5.0mm、比表面積、数10〜数100m2/g、平均細
孔容積0.01〜0.20ml/gの物性を有する。賦活は
周知の多段炉、ロータリーキルン、流動床等の賦
活炉を用いて700〜1100℃温度で後述する賦活ガ
スと向流又は並流で接触させることにより行われ
る。 賦活ガスとしては、水蒸気及び/又は、炭酸ガ
スを20〜90Vol%、酸素ガスを0.1〜40Vol%含有
するもので、該酸素ガス源として純酸素ガス、又
は、不活性ガスを79Vol%以下、好ましくは
50Vol%以下含有する酸素含有ガス(以下これら
を単に酸素ガスと記す。)を使用する。賦活炉へ
の酸素ガスの導入方法は、酸素ガスを直接炉へ供
給するかあるいは水蒸気、空気等と混合して供給
する。 本発明では酸素源として使用する酸素ガスの酸
素濃度を調整することにより、系内の水蒸気濃度
及び/又は炭酸ガス濃度を、目的とするポアサイ
ズが得られる濃度に調整する。該濃度は目的によ
つて異なるので、一義的には決められないが、通
常0.1〜40Vol%程度から選ばれる。 賦活ガスの供給量は、賦活炉の構造や賦活温度
等により異なるが、通常炭化物1Kg当り2〜20N
m3/Hr好ましくは3〜10Nm3/Hrから選定され
る。 このようにして得られた活性炭は、水処理用、
食品脱色用あるいはガス吸着用等、それぞれの用
途に供される。 以上詳述したように、本発明法では酸素源とし
て純酸素又は、不活性ガスを79Vol%以下含有す
る酸素含有ガスを使用することにより、系内の水
蒸気濃度及び1又は炭酸ガス濃度を高水準に保持
し、且つ調整することによつて、活性炭のマクロ
ポア又はミクロポアの量を調整することができる
ので活性物の賦活方法として有用である。さに使
用ユーテイリテイーの削減という効果がある。 次に、本発明を実施剤により更に具体的に説明
するが、本厚名は、その要旨をこえない限り以下
の実例に限定されるものではない。 実施例1〜2 0.6〜2mmの石炭系粒状炭化物を原料としヘレ
シヨフ型多段炉を用いて賦活を実施した。炭化物
は100Kg/Hrの割合で多段炉の最上段に導入し、
賦活には水蒸気酸素ガス及び空気を第1表の割合
で使用した。水蒸気はそのまま、酸素ガスは空気
と混合後炉内に開口する配管よりそれぞれ供給し
た。炉内は、水蒸気、及び空気と酸素ガスとの混
合ガスの供給割合を調節して炉内雰囲気ガスの温
度が1000℃になるように制御した。 この様にして得られた活性炭の性能を測定し得
られた結果を第1表に示す。 なお、比較のために実施例に用いたと同じ炭化
物を、酸素源として空気のみを使用し、かつ炉内
雰囲気ガス温度を1000℃に保つための熱源として
コークス炉ガスを使用する以外は実施例と同様に
して賦活を行なつた。得られた結果を併せて第1
表に示す。 表から明らかなように本発明により得られた活
性炭は吸着性能の著しい向上が認められた。 更に、本発明では単位活性炭製造量当りの水蒸
気、の使用量を大巾に削減出来ると共にコークス
炉ガスを使用しなくてよい利点もある。
The present invention relates to a method for activating carbide to obtain activated carbon with improved macropores or micropores. Conventionally, activated carbon has been produced by carbonizing various carbonaceous raw materials under suitable heating conditions, and then activating them by reacting them at high temperatures with oxidizing gases such as steam, carbon dioxide, or air. (Special Publication No. 57-60284) However, with these methods, the concentration range of the activation gas is narrow and there are limits to the concentration setting due to heat balance, and furthermore, the amount of water vapor etc. used is large at the same concentration setting. There are drawbacks. Therefore,
The inventors of the present invention have conducted intensive studies on an activation method that improves these drawbacks, and have found that if pure oxygen or an oxygen-containing gas containing less than 79% by volume of an inert gas is used as an oxygen gas source, a wide range of The present invention was based on the discovery that the concentration and usage amount of the activating gas can be adjusted over a concentration range, and in particular, when the oxygen concentration is the same, the concentration of hydrogen gas and/or carbon dioxide gas can be selected at a high level extremely freely and economically. reached. That is, the gist of the present invention is to provide a method for activating powdery or powdery carbide by heating it to a temperature of 700 to 1100°C in the presence of water vapor and/or carbon dioxide gas and carbon gas, as an oxygen gas source. A method for activating carbide characterized by using pure oxygen or an oxygen-containing gas containing less than 79% by volume of an inert gas and maintaining the water vapor concentration and/or carbon dioxide concentration in the system at a high level. . Next, the present invention will be explained in detail. The carbide used in the present invention may be any carbide that has been conventionally used for producing activated carbon, such as peat, lignite,
Carbonaceous raw materials such as coal-based materials such as lignite, sub-bituminous coal, and bituminous coal, petroleum-based materials such as asphalt pitch, wood-based materials such as charcoal, and fruit shell-based materials such as coconut husk, either as they are or finely pulverized, are molded and then crushed. things, even
It is manufactured by carbonizing approximately 0.1 to 2.0 ml of pencil, almond, or honeycomb shapes at a temperature of approximately 500 to 900°C, which is appropriate for each carbonaceous raw material. The carbide usually has an average particle size of 0.5
It has physical properties of ~5.0 mm, a specific surface area of several tens to several hundreds of m 2 /g, and an average pore volume of 0.01 to 0.20 ml/g. Activation is carried out using a well-known activating furnace such as a multistage furnace, rotary kiln, or fluidized bed at a temperature of 700 to 1100° C. by contacting with an activating gas to be described later in countercurrent or cocurrent. The activating gas contains 20 to 90 Vol% of water vapor and/or carbon dioxide gas and 0.1 to 40 Vol% of oxygen gas, and preferably 79 Vol% or less of pure oxygen gas or inert gas as the oxygen gas source. teeth
An oxygen-containing gas containing 50 Vol% or less (hereinafter simply referred to as oxygen gas) is used. The method of introducing oxygen gas into the activation furnace is to supply oxygen gas directly to the furnace or to mix it with water vapor, air, etc. and supply it. In the present invention, by adjusting the oxygen concentration of the oxygen gas used as an oxygen source, the water vapor concentration and/or carbon dioxide concentration in the system is adjusted to a concentration that allows the desired pore size to be obtained. The concentration varies depending on the purpose and cannot be unambiguously determined, but it is usually selected from about 0.1 to 40 Vol%. The supply amount of activation gas varies depending on the structure of the activation furnace, activation temperature, etc., but is usually 2 to 20 N per 1 kg of carbide.
m 3 /Hr is preferably selected from 3 to 10 Nm 3 /Hr. The activated carbon thus obtained can be used for water treatment,
It is used for various purposes such as food decolorization and gas adsorption. As detailed above, in the method of the present invention, by using pure oxygen or an oxygen-containing gas containing 79 Vol% or less of an inert gas as an oxygen source, the water vapor concentration and carbon dioxide concentration in the system can be maintained at a high level. By maintaining and adjusting the amount of activated carbon, the amount of macropores or micropores in the activated carbon can be adjusted, which is useful as a method for activating active substances. This has the effect of reducing the utility used. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it goes beyond the gist of the invention. Examples 1 to 2 Activation was carried out using a Hereschoff-type multistage furnace using coal-based granular carbide of 0.6 to 2 mm as a raw material. Carbide was introduced into the top stage of the multistage furnace at a rate of 100Kg/Hr.
For activation, water vapor, oxygen gas and air were used in the proportions shown in Table 1. Water vapor was supplied as it was, and oxygen gas was mixed with air and then supplied through piping opening into the furnace. The inside of the furnace was controlled so that the temperature of the atmosphere gas inside the furnace was 1000° C. by adjusting the supply ratio of water vapor and a mixed gas of air and oxygen gas. The performance of the activated carbon thus obtained was measured and the results are shown in Table 1. For comparison, the same carbide used in the example was used, except that only air was used as the oxygen source and coke oven gas was used as the heat source to maintain the furnace atmosphere gas temperature at 1000°C. Activation was carried out in the same manner. Combined with the obtained results, the first
Shown in the table. As is clear from the table, the activated carbon obtained according to the present invention was found to have significantly improved adsorption performance. Furthermore, the present invention has the advantage that the amount of steam used per unit amount of activated carbon produced can be greatly reduced, and that coke oven gas does not have to be used.

【表】【table】

【表】 実施例 3〜4 実施例1に記述したものと同一炭化物を外熱式
のラボロータリーキルンに装入し賦活を実施し
た。 賦活には水、炭酸ガス、酸素及び窒素を第2表
の割合になる様に調整後キルンに装入した。 炉内の温度は外被炉にて1000℃になるよう制御
した。 この様にして得られた活性炭の性能を測定し得
られた結果を第2表に示す。 尚比較のため実施例に用いたものと同じ炭化物
を窒素・水のみを使用する以外は実施例1と同様
にして賦活を行なつた。得られた結果を併せ第2
表に示す。この表から明らかな様に、本発明によ
り得られた活性炭は吸着性能に著しい向上が認め
られた。
[Table] Examples 3 to 4 The same carbide as described in Example 1 was charged into an externally heated laboratory rotary kiln and activated. For activation, water, carbon dioxide, oxygen and nitrogen were adjusted to the proportions shown in Table 2 and then charged into the kiln. The temperature inside the furnace was controlled to 1000°C in the outer furnace. The performance of the activated carbon thus obtained was measured and the results are shown in Table 2. For comparison, the same carbide as that used in the example was activated in the same manner as in Example 1, except that only nitrogen and water were used. Combine the obtained results and
Shown in the table. As is clear from this table, the activated carbon obtained according to the present invention showed a remarkable improvement in adsorption performance.

【表】【table】

Claims (1)

【特許請求の範囲】 1 粉状乃至は、粒状の炭化物を、水蒸気及び/
又は、炭酸ガス並びに酸素ガスの存在下、700〜
1100℃の温度に加熱して賦活する方法において、
酸素ガス源として純酸素又は79容量%より少ない
不活性ガスを含有する酸素含有ガスを使用し、系
内の水蒸気濃度及び/又は炭酸ガス濃度を高水準
に保持することを特徴とする炭化物の賦活方法。 2 前記酸素含有ガスが50容量%より少ない不活
性ガスを含有する酸素含有ガスであることを特徴
とする特許請求の範囲第1項記載の炭化物の賦活
方法。
[Scope of Claims] 1. Powdered or granular carbide is treated with water vapor and/or
Or, in the presence of carbon dioxide gas and oxygen gas, 700~
In the method of activating by heating to a temperature of 1100℃,
Carbide activation characterized by using pure oxygen or an oxygen-containing gas containing less than 79% by volume of an inert gas as an oxygen gas source, and maintaining the water vapor concentration and/or carbon dioxide concentration in the system at a high level. Method. 2. The method for activating carbide according to claim 1, wherein the oxygen-containing gas is an oxygen-containing gas containing less than 50% by volume of an inert gas.
JP59275250A 1984-12-25 1984-12-25 Method of activating carbide Granted JPS61151012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275250A JPS61151012A (en) 1984-12-25 1984-12-25 Method of activating carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275250A JPS61151012A (en) 1984-12-25 1984-12-25 Method of activating carbide

Publications (2)

Publication Number Publication Date
JPS61151012A JPS61151012A (en) 1986-07-09
JPH0549606B2 true JPH0549606B2 (en) 1993-07-26

Family

ID=17552785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275250A Granted JPS61151012A (en) 1984-12-25 1984-12-25 Method of activating carbide

Country Status (1)

Country Link
JP (1) JPS61151012A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134510A (en) * 1986-11-27 1988-06-07 Nippon Enji Kk Activation of activated carbon
EP0643014B1 (en) * 1993-09-14 1998-08-12 Kuraray Chemical Co., Ltd. Deodorant comprising metal oxide-carrying activated carbon
CN1048954C (en) 1995-03-30 2000-02-02 日本酸素株式会社 Porous carbonaceous material, process for producing same
CN1120746C (en) * 2000-09-14 2003-09-10 中国科学院山西煤炭化学研究所 Process for preparing SO2 desulfurizing agent-activated coke
US6916417B2 (en) 2000-11-01 2005-07-12 Warden W. Mayes, Jr. Catalytic cracking of a residuum feedstock to produce lower molecular weight gaseous products
US6491810B1 (en) 2000-11-01 2002-12-10 Warden W. Mayes, Jr. Method of producing synthesis gas from a regeneration of spent cracking catalyst
US6913687B2 (en) 2000-11-01 2005-07-05 Warden W. Mayes, Jr. Method of producing synthesis gas from a regeneration of spent cracking catalyst
DE202007014890U1 (en) 2007-03-14 2008-04-17 BLüCHER GMBH High performance adsorbents based on activated carbon with high meso- and macroporosity
KR101442813B1 (en) 2012-07-27 2014-09-23 한화케미칼 주식회사 Porous carbon and method for preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028821A (en) * 1983-07-26 1985-02-14 Sumitomo Heavy Ind Ltd Manufacture of carbonaceous adsorbent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028821A (en) * 1983-07-26 1985-02-14 Sumitomo Heavy Ind Ltd Manufacture of carbonaceous adsorbent

Also Published As

Publication number Publication date
JPS61151012A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
Baklanova et al. Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin
US5965483A (en) Highly microporous carbons and process of manufacture
US5626637A (en) Low pressure methane storage with highly microporous carbons
EP0557208B1 (en) High activity, high density activated carbon and method for its preparation.
AU670215B2 (en) Highly microporous carbons and process of manufacture
US5710092A (en) Highly microporous carbon
US5250491A (en) Preparation of high activity, high density activated carbon
US5238470A (en) Emission control device
KR102566190B1 (en) Method for producing porous carbon, and electrode and catalyst support comprising the porous carbon produced by the method
US3539467A (en) Hot briquetting and oxidation of coal-pitch mixtures in preparing activated carbon
JPH0549606B2 (en)
US5880061A (en) Active carbon and method for its production
KR102580274B1 (en) manufacturing method of ACTIVATED CARBON to improve TO IMPROVE MESOPORE RATIO AND SPECIFC SURFACE AREA by SURFACE OXIDATION OF PETROLEUM RESIDUE PITCH OR COAL TAR PITCH and activated carbon manufactured thereby
EP0004044B1 (en) Granular activated carbon manufacture from sub-bituminous coal treated with dilute inorganic acid: direct activation method
US6534442B1 (en) Process for production of carbonaceous chars having catalytic activity
KR100797141B1 (en) Process for preparing spherical activated carbon granule
US4490160A (en) Method for enrichment of nitrogen in air by the method of adsorption and a carbonaceous adsorbent suitable therefor
JP2002348111A (en) Method for producing activated carbon
JPH01242409A (en) Production of activated carbon
JPH069207A (en) Production of active carbon using coffee bean cake
JPS63156542A (en) Method for regenerating activated carbon
Monika et al. Porous structure improvement of coal activated carbon using steam activation in pilot scale
CN109824049B (en) Preparation method of activated carbon for solvent recovery
KR20200055985A (en) Method for manufacturing high-efficiency activated carbon for removal of harmful gas using nano metal powder
SU1414777A1 (en) Method of producing granulated activated carbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees