JPH054877A - Method for electrically joining body containing ceramics to be joined - Google Patents

Method for electrically joining body containing ceramics to be joined

Info

Publication number
JPH054877A
JPH054877A JP28206491A JP28206491A JPH054877A JP H054877 A JPH054877 A JP H054877A JP 28206491 A JP28206491 A JP 28206491A JP 28206491 A JP28206491 A JP 28206491A JP H054877 A JPH054877 A JP H054877A
Authority
JP
Japan
Prior art keywords
heating
joined
heating means
members
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28206491A
Other languages
Japanese (ja)
Other versions
JP3178032B2 (en
Inventor
Koji Okuda
浩司 奥田
Tokuzo Nishi
徳三 西
Hisakiyo Hoshino
久清 星野
Hiroshi Takai
博史 高井
Natsumi Miyake
夏美 三宅
Shinji Numano
真志 沼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP28206491A priority Critical patent/JP3178032B2/en
Publication of JPH054877A publication Critical patent/JPH054877A/en
Application granted granted Critical
Publication of JP3178032B2 publication Critical patent/JP3178032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain a joined body having high heat resistance by providing parts causing a great temperature gradient and their vicinity in bodies to be joined with the second heating means in joining the bodies to be joined according to a direct electrically conductive heating method. CONSTITUTION:A joining agent 3 is placed between electrically conductive ceramics (1a) and (1b) and fixed by applying a pressure (P) thereto. An electrically conductive electrode (20a) composed of carbon electrode members (421a) and (422a) and electrically conductive heating members (423a) and (424a) and similar electrically conductive electrode (20b) are then attached to the aforementioned ceramics (1a) and (1b). Furthermore, the members (1a) and (1b) are subsequently sandwiched between the second heating means composed of the similar electrically conductive electrodes in respective close contact states at a prescribed distance on both sides of a butted part as the center. The atmosphere is then changed into Ar gas and a voltage is applied across the electrodes (20a) and (20b) with a power source 5 to join the members (1a) and (1b) with Joule's heat produced therein. In the process, the heat is generated in the second heating by electrical conduction from the initial period of the electrical conduction and transmitted to the members (1a) and (1b) at the installing positions of the electrodes (20a) and (20b). Thereby, the temperature gradient is reduced in joining to relax thermal stress.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被接合部材である導電
性セラミックスと導電性セラミックスとの突合せ部また
は被接合部材である導電性セラミックスと金属との突合
せ部の少なくとも一つを含む被接合体を電気接合するに
際して、特にセラミックスの被接合部材に発生する熱応
力を緩和させながら電気接合を行う方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded member including at least one of a butted portion between conductive ceramics and a conductive ceramics, which is a joined member, or a butted portion between conductive ceramics and a metal, which is a joined member. The present invention relates to a method of electrically bonding a body, particularly while relaxing thermal stress generated in a member to be bonded of ceramics.

【従来の技術】[Prior art]

【0002】従来、被接合部材である導電性セラミック
スと導電性セラミックスまたは被接合部材である導電性
セラミックスと金属とを接合する方法として、直接通電
加熱方法と、高周波誘導加熱方法と、直接通電加熱方法
に高周波誘導加熱を併用する方法等が提案されている。
直接通電加熱方法とは、突合せ部の両側に位置する二つ
の被接合部材からなる被接合体に通電電極を当接配置さ
せ、ジュール熱により突合せ部を局部加熱して突合せ部
に配置した接合剤を溶融反応させる方法である。また高
周波誘導加熱方法とは、被接合体の突合せ部の周囲に誘
導コイルを配置し、誘導加熱により発生させたジュール
熱により突合せ部を局部加熱して突合せ部に配置した接
合剤を溶融反応させる方法である。直接通電加熱方法に
高周波誘導加熱を併用する方法とは、予め高周波誘導加
熱により高抵抗すなわち導電性の低いセラミックスを加
熱してその抵抗値を下げ(導電性を増大させ)た後、直
接通電加熱を実施して、大電流を流し、突合せ面を急速
に加熱する方法である。図11(A)は前述の従来の直
接通電加熱方法を実施する場合の構成を示している。同
図の構成においては、被接合部材である導電性を有する
円筒状のセラミックス1a´,1b´を接合剤3´を介
して突合せて突合せ部を構成し、この突合せ部を境にし
てセラミックス1a´,1b´にリング状の通電電極2
a´,2b´をそれぞれ当接させる。セラミックス1a
´及び1b´の端部には断熱材4a´及び4b´を配置
し、この断熱材4a´及び4b´を介して図示しない加
圧装置で両セラミックス1a´及び1b´を加圧した状
態で、通電電極2a´及び2b´間に電圧を印加する。
突合せ面に対して垂直方向の電流を通じることによるセ
ラミックス1a´,1b´に発生するジュール熱によっ
て、突合せ部全体を局部的に直接加熱し、接合剤3´を
溶融反応させて接合する。ところで、このような方法に
より熱容量の小さな通電電極を用い、同質で同形状の被
接合部材同士を接合する場合は、両者の抵抗値が同一で
あるので、通電電極2a´,2b´間の被接合部材に発
生する熱の量は等しくなり、突合せ部近傍は図11
(B)の曲線(a)に示すように略均一に加熱され、し
かも通電電極近傍の被接合部材にも大きな温度勾配が形
成されることがないので問題はなかった。また前述の他
の二つの接合方法を用いる場合にも、同質で同形状の被
接合部材同士を接合する場合や、接合温度が低くてもよ
い接合条件で接合する場合には、特に問題はなかった。
[0002] Conventionally, as a method of joining conductive ceramics and conductive ceramics which are members to be joined or conductive ceramics and metal which are members to be joined, a direct current heating method, a high frequency induction heating method, and a direct current heating method. A method of using high frequency induction heating in combination with the method has been proposed.
The direct current heating method is a bonding agent in which a current-carrying electrode is placed in contact with an article to be joined that is made up of two members to be joined that are located on both sides of the butt section, and the butt section is locally heated by Joule heat and placed in the butt section. Is a method of melting reaction. Further, the high frequency induction heating method is to arrange an induction coil around the butt portion of the objects to be joined, and locally heat the butt portion by the Joule heat generated by the induction heating to melt and react the bonding agent placed in the butt portion. Is the way. The method of using high frequency induction heating in combination with the direct current heating method is to heat high resistance ceramics with low conductivity, that is, to lower the resistance value (increase conductivity) by high frequency induction heating, and then directly apply current heating. Is carried out and a large current is passed to rapidly heat the butt surfaces. FIG. 11 (A) shows the configuration when the above-mentioned conventional direct electric heating method is carried out. In the structure shown in the figure, the cylindrical ceramics 1a 'and 1b' having conductivity, which are the members to be joined, are butted against each other via the joining agent 3'to form a butt portion, and the butt portion is used as a boundary for the ceramics 1a. Ring-shaped current-carrying electrode 2 on ', 1b'
A'and 2b 'are brought into contact with each other. Ceramics 1a
Insulating materials 4a 'and 4b' are arranged at the ends of'and 1b ', and both ceramics 1a' and 1b 'are pressed by a pressure device (not shown) through these insulating materials 4a' and 4b '. , A voltage is applied between the energizing electrodes 2a 'and 2b'.
The Joule heat generated in the ceramics 1a ', 1b' by passing a current in the direction perpendicular to the butt surface locally heats the entire butt portion locally, causing the bonding agent 3'to melt and react to bond. By the way, when the current-carrying electrodes having a small heat capacity are used to bond the members to be bonded having the same quality and the same shape, the resistance values of the two are the same, and therefore, the resistance between the current-carrying electrodes 2a ′ and 2b ′ is not increased. The amount of heat generated in the joining member becomes equal, and the vicinity of the butted portion is shown in FIG.
As shown in the curve (a) of (B), there was no problem because it was heated substantially uniformly, and a large temperature gradient was not formed in the members to be joined in the vicinity of the current-carrying electrodes. Even when the other two joining methods described above are used, there is no particular problem when joining members to be joined having the same quality and the same shape, or joining under joining conditions where the joining temperature may be low. It was

【0003】[0003]

【発明が解決しようとする課題】ところで、直接通電加
熱方法により接合する場合の通電電極2a´,2b´
は、通常、タングステン,モリブデンなどの耐熱性金属
またはカーボンなどの耐熱性無機材料が用いられてお
り、これらの材料は良導電性であり、かつ熱伝導性にも
優れている。例えば、被接合部材の抵抗値が同一である
場合、通電時に電極2a,2b間の被接合部材に発生し
た熱は、図示しない通電電極治具及び電極間以外の被接
合部材へ熱伝導により逃げるために、図12に示すよう
に、電極の取付位置近傍での被接合部材の長手方向に大
きな温度勾配が発生する。この温度勾配は、接合温度が
高い程、加熱スピードが速い程、また電極の熱容量及び
電極材料の熱伝導が大きい程、大きくなると考えられ
る。また、一般的な接合の応用では、形状・寸法の異な
る被接合部材同士を高い接合温度で接合したり、抵抗値
の大きく異なった異種の被接合部材同士を高い接合温度
で接合するニーズの方がむしろ多い。このような場合、
通電電極間の被接合体の各部分に発生する熱に差が生じ
て、突合せ部近傍の熱の流れにより温度勾配が生じる。
図11(A)の例で、セラミックス1a´,1b´の抵
抗値R1,R2が大きく異なる(R1>>R2の関係)
とすると、通電によりセラミックス1a´に発生した熱
は突合せ部を加熱すると共に、図示しない通電電極治具
及びセラミックス1b´へと熱伝導により逃げるため
に、図11(B)の曲線(b)に示すように、前述の通
電電極の取付位置近傍の被接合部材に発生する温度勾配
以外に、突合せ部近傍を中心にして被接合部材の長手方
向に大きな温度勾配が発生する。この温度勾配は、部材
の抵抗値の差が大きいほど、接合温度が高いほど、加熱
・冷却スピードが速いほど、またセラミックス1b´の
熱容量が大きいほど、大きくなると考えられる。高周波
誘導加熱方法により上記と同じ条件のセラミックス1a
´,1b´を加熱した場合には、前述とは逆に、抵抗値
の低いセラミックス1b´に集中的に熱が発生し、図1
1(B)の曲線(c)に示すような温度分布となり、曲
線(b)の場合と同様に大きな温度勾配ができる。この
様に温度勾配が大きくなると、それに伴い発生する熱応
力も大きくなり、その応力値が被接合部材の破壊強度す
なわち破壊応力を越えると、被接合部材にクラックが発
生し、被接合部材を破損してしまうことがある。また温
度勾配が大きくなると、接合温度を高くした場合には、
発生する熱が大きい方の被接合部材の最高温度またはピ
ーク温度は突合せ部の温度よりもかなり高くなるため、
最高温度の部分ではセラミックスが分解するなどの素材
の劣化が発生する問題があった。したがって、あまり接
合温度を高くできないために、耐熱性を改善する上で支
障が出るという問題があり、また電極間距離を小さくで
きなかったり、加熱速度を速くできないために、接合に
必要な電力量を増大させ、ランニングコストを上昇させ
る問題があった。さらに、従来の直接通電加熱方法に高
周波誘導加熱を併用する方法では、予め高周波誘導加熱
により高抵抗のセラミックスを加熱してその抵抗値を下
げ(導電性を増大させ)た後、直接通電加熱を実施す
る。この従来の方法は、常温では抵抗値の高いセラミッ
クス同士を電気接合する場合に、セラミックスの抵抗値
を下げて通電電流の値を大きくする目的で採用されてい
る。そのためこの技術を、抵抗値の異なる二つの被接合
部材の電気接合にそのまま適用する場合には、通電電極
間の抵抗は抵抗値が高い方のセラミックスの抵抗値によ
って決まるため、抵抗値が高い方のセラミックスを加熱
する必要がある。しかしながら高周波誘導加熱により二
つのセラミックスに跨がった領域を加熱すると、抵抗値
の低い方のセラミックスが集中的に加熱されることにな
り、抵抗値の高い方のセラミックスを加熱するためには
更に高周波誘導加熱の電力を増加させる必要がある。そ
うすると益々抵抗値の低い方のセラミックスが加熱さ
れ、二つのセラミックスに発生する温度勾配が大きくな
って、セラミックスが破損する恐れがある。したがって
温度勾配を考慮せずに、導電率を増大させる目的で高周
波誘導加熱を併用する方法では、温度勾配に起因する熱
応力によるクラックの発生を阻止することはできない。
By the way, the current-carrying electrodes 2a ', 2b' in the case of joining by the direct current-heating method.
In general, a heat-resistant metal such as tungsten or molybdenum or a heat-resistant inorganic material such as carbon is used, and these materials have good conductivity and excellent thermal conductivity. For example, when the resistance values of the members to be welded are the same, the heat generated in the members to be welded between the electrodes 2a and 2b during energization escapes to the members to be welded (not shown) other than the current-carrying electrode jig and the electrodes by heat conduction. Therefore, as shown in FIG. 12, a large temperature gradient is generated in the longitudinal direction of the members to be joined in the vicinity of the electrode mounting position. It is considered that this temperature gradient becomes larger as the joining temperature is higher, the heating speed is faster, and the heat capacity of the electrode and the heat conduction of the electrode material are larger. In addition, in general application of joining, those who need to join the members to be joined having different shapes and dimensions at a high joining temperature, or to join the members to be joined of different types with greatly different resistance values at a high joining temperature. There are many In such cases,
A difference occurs in the heat generated in each part of the body to be joined between the current-carrying electrodes, and a temperature gradient occurs due to the flow of heat near the abutting part.
In the example of FIG. 11A, the resistance values R1 and R2 of the ceramics 1a ′ and 1b ′ are greatly different (relationship of R1 >> R2).
Then, the heat generated in the ceramics 1a 'by energization heats the abutting portion and escapes to the current-carrying electrode jig and the ceramics 1b' (not shown) by heat conduction. Therefore, the curve (b) in FIG. As shown in the figure, in addition to the temperature gradient generated in the member to be joined in the vicinity of the attachment position of the current-carrying electrode, a large temperature gradient is generated in the longitudinal direction of the member to be joined with the vicinity of the abutting portion as the center. It is considered that this temperature gradient becomes larger as the difference in resistance value between the members is higher, the joining temperature is higher, the heating / cooling speed is faster, and the heat capacity of the ceramic 1b 'is larger. Ceramics 1a under the same conditions as above by the high frequency induction heating method
On the contrary to the above, when the heating of 1'and 1b 'is performed, heat is intensively generated in the ceramics 1b' having a low resistance value.
The temperature distribution is as shown by the curve (c) of 1 (B), and a large temperature gradient is formed as in the case of the curve (b). When the temperature gradient increases in this way, the thermal stress that accompanies it also increases, and when the stress value exceeds the breaking strength of the members to be joined, that is, the breaking stress, cracks occur in the members to be joined and the members to be joined are damaged. I may end up doing it. Also, when the temperature gradient becomes large, if the junction temperature is increased,
Since the maximum temperature or peak temperature of the joined parts that generate a large amount of heat is much higher than the temperature at the butt part,
There was a problem that the material deteriorates such as the decomposition of ceramics at the highest temperature. Therefore, there is a problem that the heat resistance cannot be improved because the bonding temperature cannot be raised so much, and the amount of power required for bonding cannot be reduced because the distance between the electrodes cannot be reduced or the heating rate cannot be increased. However, there is a problem that the running cost is increased. Furthermore, in the method of using high frequency induction heating in combination with the conventional direct current heating method, high resistance ceramics are heated in advance by high frequency induction heating to reduce the resistance value (increase conductivity), and then direct current heating is performed. carry out. This conventional method is adopted for the purpose of lowering the resistance value of the ceramics and increasing the value of the energizing current when electrically bonding the ceramics having high resistance values at room temperature. Therefore, if this technique is directly applied to the electrical joining of two members to be joined that have different resistance values, the resistance between the energizing electrodes is determined by the resistance value of the ceramic with the higher resistance value. It is necessary to heat the ceramics. However, when heating the area that straddles two ceramics by high frequency induction heating, the ceramic with the lower resistance value is intensively heated, and it is necessary to further heat the ceramic with the higher resistance value. It is necessary to increase the power for high frequency induction heating. Then, the ceramic having the lower resistance value is heated more and more, the temperature gradient generated between the two ceramics is increased, and the ceramics may be damaged. Therefore, the method of using the high frequency induction heating together for the purpose of increasing the conductivity without considering the temperature gradient cannot prevent the generation of cracks due to the thermal stress due to the temperature gradient.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の問題点
を解決するために、請求項1においては、被接合部材で
ある導電性セラミックスと導電性セラミックスとの突合
せ部または被接合部材である導電性セラミックスと金属
との突合せ部の少なくとも一つを含む被接合体を電気接
合するに際して、突合せ部に接合剤を介在させ、突合せ
部の少なくとも一つ以上を挟む位置の被接合部材に少な
くとも一組の通電電極を当接配置し、通電電極間に電圧
を印加して通電電極間の被接合部材をジュール熱により
加熱する第1の加熱手段を設け、第1の加熱手段のみに
より被接合部材に大きな温度勾配が形成される部分及び
該近傍を加熱する第2の加熱手段を設け、温度勾配によ
り被接合部材に発生する熱応力が被接合部材の破壊応力
よりも小さくなるように、第1の加熱手段と第2の加熱
手段とを併用しながら突合せ部の温度を接合温度まで高
めることを特徴とする。請求項2においては、第2の加
熱手段が通電電極の少なくとも一つの一部または全部を
通電発熱させて、通電電極の取付位置及び該近傍の被接
合部材に形成される温度勾配を小さくする通電電極部加
熱手段であることを特徴とする。請求項3においては、
第2の加熱手段が被接合体の少なくとも一つの部材の抵
抗値が他の部材と異なる場合に、被接合体のうちの抵抗
値の低い被接合部材を主に加熱して、突合せ部近傍に形
成される温度勾配を小さくする低抵抗部材加熱手段であ
ることを特徴とする。請求項4においては、第2の加熱
手段が通電電極部加熱手段と低抵抗部材加熱手段とを併
用する手段であることを特徴とする。請求項5において
は、通電電極部加熱手段が通電発熱部材を設けた通電電
極及び断面積を小さくして抵抗値を大きくした通電電極
及び固有抵抗値の大きな素材からなる通電電極を単独使
用または併用する手段であることを特徴とする。請求項
6においては、突合せ部の温度が所定の温度に達するま
では第1の加熱手段及び低抵抗部材加熱手段の一方によ
って加熱を行い、加熱後は第1の加熱手段及び低抵抗部
材加熱手段の両方によって加熱を行うことを特徴とす
る。請求項7においては、第1の加熱手段及び低抵抗部
材加熱手段によって、加熱開始時から加熱を行うことを
特徴とする。請求項8においては、低抵抗部材加熱手段
は高周波誘導加熱装置であることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a butt portion or a member to be joined between conductive ceramics, which is a member to be bonded. When electrically bonding a body to be joined including at least one butting portion of a conductive ceramic and a metal, a joining agent is interposed in the butting portion, and at least one member to be joined at a position sandwiching at least one or more of the butting portions. A pair of current-carrying electrodes are arranged in contact with each other, and a first heating means for applying a voltage between the current-carrying electrodes to heat a member to be welded between the current-carrying electrodes by Joule heat is provided. The member is provided with a second heating means for heating a portion where a large temperature gradient is formed and the vicinity thereof, and the thermal stress generated in the joined member due to the temperature gradient is smaller than the fracture stress of the joined member. Sea urchin, characterized in that to increase up to the first heating means and the bonding temperature the temperature of the butted portion with a combination of the second heating means. In the second aspect, the second heating means energizes and heats at least a part or all of the energizing electrode to reduce the temperature gradient formed at the attachment position of the energizing electrode and the adjacent members to be joined. It is characterized in that it is an electrode portion heating means. In claim 3,
When the resistance value of at least one member of the objects to be joined is different from that of the other members, the second heating means mainly heats the objects to be joined having a low resistance value in the objects to be joined and brings them to the vicinity of the butt portion. It is characterized in that it is a low resistance member heating means for reducing the formed temperature gradient. According to a fourth aspect of the present invention, the second heating means is a means that uses both the energizing electrode portion heating means and the low resistance member heating means. In the present invention, the energizing electrode portion heating means includes an energizing electrode provided with an energizing heat generating member, an energizing electrode having a small cross-sectional area and a large resistance value, and an energizing electrode made of a material having a large specific resistance value, alone or in combination. It is a means to do. In claim 6, heating is performed by one of the first heating means and the low resistance member heating means until the temperature of the butting portion reaches a predetermined temperature, and after heating, the first heating means and the low resistance member heating means. It is characterized in that heating is performed by both. According to a seventh aspect of the invention, the first heating means and the low resistance member heating means perform heating from the start of heating. In the eighth aspect, the low resistance member heating means is a high frequency induction heating device.

【0005】[0005]

【作用】第2の加熱手段のうちの通電電極部加熱手段を
用いると、通電電極の取付位置及び該近傍のセラミック
ス部材が通電開始から積極的に加熱されるので、電極間
で、かつ電極近傍での被接合部材の長手方向に生じる大
きな温度勾配を緩和させることができる。また、抵抗値
の異なる被接合部材同士を接合する場合において、通電
電極間に電圧を印加して該通電電極間の被接合体を加熱
する第1の加熱手段のみにより接合温度まで加熱を行う
と、突合せ部近傍の被接合部材に大きな温度勾配ができ
るが、第2の加熱手段のうちの低抵抗部材加熱手段を用
いて被接合体のうちの抵抗値の低い被接合部材を加熱す
ると、被接合体の通電電極間の各部の温度は、二つの加
熱手段からの熱が加え合わされた温度となる。特に低抵
抗部材加熱手段によって加えられる熱は、被接合部材の
突合せ部近傍の温度勾配を緩かにする(熱応力を小さく
する)ように作用する。したがって、大きな温度勾配に
基因するクラックの発生を防止できる。また二つの加熱
手段からの熱を加え合せて接合温度を高めると、一つの
加熱手段のみで接合温度を高める場合と比べて、二つの
加熱手段からそれぞれ被接合部材に加える熱量は少なく
てすむ。その結果、従来の方法を採用した場合と比べ
て、被接合部材の最高加熱温度を低く抑えて所望の接合
温度を得ることができ、過剰加熱によるセラミックスの
劣化を防止できる。さらに、二つの加熱手段を併用する
ことにより、被接合部材の物性値や形状寸法の相違に適
切に対応することができる。二つの加熱手段を加熱開始
当初から併用して加熱を行うと、上記クラックの防止及
び劣化防止を行いながら、さらに短い時間で効率よく加
熱を行える。また第2の加熱手段として直接高周波誘導
加熱手段を用いると、抵抗値の低い被接合部材を直接加
熱できるため、非常に効率よく加熱を行えることがで
き、接合コストを下げることができる。
When the energizing electrode part heating means of the second heating means is used, the ceramic member in the mounting position of the energizing electrode and in the vicinity thereof is positively heated from the start of energization, and therefore, between the electrodes and in the vicinity of the electrodes. It is possible to mitigate a large temperature gradient that occurs in the longitudinal direction of the members to be joined. Further, in the case of joining members to be joined having different resistance values, if heating is performed up to the joining temperature only by the first heating means for applying a voltage between the energized electrodes to heat the article to be joined between the energized electrodes. Although a large temperature gradient is generated in the members to be joined in the vicinity of the butt portion, if the members to be joined having a low resistance value in the members to be joined are heated by using the low resistance member heating means of the second heating means, The temperature of each part between the current-carrying electrodes of the bonded body is a temperature obtained by adding heat from the two heating means. In particular, the heat applied by the low resistance member heating means acts to make the temperature gradient near the abutted portion of the members to be joined gentle (to reduce the thermal stress). Therefore, it is possible to prevent the occurrence of cracks due to a large temperature gradient. Further, when the joining temperature is raised by adding the heat from the two heating means, the amount of heat applied to the members to be joined by the two heating means can be smaller than that when the joining temperature is raised by only one heating means. As a result, compared with the case where the conventional method is adopted, the maximum heating temperature of the members to be joined can be suppressed to a low value to obtain a desired joining temperature, and deterioration of the ceramics due to excessive heating can be prevented. Further, by using the two heating means in combination, it is possible to appropriately cope with the difference in the physical property values and the shape dimensions of the members to be joined. When the heating is performed by using the two heating means together from the beginning of the heating, the heating can be efficiently performed in a shorter time while preventing the cracks and preventing the deterioration. Further, when the high frequency induction heating means is directly used as the second heating means, the members to be joined having a low resistance value can be directly heated, so that the heating can be performed very efficiently and the joining cost can be reduced.

【0006】[0006]

【実施例】実施例1 図1(A)及び図2は、それぞれ本発明の方法を実施す
る装置の一実施例を示す概略正面図及び側面図であっ
て、同じサイズのパイプ状の二つの被接合部材からなる
被接合体を接合する場合を示している。まず、被接合部
材である再結晶SiCセラミックス(10φ×5φ×1
00mm)1a,1b間にSi系ろう材の接合剤3を介在
させて、これらを適宜の圧力Pを加えて固定した。つぎ
に、被接合部材に着脱自在とするために、内周面を半円
弧状に形成され、2分割されるカーボン製電極部材42
1a,422aの内周側に、長さ10mmのパイプを半割
りにした二つの再結晶SiC質の通電発熱部材423
a,424aからなる通電電極20aを、また同様に電
極部材421b,422bの内周側に、通電発熱部材4
23b,424bからなる通電電極20bを取付ける。
この電極部材421a,422a,421b,422b
と通電発熱体434a,434bとから構成される通電
電極42a,42bとする第2の加熱手段を、突合せ部
を中央とし、その両側30mmの位置のセラミックス1
a,1bにそれぞれ緊密状態で挾み込む。この実施例で
は、通電発熱部材として、被接合部材であるセラミック
スの固有抵抗値よりも約1/3の抵抗値を示すものを用
いている。なお、電源装置5と通電電極20a,20b
とにより直接通電加熱を行う第1の加熱手段が構成さ
れ、電源装置5と通電発熱部材423a,424a,4
23b,424bとにより通電電極部の加熱を行う第2
の加熱手段が構成されている。その後、接合雰囲気をA
rガスとし、電源装置5に接続された通電電極20a,
20b間に電圧を印加して、80℃/min の率となるよ
うに通電電流を徐々に増加させ、約38Aで接合温度の
1500℃となり、約5分間保持させた後、電流を徐々
に減少させ、80℃/min で室温まで冷却し接合を完了
した。この際、通電初期の段階から通電電流により通電
発熱部材423a,424a,423b,424bが発
熱し、この熱が通電電極20a,20bの取付位置での
セラミックス1a,1bに伝導すると共に、セラミック
ス1a,1bに生じるジュール熱によって、所望の接合
温度に達した時点の温度分布は図1(B)の(a)に示
すようになり、同図の(b)に示す従来法に比べて著し
く緩やかになる。接合体の接合部を中心として全長12
0mmに切り出し、そのままの状態で3点曲げ試験を行っ
た結果、約420kg f/cm2 の強度が得られた。また、
長手方向に切断し切断面を研磨して、光学顕微鏡でクラ
ックの有無をチェックした結果、クラックは存在しなか
った。比較のために、上記の発熱部材の代りに同形状の
カーボン製部材を取付け、同様の接合を試みた結果、通
電電極から約5〜10mmの所にクラックが観察され、ま
た3点曲げ試験を行った結果、ほぼ上述のクラック位置
で破断しており、強度は約53kgf/cm2 しか得られな
かった。以上の実施例において、通電電極の取付位置で
の被接合部材への第2の加熱手段のうちの通電電極部加
熱手段として、通電発熱部材を設けた通電電極にする他
に、断面積を小さくして抵抗値を大きくした電極形状に
するか、または固有抵抗値の大きな素材からなる電極構
造にしても同様の効果があり、また上記の手段を単独使
用または併用することができるのは明白である。この加
熱手段の必要な発熱の大きさは、被接合部材の寸法、強
度値などの物性値及び接合温度などによって異なるが、
大きすぎると加熱手段の消費電力が無駄になるために、
熱応力が許容できる範囲で、できるだけ少ない方が望ま
しい。さらに、一つの突合せ部を境にして両側にそれぞ
れ電極がある場合について述べたが、三つ以上の部材を
接合する場合、設けた通電電極すべてに上記発明を実施
してもよく、熱応力の問題がなければ、一部の通電電極
だけに用いてもよい。
EXAMPLE 1 FIG. 1 (A) and FIG. 2 are schematic front and side views showing an example of an apparatus for carrying out the method of the present invention, respectively, showing two pipes of the same size. The case where the to-be-joined object which consists of to-be-joined members is joined is shown. First, recrystallized SiC ceramics (10φ × 5φ × 1
(00 mm) 1a and 1b, a Si-based brazing material bonding agent 3 was interposed, and these were fixed by applying an appropriate pressure P. Next, in order to be attachable to and detachable from the members to be joined, the inner peripheral surface is formed in a semi-circular shape, and the carbon electrode member 42 is divided into two.
Two recrystallized SiC quality electric heating members 423 obtained by dividing a pipe having a length of 10 mm in half on the inner peripheral side of 1a, 422a.
a and 424a, and similarly to the inner peripheral side of the electrode members 421b and 422b, the electric heating member 4a.
The current-carrying electrode 20b composed of 23b and 424b is attached.
The electrode members 421a, 422a, 421b, 422b
The second heating means including the current-carrying electrodes 42a and 42b composed of the heat-generating body 434a and the current-carrying heating elements 434a and 434b, and the ceramics 1 located at a position of 30 mm on both sides of the butt portion as the center.
Insert into a and 1b tightly. In this embodiment, as the energization heat generating member, one having a resistance value of about 1/3 of the specific resistance value of the ceramics as the joined member is used. The power supply device 5 and the current-carrying electrodes 20a, 20b
Constitutes a first heating means for directly conducting electric heating, and includes the power supply device 5 and the electric heating members 423a, 424a, 4
23b and 424b for heating the energizing electrode section
Heating means is configured. After that, the bonding atmosphere is changed to A
The energizing electrode 20a connected to the power supply device 5 as r gas,
A voltage is applied between 20b and the energizing current is gradually increased to a rate of 80 ° C / min. The junction temperature reaches 1500 ° C at about 38A, and the current is gradually reduced after being held for about 5 minutes. Then, it was cooled to room temperature at 80 ° C./min to complete the joining. At this time, the energization heating members 423a, 424a, 423b, 424b generate heat from the energization current from the initial stage of energization, and this heat is conducted to the ceramics 1a, 1b at the mounting positions of the energization electrodes 20a, 20b, and the ceramics 1a, Due to the Joule heat generated in 1b, the temperature distribution at the time when the desired junction temperature is reached becomes as shown in (a) of FIG. 1 (B), which is significantly gentler than that of the conventional method shown in (b) of FIG. Become. Total length 12 around the joint of the joint
As a result of cutting out to 0 mm and performing a 3-point bending test as it was, a strength of about 420 kg f / cm 2 was obtained. Also,
As a result of cutting in the longitudinal direction, polishing the cut surface, and checking for the presence of cracks with an optical microscope, no cracks were present. For comparison, a carbon member of the same shape was attached instead of the above-mentioned heat generating member, and the same joining was attempted. As a result, a crack was observed at a position of about 5 to 10 mm from the current-carrying electrode, and a three-point bending test was conducted. As a result, it was fractured at almost the above-mentioned crack positions, and the strength was only about 53 kgf / cm 2 . In the above embodiments, the energizing electrode provided with the energizing heat generating member is used as the energizing electrode portion heating means of the second heating means for the members to be joined at the attachment position of the energizing electrode, and the cross sectional area is small. It is clear that the same effect can be obtained by forming an electrode shape with a large resistance value or an electrode structure made of a material with a large specific resistance value, and the above means can be used alone or in combination. is there. The amount of heat required by this heating means varies depending on the dimensions of the members to be joined, the physical properties such as strength, and the joining temperature.
If it is too large, the power consumption of the heating means will be wasted,
It is desirable that the thermal stress be as small as possible within an allowable range. Furthermore, the case where electrodes are provided on both sides of one butting portion as a boundary has been described, but when three or more members are joined, the above invention may be carried out on all of the current-carrying electrodes provided, and thermal stress If there is no problem, it may be used only for some of the current-carrying electrodes.

【0007】実施例2 図3(A)は本発明の方法を実施する装置の他の実施例
を示す概略構成図であって、本実施例では抵抗率の異な
る同じサイズのパイプ状の二つの被接合部材からなる被
接合体を接合する。具体的には、被接合部材である外径
10mm×内径5mm×長さ100mmのSiC系のセラミッ
クス1a,1bを、Si系ろう材の接合剤3を介在させ
て突合せ、突合せ部を構成している。なお、SiC系の
セラミックス1a,1bとしては、抵抗率がそれぞれ約
100 [Ω・cm]のオーダにあるものと10-2[Ω・c
m]のオーダにあるもの、すなわち2桁以上の差のある
ものを用いている。セラミックス1a及び1bの外周面
には、径方向の幅寸法が10mmのリング状に形成された
1対のカーボン製通電電極2a,2bを、突合せ部を中
央としてその両側30mmの位置にそれぞれ緊密に取付け
ている。そしてセラミックス1a,1bの端部に設けた
断熱材4a,4bを図示しない加圧装置により適宜の圧
力Pで加圧し、セラミックス1a,1bの突合せ面に所
定の圧力を加えている。また、図示しない正逆回転機構
により被接合部材を回転できるようになっている。な
お、電源装置7と通電電極2a,2bとにより直接通電
加熱を行う第1の加熱手段が構成されている。図には概
略的に示しているが、5は少なくとも通電電極2a,2
b及びその間の部分を気密に囲むチャンバーであり、こ
のチャンバー5内にはアルゴンガス等の不活性ガスが充
填してある。チャンバー5の一部には、ハロゲンランプ
加熱装置6からの光線を通す石英窓5a,5bを設けて
いる。このハロゲンランプ加熱装置6と図示しない電源
装置とにより、第2の加熱手段のうちの抵抗値の低いセ
ラミックス1bを主に加熱する低抵抗部材加熱手段が構
成されている。ハロゲンランプ加熱装置6は、通電電極
2a,2b間に電流を流すだけで突合せ部の接合温度を
所望の温度まで高めた場合にセラミックス1a,1b中
の温度勾配が大きくなる部分に対応して設けてある。ハ
ロゲンランプ加熱装置6は、前記温度勾配が大きくなる
部分を加熱して該部分の温度勾配を小さくできる状態に
する。8は通電電極2a,2b間の部分をほぼ全体的に
覆うほぼ円筒状の断熱材であり、この断熱材8の石英窓
5a,5bに対応する部分には、ハロゲンランプ加熱装
置6からの光線を通すための窓部8a,8bが形成して
ある。なお、この窓部8a,8bを石英窓としてもよい
のは勿論である。本実施例では、抵抗率の小さいセラミ
ックス1bの突合せ部に隣接する部分を補助加熱するよ
うに、ハロゲンランプ加熱装置6と、石英窓5a,5b
と窓部8a,8bとを位置決めしている。次に実際の接
合工程について説明する。なお、本実施例では第1の加
熱手段と第2の加熱手段とを併用するにあたって、先に
第2の加熱手段によって加熱を行い、突合せ部がある程
度加熱された後に第1の加熱手段による加熱を行って、
第1の加熱手段と第2の加熱手段とを併用する。具体的
には、まず通電電極2a,2bに電流を通電する前に、
ハロゲンランプ加熱装置6によりチャンバー5に設けた
石英窓5a,5bを通して、突合せ部より3mmだけセラ
ミックス1b寄りに中心がくるように直径約10mmのス
ポットを当て加熱を開始した。セラミックス1bのスポ
ット中央部の温度が所望の温度、例えば1000℃に達
した時点で、通電電極8a,8b間に電圧を印加して、
電源装置7を制御することにより80℃/min の温度上
昇率または昇温速度となるように通電電流を徐々に増加
させた。なお、この実施例では通電電極への通電開始後
も、補助加熱は継続する。通電電流が約32Aとなり接
合温度が1500℃となった時点で、この状態を約5分
間保持させた後、通電電極への通電電流及びハロゲンラ
ンプ加熱装置6による加熱を徐々に減少させた。このと
きの温度下降率は80℃/min.であり、通電電極への通
電及び補助加熱を停止して室温まで冷却し、接合を完了
した。この際、ハロゲンランプ加熱装置6のみにより所
望の通電開始温度に達した時点の温度分布は、図3
(B)の曲線(a)に示すようになり、通電電極への通
電を開始して突合せ部の温度が所望の接合温度に達した
時点の温度分布は、同図の曲線(b)に示すようになっ
た。比較のために、図3(B)にハロゲンランプ加熱装
置6を用いずに通電電極によるのみで加熱を行った場合
の温度分布を曲線(c)として示した。曲線(b)と曲
線(c)とを比較すると、従来の方法では温度勾配が著
しく大きくなった部分Xの温度勾配が、本発明の実施例
によると緩かになっており、しかも高抵抗側のセラミッ
クス1aの最大加熱温度も低下しているのが判る。な
お、加熱および冷却過程のすべての時点で形成される温
度分布は、それにより発生する各部分の熱応力がその部
分の破壊応力以下になるような分布でなければならない
のは勿論である。上記実施例により接合した二つのセラ
ミックス1a,1bの接合部を中心として全長120mm
の試料を切り出し、切り出したそのままの状態で3点曲
げ試験を行った結果、約340kg f/cm2 の強度が得ら
れていることが確認された。また試料を長手方向に切断
し切断面を研磨して、光学顕微鏡でセラミックス中のク
ラックの有無をチェックした結果、クラックは存在しな
かった。比較のために、第2の加熱手段を用いない従来
の方法で接合したセラミックスについて同様の試験を行
ったところ、高抵抗のセラミックス部材1a側で突合せ
面から約5〜10mmのところにクラックが観察され、ま
た3点曲げ試験を行った結果、ほぼ上述のクラック位置
で破断しており、強度は約50kg f/cm2 しか得られな
かった。
Embodiment 2 FIG. 3 (A) is a schematic configuration diagram showing another embodiment of the apparatus for carrying out the method of the present invention. In this embodiment, two pipes of the same size having different resistivities are used. A body to be joined made of the members to be joined is joined. Concretely, SiC-based ceramics 1a and 1b having an outer diameter of 10 mm, an inner diameter of 5 mm, and a length of 100 mm, which are members to be joined, are butted to each other with a Si-based brazing material bonding agent 3 interposed therebetween to form a butt portion. There is. The SiC ceramics 1a and 1b have a resistivity of about 10 0 [Ω · cm] and 10 −2 [Ω · c], respectively.
m] is used, that is, there is a difference of two digits or more. On the outer peripheral surfaces of the ceramics 1a and 1b, a pair of carbon-made current-carrying electrodes 2a, 2b formed in a ring shape with a radial width of 10 mm are tightly attached at positions 30 mm on both sides of the butt portion as a center. It is installed. Then, the heat insulating materials 4a and 4b provided at the end portions of the ceramics 1a and 1b are pressurized with an appropriate pressure P by a pressure device (not shown), and a predetermined pressure is applied to the abutting surfaces of the ceramics 1a and 1b. Further, the members to be joined can be rotated by a forward / reverse rotation mechanism (not shown). The power supply device 7 and the current-carrying electrodes 2a and 2b constitute a first heating means for directly heating by current-carrying. Although shown schematically in the figure, 5 is at least the current-carrying electrodes 2a, 2
This is a chamber that hermetically surrounds b and the portion between them, and the chamber 5 is filled with an inert gas such as argon gas. Quartz windows 5a and 5b are provided in a part of the chamber 5 for allowing the light beam from the halogen lamp heating device 6 to pass therethrough. The halogen lamp heating device 6 and a power supply device (not shown) constitute a low resistance member heating means for mainly heating the ceramics 1b having a low resistance value in the second heating means. The halogen lamp heating device 6 is provided corresponding to the portion where the temperature gradient in the ceramics 1a, 1b becomes large when the joining temperature of the abutting portion is raised to a desired temperature only by passing an electric current between the energizing electrodes 2a, 2b. There is. The halogen lamp heating device 6 heats the portion where the temperature gradient becomes large so that the temperature gradient at the portion can be made small. Reference numeral 8 denotes a substantially cylindrical heat insulating material that substantially entirely covers the portion between the current-carrying electrodes 2a and 2b. Light rays from the halogen lamp heating device 6 are applied to portions of the heat insulating material 8 corresponding to the quartz windows 5a and 5b. Windows 8a and 8b for passing through are formed. Of course, the windows 8a and 8b may be quartz windows. In this embodiment, the halogen lamp heating device 6 and the quartz windows 5a and 5b are used so as to supplementarily heat the portion of the ceramic 1b having a low resistivity adjacent to the butt portion.
And the windows 8a and 8b are positioned. Next, an actual joining process will be described. In the present embodiment, when the first heating means and the second heating means are used in combination, the second heating means is first used for heating, and the butt portion is heated to some extent and then heated by the first heating means. Go to
The first heating means and the second heating means are used together. Specifically, first, before applying a current to the current-carrying electrodes 2a, 2b,
Through the quartz windows 5a and 5b provided in the chamber 5 by the halogen lamp heating device 6, a spot having a diameter of about 10 mm was placed so that the center of the butted portion was 3 mm closer to the ceramics 1b and heating was started. When the temperature at the center of the spot of the ceramics 1b reaches a desired temperature, for example, 1000 ° C., a voltage is applied between the current-carrying electrodes 8a and 8b,
By controlling the power supply device 7, the energizing current was gradually increased so that the temperature rising rate or the temperature rising rate was 80 ° C./min. In this embodiment, the auxiliary heating is continued even after the energization of the energizing electrode is started. When the energizing current was about 32 A and the joining temperature was 1500 ° C., this state was maintained for about 5 minutes, and then the energizing current to the energizing electrode and the heating by the halogen lamp heating device 6 were gradually reduced. The temperature decrease rate at this time was 80 ° C./min., The energization to the energizing electrode and the auxiliary heating were stopped, the temperature was cooled to room temperature, and the joining was completed. At this time, the temperature distribution when the desired energization start temperature is reached by only the halogen lamp heating device 6 is as shown in FIG.
As shown in the curve (a) of (B), the temperature distribution at the time when the temperature of the butted portion reaches the desired junction temperature after the energization of the current-carrying electrodes is started is shown in the curve (b) of the same figure. It became so. For comparison, FIG. 3 (B) shows a temperature distribution as a curve (c) when the halogen lamp heating device 6 is not used and heating is performed only by the current-carrying electrodes. Comparing the curve (b) and the curve (c), the temperature gradient of the portion X where the temperature gradient is significantly increased in the conventional method is gentle according to the embodiment of the present invention, and the high resistance side It can be seen that the maximum heating temperature of the ceramic 1a is also lowered. It is needless to say that the temperature distribution formed at all points of the heating and cooling processes must be such that the thermal stress of each part generated thereby becomes equal to or lower than the fracture stress of that part. 120 mm in total length centering on the joint of the two ceramics 1a and 1b joined by the above embodiment
The sample was cut out and subjected to a three-point bending test as it was, and as a result, it was confirmed that a strength of about 340 kg f / cm 2 was obtained. Moreover, the sample was cut in the longitudinal direction, the cut surface was polished, and the presence or absence of cracks in the ceramics was checked with an optical microscope. As a result, no cracks were found. For comparison, the same test was performed on the ceramics bonded by the conventional method without using the second heating means. As a result, cracks were observed on the high resistance ceramic member 1a side at a distance of about 5 to 10 mm from the abutting surface. As a result of conducting a three-point bending test, it was fractured at almost the above-mentioned crack position, and the strength was only about 50 kg f / cm 2 .

【0008】実施例3 図4は本発明の方法を実施するさらに他の実施例を示す
概略構成図であって、本実施例では同質のパイプ状及び
円柱状の二つの被接合部材からなる被接合体を接合する
場合を示している。なお、図4の実施例では、図3に示
した部材と同様の部材には、図3に付した符号に10を
加えた符号を付してある。被接合部材であるセラミック
ス11aは、外径10mm×内径5mm×長さ100mmのパ
イプ状のSiC系のセラミックスである。またセラミッ
クス11bは外径20mm×長さ100mmの円柱状のSi
C系のセラミックスである。接合剤13としてはSi系
ろう材を用いており、また実施例2と同様に断熱材14
a,14bを介して適宜の圧力Pを加えている。セラミ
ックス11aとセラミックス11bとは、抵抗率が同じ
材料で製造されているが、断面積が大きく異なるため、
両セラミックス11a及び11bの抵抗値は大きく異な
っている。実施例2では、第2の加熱手段のうちの低抵
抗部材加熱手段として、ハロゲンランプ加熱装置を用い
たが、本実施例では第2の加熱手段のうちの低抵抗部材
加熱手段の加熱源として、円筒状の断熱材18の内周部
にカーボンヒータ16を固定した円筒状の抵抗炉を用い
ている。そして本実施例では、カーボンヒータ16の長
手方向の中央が断面積の大きいセラミックス1bの突合
せ面から約10mmの位置になるように抵抗炉を配設して
いる。なお、カーボンヒータ16のヒータ電源は図示し
ていない。また電源装置17に接続された一対の通電電
極12a,12bを、突合せ部を中央として、その両側
50mmの位置のセラミックス11a,11bの外周面に
それぞれ緊密に取付けている。チャンバー15内には、
実施例1と同様にアルゴンガスを封入してある。次に具
体的な接合工程について説明する。まず図示しないヒー
タ電源によりカーボンヒータ16を発熱させて、セラミ
ックス11bの突合せ面から約10mmの位置が約100
0℃になるまで加熱を行う。1000℃に達した時点
で、通電電極12a,12b間に電圧を印加し、80℃
/min.の温度上昇率となるように電源装置17を制御し
て通電電流を徐々に増加させる。なおカーボンヒータ1
6による加熱は、通電電極12a,12bに通電を開始
した後も続けられる。通電電流が約35Aで接合温度が
1500℃となった時点からこの状態を約5分間保持さ
せた後、通電電極12a,12b及びカーボンヒータへ
の通電電流を徐々に減少させ、80℃/min.の温度下降
率で室温まで冷却した後、通電電流を停止して接合を完
了した。本実施例により接合したセラミックスについて
も、実施例1で行った試験と同じ試験を行った結果、ク
ラックのない良好な接合体が得られることが確認され
た。比較のために、第2の加熱手段を用いずに同様の接
合を試みたところ、接合温度が高くなった時点でクラッ
クが発生し、クラックが発生した部分からはずれてしま
った。上記各実施例によれば、抵抗値がより小さくジュ
ール発熱の少ないセラミックス側を中心にし、通電電極
への通電開始前から通電終了まで第2の加熱手段のうち
の低抵抗部材加熱手段により抵抗値の低いセラミックス
を加熱することによって、接合時にセラミックスに発生
する熱応力を緩和することができ、セラミックスの破損
を防止することができ、しかも抵抗値が大きいセラミッ
クスの最高加熱温度を低下させることができることか
ら、素材劣化の防止ができ、良好な接合体を得ることが
できる。また、通電電極間距離を小さくでき、かつ接合
時間を短縮できるので、電力消費に伴うランニングコス
トの低減が図られる。さらに、抵抗値の大きく異なる部
材同士及び断面積の大きく異なる部材同士の通電加熱に
よる高温接合が可能となり、また抵抗率及び熱膨脹率な
どの物性値の差によって、望ましい接合時の温度分布を
形成することができ、残留応力の緩和にも効果がある。
この実施例では第2の加熱手段のうちの低抵抗部材加
熱手段により、まず補助加熱した後、第1の加熱手段に
より接合温度まで加熱する順序で行ったが、逆の加熱順
序で行ってもよく、また同時に二つの加熱手段を用いて
加熱してもよい。
Embodiment 3 FIG. 4 is a schematic constitutional view showing still another embodiment for carrying out the method of the present invention. In this embodiment, a member formed of two pipe-shaped and columnar members to be joined having the same quality is used. The case where a joined body is joined is shown. In addition, in the embodiment of FIG. 4, the same members as those shown in FIG. 3 are denoted by the reference numerals obtained by adding 10 to the reference numerals given in FIG. The ceramics 11a, which is the member to be joined, is a pipe-shaped SiC-based ceramic having an outer diameter of 10 mm, an inner diameter of 5 mm, and a length of 100 mm. Further, the ceramics 11b is a cylindrical Si having an outer diameter of 20 mm and a length of 100 mm.
It is a C-based ceramic. A Si-based brazing material is used as the bonding agent 13, and the heat insulating material 14 is used as in the second embodiment.
An appropriate pressure P is applied via a and 14b. Although the ceramics 11a and 11b are made of materials having the same resistivity, their cross-sectional areas are significantly different,
The resistance values of the two ceramics 11a and 11b are greatly different. In the second embodiment, the halogen lamp heating device is used as the low resistance member heating means of the second heating means, but in the present embodiment, it is used as the heating source of the low resistance member heating means of the second heating means. A cylindrical resistance furnace in which the carbon heater 16 is fixed to the inner peripheral portion of the cylindrical heat insulating material 18 is used. In this embodiment, the resistance furnace is arranged such that the center of the carbon heater 16 in the longitudinal direction is located at a position of about 10 mm from the abutting surface of the ceramics 1b having a large cross-sectional area. The heater power supply for the carbon heater 16 is not shown. Further, a pair of current-carrying electrodes 12a, 12b connected to the power supply device 17 are tightly attached to the outer peripheral surfaces of the ceramics 11a, 11b at positions of 50 mm on both sides of the butt portion as the center. In the chamber 15,
Argon gas is enclosed as in the first embodiment. Next, a specific joining process will be described. First, the carbon heater 16 is caused to generate heat by a heater power source (not shown), and a position about 10 mm from the abutting surface of the ceramics 11b is about 100 mm.
Heat to 0 ° C. When the temperature reached 1000 ° C, a voltage was applied between the current-carrying electrodes 12a, 12b to reach 80 ° C.
The power supply device 17 is controlled so that the temperature rise rate is / min. Carbon heater 1
The heating by 6 is continued even after the energization of the energizing electrodes 12a and 12b is started. This state is maintained for about 5 minutes from the time when the energizing current is about 35 A and the joining temperature is 1500 ° C., and then the energizing currents to the energizing electrodes 12a and 12b and the carbon heater are gradually reduced to 80 ° C./min. After cooling to room temperature at a temperature decrease rate of, the energizing current was stopped to complete the joining. As for the ceramics bonded according to this example, the same test as that performed in Example 1 was performed, and as a result, it was confirmed that a good bonded body without cracks was obtained. For the purpose of comparison, when the same joining was attempted without using the second heating means, a crack was generated at the time when the joining temperature became high, and the crack came off from the cracked portion. According to each of the above-mentioned embodiments, the resistance value is set by the low resistance member heating means of the second heating means from the start of energization to the energization electrode to the end of energization, centering on the ceramic side having a smaller resistance value and less Joule heat generation. By heating low-ceramics, it is possible to reduce the thermal stress generated in the ceramics at the time of joining, to prevent damage to the ceramics, and to lower the maximum heating temperature of the ceramics with high resistance. Therefore, deterioration of the material can be prevented, and a good bonded body can be obtained. Further, since the distance between the energized electrodes can be reduced and the joining time can be shortened, the running cost accompanying power consumption can be reduced. Further, it becomes possible to perform high-temperature joining by electrically heating members having greatly different resistance values and members having greatly different cross-sectional areas, and a desirable temperature distribution at the time of joining is formed due to the difference in physical property values such as resistivity and thermal expansion coefficient. It is also possible to alleviate residual stress.
In this embodiment, the low resistance member heating means of the second heating means first performs auxiliary heating, and then the first heating means performs heating up to the bonding temperature, but the reverse heating order may be used. Alternatively, the heating may be performed simultaneously by using two heating means.

【0009】実施例4 次に高周波誘導加熱装置を第2の加熱手段のうちの低抵
抗部材加熱手段として利用する実施例について説明す
る。図5は直接高周波誘導加熱装置を用いる場合の実施
例の概略構成を示している。本実施例においても、図3
に示した実施例を構成する部材と同様の部材に図1に付
した符号に20を加えた数の符号を付してある。26が
直接高周波誘導加熱装置の誘導コイルであり、27は誘
導コイル26を制御する高周波誘導加熱用電源装置であ
る。誘導コイル26は、内部が水冷された銅パイプから
構成され、突合せ部から低抵抗のセラミックス(または
金属)21b側の周囲を囲むように設けられている。具
体的には、被接合部材であるセラミックス21aとし
て、外径10mm×内径5mm×長さ200mmの高抵抗Si
C系セラミックス(抵抗率約10-1Ω・cm)を用い、被
接合部材であるセラミックス21bとして、外径10mm
×内径5mm×長さ200mmの低抵抗SiC系セラミック
ス(抵抗率約10-3Ω・cm)を用いた。そして接合剤2
3は、SiC/Si/C/バインダーからなる接合剤を
用いた。そして突合せ部からセラミックス21a側に約
50mmの位置とセラミックス21b側の端部の位置にリ
ング状のカーボン製通電電極22a,22bを設けてい
る。ここで図5の概略図とは異なって通電電極22bの
位置をセラミックス21bの端部にセットした理由は、
通電電極に通電して消費される電力のほとんどが高抵抗
のセラミックス21a内で発生するため、高抵抗側の通
電電極22aはできるだけ突合せ部に近い所にセットす
るようにし、低抵抗側の通電電極22bは電力消費が小
さいため誘導コイル26のじゃまにならない位置でしか
も電極治具による冷却効果を低減するためである。な
お、図5に示すように、通電電極22bを通電電極22
aと対称位置に配置してもよいのは勿論である。次に接
合工程について説明する。直接高周波誘導加熱装置(第
2の加熱手段)を用いて加熱を行うと、低抵抗のセラミ
ックス21bが主に発熱するが、そのときの温度分布は
図6の曲線(b)のような温度分布となり、次に通電電
極22a,22bのみにより加熱を行うと、高抵抗のセ
ラミックス21aが主に発熱するため、両方の加熱装置
による発熱が加え合わされて、図(a)の曲線のように
接合温度まで加熱される。具体的には、まず高周波誘導
加熱用電源装置29から誘導コイル26に通電を行って
高周波誘導加熱装置による加熱を開始する。高周波誘導
加熱装置による加熱は、温度上昇率すなわち昇温速度を
約200℃/min.として突合せ部の温度が約1000℃
になるまで行った。この際の最高加熱温度は突合せ部か
ら低抵抗のセラミックス21b側に約10〜30mmの位
置で約1200℃であった。この状態では、両セラミッ
クス21a,21bのどの部分にもクラックは認められ
なかった。次に一定の高周波誘導加熱を継続した状態
で、電源装置29に接続された通電電極22a,22b
に電圧を印加することにより、昇温速度を約200℃/
min.として突合せ部が約1450℃になるまで加熱を行
った。この状態を約1分間保持した後、加熱の逆のパタ
ーンで室温まで冷却して接合を完了した。そして接合体
を長手方向に切断して、その面を研磨し、光学顕微鏡に
よりクラックの有無を調べた結果、被接合部材のどの部
分にもクラックの発生は認められなかった。また、接合
部は約100μmの緻密な層を形成しており、良好な接
合ができることが分かった。 比較のために、同じ条件
で高周波誘導加熱を用いずに、通電電極22a,22b
に電流を流すだけの直接通電加熱のみで接合を行ったと
ころ、突合せ部が約1400℃のときに、高抵抗のセラ
ミックス21aの突合せ部近傍にクラックが発生した。
このクラックは冷却後の光学顕微鏡による観察において
も認められた。その上、接合温度1450℃のときに、
高抵抗のセラミックス21aの最高加熱温度は約185
0℃以上にもなり、部材の昇華による劣化が観察され
た。また、高周波誘導加熱のみで接合を行った場合も、
同じくクラックが発生し、また、低抵抗のセラミックス
21bの最高加熱温度において、一部元素が昇華したた
めに素材に無数のポアが発生していることが分かり、素
材強度を劣化させていることが分かった。以上のように
直接通電加熱または直接高周波誘導加熱を単独で用いた
場合には、良好な接合が得られないばかりか、素材が劣
化することが判った。
Embodiment 4 Next, an embodiment in which the high frequency induction heating device is used as the low resistance member heating means of the second heating means will be described. FIG. 5 shows a schematic configuration of an embodiment when a direct high frequency induction heating device is used. Also in this embodiment, FIG.
The same members as those of the embodiment shown in FIG. 9 are denoted by the reference numerals of FIG. 1 plus 20. Reference numeral 26 is an induction coil of the direct high frequency induction heating device, and 27 is a power supply device for high frequency induction heating which controls the induction coil 26. The induction coil 26 is composed of a copper pipe whose inside is water-cooled, and is provided so as to surround the periphery of the low resistance ceramic (or metal) 21b side from the butt portion. Specifically, as the ceramics 21a, which is a member to be joined, a high resistance Si having an outer diameter of 10 mm, an inner diameter of 5 mm and a length of 200 mm is used.
Using C-based ceramics (resistivity of about 10 -1 Ω · cm), the outer diameter of 10 mm is used as the ceramics 21b to be joined.
A low resistance SiC-based ceramics (resistivity of about 10 −3 Ω · cm) having an inner diameter of 5 mm and a length of 200 mm was used. And the bonding agent 2
For No. 3, a bonding agent composed of SiC / Si / C / binder was used. Then, ring-shaped carbon current-carrying electrodes 22a, 22b are provided at a position of about 50 mm from the abutting portion to the ceramics 21a side and at an end position on the ceramics 21b side. The reason why the position of the current-carrying electrode 22b is set at the end of the ceramics 21b is different from the schematic view of FIG.
Most of the electric power consumed by energizing the current-carrying electrode is generated in the high-resistance ceramics 21a. Therefore, the current-carrying electrode 22a on the high-resistance side should be set as close as possible to the butt portion, and the current-carrying electrode on the low-resistance side should be set. 22b is for reducing the cooling effect of the electrode jig at a position where it does not interfere with the induction coil 26 because the power consumption is small. In addition, as shown in FIG.
Of course, it may be arranged at a position symmetrical to a. Next, the joining process will be described. When heating is performed directly using the high-frequency induction heating device (second heating means), the low-resistance ceramics 21b mainly generate heat, and the temperature distribution at that time is as shown by the curve (b) in FIG. Then, when heating is performed only with the current-carrying electrodes 22a and 22b, the high-resistance ceramics 21a mainly generate heat, so that heat generated by both heating devices is added to each other, resulting in a bonding temperature as shown by a curve in FIG. Is heated up. Specifically, first, the induction coil 26 is energized from the high frequency induction heating power supply device 29 to start heating by the high frequency induction heating device. The heating by the high frequency induction heating device is performed at a butt joint temperature of about 1000 ° C at a temperature rising rate, that is, a temperature rising rate of about 200 ° C / min.
I went to. The maximum heating temperature at this time was about 1200 ° C. at a position of about 10 to 30 mm from the butt portion to the low resistance ceramics 21b side. In this state, no crack was observed in any part of both ceramics 21a and 21b. Next, the current-carrying electrodes 22a, 22b connected to the power supply device 29 are continuously heated with a constant high frequency induction heating.
By applying a voltage to the
As a min., heating was performed until the butted portion reached about 1450 ° C. After maintaining this state for about 1 minute, the bonding was completed by cooling to room temperature in the reverse pattern of heating. Then, the joined body was cut in the longitudinal direction, the surface was polished, and the presence or absence of cracks was examined by an optical microscope. As a result, no crack was found in any part of the joined members. In addition, it was found that the bonded portion formed a dense layer of about 100 μm, and good bonding was possible. For comparison, the current-carrying electrodes 22a, 22b were used under the same conditions without using high frequency induction heating.
When the joining was performed only by direct current heating for passing a current through, a crack was generated in the vicinity of the butted portion of the high resistance ceramics 21a when the butted portion was about 1400 ° C.
These cracks were also observed by observation with an optical microscope after cooling. Moreover, when the bonding temperature is 1450 ° C,
The maximum heating temperature of the high resistance ceramics 21a is about 185.
The temperature was higher than 0 ° C, and deterioration due to sublimation of the member was observed. Also, when joining is performed only by high frequency induction heating,
Similarly, cracks were generated, and it was found that at the maximum heating temperature of the low-resistivity ceramics 21b, innumerable pores were generated in the material due to sublimation of some elements, which revealed that the material strength was deteriorated. It was As described above, it has been found that when the direct current heating or the direct high frequency induction heating is used alone, not only good joining cannot be obtained but also the material deteriorates.

【0010】実施例5 本実施例は、先に第1の加熱手段により直接通電加熱を
行ってある程度加熱し、後から第2の加熱手段のうちの
低抵抗部材加熱手段による加熱を加えるものである。本
実施例を実施する装置の構成は実施例4を実施する図5
に示した装置の構成と同じ構成である。したがって本実
施例では、低抵抗部材加熱手段として直接高周波誘導加
熱装置を用いる。先に直接通電加熱により加熱を行う場
合には、高抵抗のセラミックス21aが主に加熱される
ため、図6の曲線(b)とは逆の温度分布のようにな
る。これに第2の加熱手段による直接高周波誘導加熱を
加えると、図6の曲線(a)の温度分布のようになる。
具体的には、まず第1の加熱手段による直接通電加熱に
より、突合せ部を約1200℃まで、昇温速度約200
℃/min.で加熱した。この際、高抵抗のセラミックス2
1a側の通電電極22aと突合せ面との中央付近が最も
高温に加熱され、その温度は約1500℃であった。この時
点で、セラミックス21a,21bの何れにもクラック
の発生は認められなかった。次に、直接通電加熱を一定
に維持した状態において、第2の加熱手段による直接高
周波誘導加熱により、突合せ部が約1450℃になるよ
うに昇温速度約200℃/min.で加熱を行った。突合せ
部の温度が約1450℃になった時点で、この状態を約
1分間保持した後、加熱と逆のパターンで室温まで冷却
した。実施例4における試験と同様にして接合体をチェ
ックした結果、クラックのない、良好な接合がなされて
いることが確認された。
Fifth Embodiment In this embodiment, first, the first heating means directly conducts electric heating to heat to some extent, and thereafter the low resistance member heating means of the second heating means adds heating. is there. The configuration of the apparatus for carrying out this embodiment is the same as that for carrying out Embodiment 4.
The configuration is the same as that of the device shown in FIG. Therefore, in this embodiment, a direct high frequency induction heating device is used as the low resistance member heating means. When the heating is performed by the direct current heating first, the high-resistance ceramics 21a is mainly heated, so that the temperature distribution is opposite to that of the curve (b) of FIG. When direct high-frequency induction heating by the second heating means is added to this, the temperature distribution shown by the curve (a) in FIG. 6 is obtained.
Specifically, first, the butt section is heated to about 1200 ° C. and the heating rate is set to about 200 by direct current heating by the first heating means.
Heated at ° C / min. At this time, high resistance ceramics 2
The vicinity of the center between the current-carrying electrode 22a on the 1a side and the abutting surface was heated to the highest temperature, and the temperature was about 1500 ° C. At this point, no crack was found in either of the ceramics 21a and 21b. Next, in a state where the direct current heating was maintained constant, heating was performed by direct high frequency induction heating by the second heating means at a heating rate of about 200 ° C./min. . When the temperature of the butted portion reached about 1450 ° C., this state was maintained for about 1 minute, and then cooled to room temperature in a pattern opposite to heating. As a result of checking the bonded body in the same manner as the test in Example 4, it was confirmed that good bonding was performed without cracks.

【0011】実施例6 本実施例は、第1の加熱手段と第2の加熱手段のうちの
低抵抗部材加熱手段とを加熱初期から同時に併用する場
合の実施例である。本実施例を具体的に実施する装置の
構成は、実施例4を実施する図5に示した装置の構成と
同じである。したがって本実施例では、低抵抗部材加熱
手段として直接高周波誘導加熱装置を用いている。第1
の加熱手段による直接通電加熱と第2の加熱手段による
高周波誘導加熱加熱とを同時に併用して被接合部材を接
合する場合には、1段階の加熱過程において両セラミッ
クスは同時に発熱するため図6の曲線(c)のような温
度分布を形成する。そしてその後、さらに加熱を続ける
と、温度分布は図6の曲線(a)まで加熱される。具体
的には、直接通電電力を約200W/min.の速度で上昇
させ,高周波誘導加熱電力を約500W/min.の速度で
同時に上昇させることにより、突合せ部を約5分間で約
1450℃まで加熱し、約1450℃になった時点で約
1分保持した後、加熱時と同様の速度で同時に両方の電
力を減少させることにより室温まで冷却して接合を完了
した。この際、接合温度が約1450℃において、高抵
抗のセラミックス21aにおける最高温度は約1600
℃であった。この接合体についても実施例4と同様の評
価を行った結果、クラックは認められず、良好な接合が
形成されていることが分かった。また、この方法による
と実施例4及び5よりもさらに短時間で接合可能であ
る。直接通電加熱と直接高周波誘導加熱の加熱割合は特
に限定されないが,加熱効率の点では直接通電加熱の方
が優れているので直接通電加熱の割合をできるだけ多く
する方が接合コスト面で有利である。また、被接合部材
の熱膨脹係数が異なり,室温に戻した時に残留応力が問
題となるような場合は、熱膨脹係数の小さい方の部材側
をより高温時に加熱するように第1の加熱手段及び低抵
抗部材加熱手段による加熱割合を決定するのが好まし
い。本実施例並びに上記実施例4及び5においては、等
しい径寸法でコイル導体を巻回して形成した誘導コイル
26を用いているが、突合せ部から離れるにしたがって
径寸法を徐々に大きくするようにコイル導体を巻回して
形成した誘導コイルを用いると、突合せ部近傍が誘導加
熱により最も発熱し、突合せ部から離れるにしたがって
発熱が少なくなる、なだらかな温度勾配を形成すること
ができる。また誘導コイルの形状は、上記実施例のよう
に円筒状にする必要はなく、被接合部材の形状に応じて
均一な加熱を行える形状にすればよい。本実施例並びに
上記実施例4及び5においては、チャンバー25の内側
に誘導コイル26を設けているが、被接合部材のすぐ外
側に石英管等の絶縁性保護管を設けて雰囲気制御を行
い、絶縁性保護管のすぐ外側に誘導コイルを設ける構造
を取ってもよい。このような構造にすると、誘導コイル
と被接合部材の相対位置を変更しやすくなり、加熱位置
の移動調整を容易に行える利点がある。
Embodiment 6 This embodiment is an embodiment in which the first heating means and the low resistance member heating means of the second heating means are simultaneously used from the initial stage of heating. The configuration of the apparatus for specifically carrying out the present embodiment is the same as the configuration of the apparatus shown in FIG. 5 for carrying out the fourth embodiment. Therefore, in this embodiment, the high frequency induction heating device is directly used as the low resistance member heating means. First
When both the direct current heating by the heating means and the high frequency induction heating by the second heating means are simultaneously used to join the members to be joined, both ceramics generate heat at the same time in the one-step heating process. A temperature distribution like the curve (c) is formed. After that, when heating is further continued, the temperature distribution is heated up to the curve (a) in FIG. Specifically, the direct conduction power is increased at a speed of about 200 W / min. And the high frequency induction heating power is simultaneously increased at a speed of about 500 W / min. After heating and holding at about 1450 ° C. for about 1 minute, both electric powers were simultaneously reduced at the same rate as at the time of heating to cool to room temperature to complete bonding. At this time, when the joining temperature is about 1450 ° C., the maximum temperature in the high resistance ceramics 21a is about 1600.
It was ℃. The same evaluation as in Example 4 was performed on this joined body, and as a result, it was found that no crack was observed and a good joint was formed. Further, according to this method, the bonding can be performed in a shorter time than in the fourth and fifth embodiments. The heating ratio of direct current heating and direct high frequency induction heating is not particularly limited, but since direct current heating is superior in terms of heating efficiency, it is advantageous in terms of joining cost to increase the ratio of direct current heating as much as possible. . Further, when the coefficients of thermal expansion of the members to be joined are different and residual stress becomes a problem when the members are returned to room temperature, the first heating means and the low heating means are used to heat the member side having the smaller coefficient of thermal expansion at a higher temperature. It is preferable to determine the heating rate by the resistance member heating means. In the present embodiment and the above-mentioned fourth and fifth embodiments, the induction coil 26 formed by winding the coil conductor with the same diameter is used, but the diameter is gradually increased as the distance from the butted portion is increased. When an induction coil formed by winding a conductor is used, a gentle temperature gradient can be formed in which the vicinity of the abutting portion generates the most heat due to induction heating and the heat generation decreases as the distance from the abutting portion increases. Further, the shape of the induction coil does not need to be cylindrical as in the above embodiment, but may be a shape that allows uniform heating according to the shape of the members to be joined. In the present embodiment and the fourth and fifth embodiments, the induction coil 26 is provided inside the chamber 25, but an atmosphere protection is performed by providing an insulating protective tube such as a quartz tube immediately outside the joined members. A structure in which an induction coil is provided just outside the insulating protection tube may be adopted. With such a structure, it is easy to change the relative position of the induction coil and the member to be joined, and it is possible to easily adjust the movement of the heating position.

【0012】実施例7 上記実施例4ないし6の実施例では、第2の加熱手段の
うちの低抵抗部材加熱手段として直接高周波誘導加熱装
置を用いているが、本実施例では低抵抗部材加熱手段と
して間接高周波誘導加熱装置を用いる。本実施例で用い
る間接高周波誘導加熱装置は、高周波誘導加熱により発
熱体を加熱し、この発熱体により被接合部材を加熱する
ものである。図7は本実施例の方法を実施する装置の構
成を示している。図7において、図3に示した実施例の
部材と同様の部材には、両図に付した符号に30を加え
た符号を付してある。この実施例では円筒状の高周波用
発熱体36bを低抵抗のセラミックス31bと若干の空
間を隔てて配置し、この発熱体36bの外側に断熱材3
8を設け、さらにその外側に高周波用誘導コイル36a
を巻回する。本実施例では、誘導コイル36aと、発熱
体36bと図示しない高周波誘導加熱用電源装置とによ
り低抵抗部材加熱手段36が構成されている。なお、こ
の装置を用いて接合を行う場合にも、上記実施例4ない
し6で説明した制御方法を適用できる。
Embodiment 7 In the above embodiments 4 to 6, the direct high frequency induction heating device is used as the low resistance member heating means of the second heating means, but in this embodiment, the low resistance member heating is used. An indirect high frequency induction heating device is used as a means. The indirect high-frequency induction heating device used in this embodiment heats a heating element by high-frequency induction heating and heats a member to be joined by this heating element. FIG. 7 shows the structure of an apparatus for carrying out the method of this embodiment. In FIG. 7, members similar to those of the embodiment shown in FIG. 3 are denoted by reference numerals obtained by adding 30 to the reference numerals in both figures. In this embodiment, a cylindrical high-frequency heating element 36b and a low-resistance ceramics 31b are arranged with a slight space therebetween, and the heat insulating material 3 is provided outside the heating element 36b.
8 is provided, and a high frequency induction coil 36a is further provided outside thereof.
To wind. In this embodiment, the low-resistance member heating means 36 is composed of the induction coil 36a, the heating element 36b, and a high-frequency induction heating power source device (not shown). Note that the control method described in Embodiments 4 to 6 can be applied to the case where the bonding is performed using this device.

【0013】実施例8 上記実施例は、二つの被接合部材を接合する例を示した
が、これを応用して三つ以上の導電性被接合部材を接合
する例を説明する。図8(A)に示すように、二つの被
接合部材1b1 ,1b2 の間に、これら被接合部材1b
1 ,1b2 の抵抗値に比べて大きい抵抗値を有する導電
性被接合部材1aを、接合剤3a,3bを介して突合
せ、二つの突合せ部を形成する。低抵抗の被接合部材1
b1 ,1b2 にそれぞれ通電電極2b1 ,2b2 を設
け、この通電電極には電圧を印加するための電源装置7
が接続されている。さらに、2箇所の低抵抗の被接合部
材1b1 ,1b2 の突合せ部近傍を加熱するために、二
つの低抵抗部材加熱手段が設けられ加熱制御される。な
お、低抵抗部材加熱手段は抵抗炉加熱装置、ランプ加熱
装置、レーザ加熱装置、ガス加熱装置、高周波誘導加熱
装置などの加熱装置26a,26b及び電源装置27
a,27bから構成される。今、通電電極2b1 ,2b
2 間に電圧を印加すると、その間の被接合部材1b1 ,
1a,1b2 及び接合剤3a,3bに電流が流れ、各々
の抵抗値に応じたジュール熱が発生する。ここで、被接
合部材1aの抵抗値が被接合部材1b1 ,1b2 に比べ
て非常に大きい場合、温度分布は図8(B)の曲線
(c)に示すように、二つの突合せ部近傍で大きな温度
勾配が発生する。そこで、第1の加熱手段によると発熱
量が小さい低抵抗の被接合部材1b1 ,1b2 の突合せ
部近傍を第2の加熱手段のうちの低抵抗部材加熱手段で
加熱することにより(図8(B)の曲線(b))、温度
勾配を曲線(a)のように緩和して熱応力による破損を
防止しながら、突合せ部を必要な接合温度まで上昇させ
ることができる。ここで、低抵抗部材加熱手段は一つの
装置であってもよいし、図示したような二つの独立して
制御可能な装置であってもよい。例えば、高周波誘導加
熱を用いた場合、一つの誘導コイル及び一つの電源装置
で被接合部材1b1 ,1b2 の両方の加熱を行ってもよ
いが、二つの独立した誘導コイルをそれぞれ被接合部材
1b1 ,1b2の突合せ部近傍に設置して、独立した二
つの高周波電源により制御して加熱することもできる。
また、第1の加熱手段及び低抵抗部材加熱手段の加熱制
御の方法は、前述した他の実施例と同様に、どちらか片
方の手段により加熱を開始し、ある温度でもう一つの加
熱手段を加えるという方法でも良いし、同時に二つの加
熱手段を制御して突合せ部を接合温度まで加熱するよう
にしてもよい。また、上記構成において、例えば、被接
合部材の抵抗値の関係が逆になった場合、温度分布も逆
になり、両側の被接合部材1b1 ,1b2 が第1の加熱
手段で加熱され、中央の被接合部材1aが低抵抗部材加
熱手段で加熱されることになる。以上は被接合部材が三
つの例であったが、さらに増えても同様の考え方が適用
でき、第1の加熱手段(直接通電加熱)によっては発熱
が小さい低抵抗の被接合部材を、第2の加熱手段のうち
の低抵抗部材加熱手段により加熱すればよい。また、上
記実施例では第1の加熱手段に用いる通電電極を被接合
部材1b1 ,1b2 にのみに設けて、一つの電源装置で
加熱を行っているが、二つの突合せ部の両側に各々通電
電極を設け、独立した二つの電源装置で加熱制御を行っ
てもよいのは当然である。つまり、この場合は、前述し
た他の実施例で説明した方法を単に2箇所で行っている
にすぎないからである。また、第1の加熱手段である直
接通電加熱に用いる電源装置として、単相三線式の電源
装置を用いた例を図9に示す。導電性被接合部材1aに
通電電極2b3 が新に設けられ、通電電極2b1 ,2b
3 間及び通電電極2b2 ,2b3 間に電圧を印加するた
めの単相三線式の電源装置71が接続されている。な
お、通電電極2b1 ,2b2 はそれぞれ被接合部材1b
1 ,1b2 の端面に当接されており、他の構成部材につ
いては、前述した二つの被接合部材の接合に関する実施
例と同様である。これにより、二つの突合せ部が同時に
加熱接合できる。さらに、上記電源装置として多相電
源、例えば3相電源装置を用いた例を図10に示す。二
つの被接合部材1b1 ,1b3 と、これら被接合部材1
b1 ,1b3 の抵抗値に比べて大きい抵抗値を有する導
電性被接合部材1b2,1b4 とを、接合剤3a,3
b,3cを介して突合せ、三つの突合せ部を形成する。
被接合部材1b1 ,1b2 ,1b3 ,1b4 にそれぞれ
通電電極2b1 ,2b2 ,2b3 ,2b4 を設け、この
通電電極には電圧を印加するための3相電源装置72が
接続されている。なお、低抵抗の被接合部材1b1,1
b3 の突合せ部近傍を加熱するために、上記加熱装置2
6a,26b,26cが設けられており、他の構成部材
については、前述した二つの被接合部材の接合に関する
実施例と同様である。これにより、三つの突合せ部が同
時に加熱接合できる。上記実施例2,3及び7に示した
第2の加熱手段のうちの低抵抗部材加熱手段では、被接
合部材を間接的に加熱するため、加熱効率が悪いという
欠点がある。したがって、これらの実施例では、接合コ
ストを考慮すると、低抵抗部材加熱手段による加熱は熱
応力によるクラックの発生を防止するのに十分な値にと
どめ、第1の通電加熱による加熱効率の良い直接通電加
熱による加熱割合を増やす方が望ましい。しかしなが
ら、被接合部材間で抵抗率には差があるが、熱膨脹率に
差がない場合は、室温に戻したときの残留応力の点か
ら、接合剤が固着する温度において、突合せ面の両側で
同様な温度分布になっている方が好ましいため、第2の
加熱手段の割合をさらに大きくして温度分布をより小さ
くするのが望ましい。熱膨張率も異なっている部材同士
を接合する場合は、ある程度の温度分布が発生した方
が、残留応力の点で有利になる場合がある。つまり、熱
膨脹率の大きい部材側をより低い温度にすることによ
り、残留応力の緩和になる。したがって、低抵抗部材加
熱手段による加熱の程度は、被接合部材間の各種物性値
の違いや電極、保持治具への熱の逃げなど周辺の熱的効
果を考慮して最も良い値を選ぶ必要がある。上記実施例
2ないし8において、発熱の大きい被接合部材側の電極
部近傍でも電極治具への熱の逃げにより温度勾配が生じ
るため、その温度勾配に問題があれば、電極治具などの
熱容量をできるだけ小さくしたり、保温などによりでき
るだけ熱の逃げを防ぐ工夫をしたり、実施例1で示した
第2の加熱手段のうちの通電電極部加熱手段と低抵抗部
材加熱手段とを併用する必要がある。また、被接合部材
を固定して接合を行ったが、円周方向の均等な加熱を行
うために、被接合部材を正逆方向に回転して接合を行っ
てもよい。冷却時の温度制御方法は、実施例4ないし6
で示した加熱制御方法と同じであってもよいが、異なっ
た手順で冷却してもよい。ここで上記各実施例1ないし
8においては、加熱および冷却過程のすべての時点で形
成される温度分布はそれにより発生する各部分の熱応力
がその部分の破壊応力以下になるような分布でなければ
ならない。このような分布は被接合体の形状、寸法、抵
抗値の差、熱的物性、素材強度などで大きく異なるた
め、これを得るためには、被接合体に応じて通電電極や
誘導コイル等の第2の加熱手段の加熱素子の位置および
形状寸法を最適化するとともに、予め予備実験などによ
り第1及び第2の加熱手段により投入する電力およびそ
の投入速度あるいは温度変化速度などを決定しておく必
要がある。また、上記実施例では導電性セラミックスと
してSiC系のセラミックスのみについて示したが、他
の導電性セラミックス、例えばZrC,TiCなどの炭
化物、ZrN,TiNなどの窒化物、ZrB2,TiB
2 などのようなホウ化物、MoSi2 などのケイ化物、
また、上記導電性セラミックスを含むSi3 4 ,Al
2 3 のような複合セラミックス、サーメットのような
金属との複合部材などとの接合においても適用可能であ
ることはもちろんである。また、上記実施例はセラミッ
クス同士を接合する例であるが、本発明の方法がセラミ
ックス部材と被接合金属部材との接合に適用できること
は明白である。つまり、一般に金属部材の方が導電性セ
ラミックス部材よりも抵抗が小さいために、上記実施例
2ないし8において、低抵抗部材を金属に置換えること
により、同様に適用できる。この場合、接合剤としては
例えば活性金属ろう材などが使用できる。また、熱膨張
差による残留応力が問題になる場合は、上記で説明した
温度分布を調整するとともに、熱膨張係数が中間の値を
有する中間材またはCu,Niなどの軟金属の中間材を
突合せ部に挿入して応力緩和を行う必要がある。上記各
実施例の第1の加熱手段の電源装置(7,17,29,
71,72等)及び低抵抗部材加熱手段の電源装置(2
7a,27b,27等)は、各々独立にまたは連携して
制御可能である。これらの電源装置は電力または電流を
マニュアルで制御したり、予め入力されたデータに基づ
いて自動制御も可能である。また、図示しない温度セン
サーにより突合せ部及びその近傍の少なくとも一方の温
度を検出し、その信号をそれぞれの電源装置にフィード
バックして加熱速度を制御することもできるようになっ
ている。上記実施例では、接合剤や通電電極が酸化に弱
い材質からなるため、接合をする場合には不活性雰囲気
や真空状態にする必要があり、そのために気密性のチャ
ンバー(5,15,25,35)を用いているが、気密
性のチャンバーに代えて、ガスフローにより雰囲気を置
換する構造を用いてもよい。また酸化物ソルダー等の酸
化雰囲気でも使用可能な接合剤や電極材質を用いる場合
には、このようなチャンバーを用いる必要はない。
Embodiment 8 In the above embodiment, an example in which two members to be joined are joined has been shown. An example in which three or more conductive members to be joined are joined will be described by applying this. As shown in FIG. 8A, between the two members to be joined 1b1 and 1b2, these members to be joined 1b are joined together.
The conductive joined members 1a having a resistance value larger than the resistance values of 1 and 1b2 are butted with the joining agents 3a and 3b to form two butted portions. Member 1 with low resistance
b1 and 1b2 are provided with current-carrying electrodes 2b1 and 2b2, respectively, and a power supply device 7 is provided for applying a voltage to the current-carrying electrodes.
Are connected. Further, in order to heat the vicinity of the abutted portions of the two low resistance members 1b1 and 1b2 to be joined, two low resistance member heating means are provided and heating is controlled. The low resistance member heating means includes heating devices 26a and 26b such as a resistance furnace heating device, a lamp heating device, a laser heating device, a gas heating device, a high frequency induction heating device, and a power supply device 27.
a, 27b. Now, the current-carrying electrodes 2b1 and 2b
When a voltage is applied between the two, the joined members 1b1,
An electric current flows through 1a, 1b2 and the bonding agents 3a, 3b, and Joule heat corresponding to each resistance value is generated. Here, when the resistance value of the member to be joined 1a is much larger than that of the members to be joined 1b1 and 1b2, the temperature distribution has a large value in the vicinity of the two abutting portions, as shown by the curve (c) in FIG. 8B. A temperature gradient occurs. Therefore, by heating the low resistance member heating means of the second heating means in the vicinity of the butting portions of the low resistance members 1b1 and 1b2 which generate a small amount of heat according to the first heating means (see FIG. The curve (b)) of FIG. 4) and the temperature gradient can be relaxed as shown by the curve (a) to prevent the damage due to thermal stress, and the butt portion can be raised to the required bonding temperature. Here, the low resistance member heating means may be one device or two independently controllable devices as shown in the figure. For example, when high-frequency induction heating is used, both the members to be joined 1b1 and 1b2 may be heated by one induction coil and one power supply device, but two independent induction coils are respectively joined to the members to be joined 1b1, It can also be installed near the butt portion of 1b2 and heated by controlling with two independent high frequency power supplies.
The heating control method for the first heating means and the low resistance member heating means is similar to the other embodiments described above, in which heating is started by one of the means and the other heating means is started at a certain temperature. The method of adding may be used, or the two heating means may be controlled at the same time to heat the butt portion to the bonding temperature. Further, in the above-mentioned configuration, for example, when the resistance values of the members to be joined are reversed, the temperature distribution is also reversed, and the members to be joined 1b1 and 1b2 on both sides are heated by the first heating means, The member 1a to be joined is heated by the low resistance member heating means. Although three members to be joined have been described above, the same idea can be applied even if the number of members to be joined is increased, and a member to be joined having a low resistance that generates less heat by the first heating means (direct current heating) is used. The heating may be performed by the low resistance member heating means of the above heating means. In the above embodiment, the current-carrying electrodes used for the first heating means are provided only on the members 1b1 and 1b2 to be joined, and heating is performed by a single power supply device. It is natural that the heating control may be performed by using two independent power supply devices. That is, in this case, the method described in the above-described other embodiment is merely performed at two locations. Further, FIG. 9 shows an example in which a single-phase three-wire type power supply device is used as a power supply device used for direct electric heating which is the first heating means. A current-carrying electrode 2b3 is newly provided on the conductive member 1a, and the current-carrying electrodes 2b1 and 2b are provided.
A single-phase three-wire type power supply device 71 for applying a voltage is connected between the three electrodes and between the current-carrying electrodes 2b2 and 2b3. The current-carrying electrodes 2b1 and 2b2 are respectively connected to the member 1b to be joined.
The other components are the same as those in the embodiment relating to the joining of the two joined members described above. As a result, the two butt portions can be heat-bonded at the same time. Furthermore, FIG. 10 shows an example in which a multi-phase power supply, for example, a three-phase power supply is used as the power supply. Two members 1b1 and 1b3 to be joined and these members 1 to be joined
The conductive members 1b2 and 1b4 having a resistance value larger than the resistance values of b1 and 1b3 are bonded to the bonding agents 3a and 3b.
Butt through b and 3c to form three butted parts.
Conductive electrodes 2b1, 2b2, 2b3, 2b4 are provided on the members to be joined 1b1, 1b2, 1b3, 1b4, respectively, and a three-phase power supply device 72 for applying a voltage is connected to the conductive electrodes. The low resistance members 1b1 and 1b
In order to heat the vicinity of the abutting portion of b3, the above heating device 2
6a, 26b, and 26c are provided, and the other constituent members are the same as those in the embodiment relating to the joining of the two joined members. As a result, the three butt portions can be heated and joined at the same time. The low resistance member heating means of the second heating means shown in the above-mentioned Examples 2, 3 and 7 has a drawback that the heating efficiency is poor because the members to be joined are indirectly heated. Therefore, in these examples, considering the bonding cost, the heating by the low resistance member heating means is limited to a value sufficient to prevent the occurrence of cracks due to thermal stress, and the direct heating with high heating efficiency by the first electric heating is performed. It is desirable to increase the heating rate by electric heating. However, if there is a difference in the resistivity between the members to be joined but there is no difference in the coefficient of thermal expansion, from the point of residual stress when returning to room temperature, at the temperature at which the bonding agent adheres, both sides of the abutting surface Since it is preferable that the temperature distribution is similar, it is desirable to further increase the ratio of the second heating means to reduce the temperature distribution. When joining members having different thermal expansion coefficients, it may be advantageous in terms of residual stress that a certain temperature distribution is generated. That is, the residual stress can be relaxed by lowering the temperature of the member side having a large coefficient of thermal expansion. Therefore, regarding the degree of heating by the low resistance member heating means, it is necessary to select the best value in consideration of the peripheral thermal effects such as the difference in various physical property values between the members to be joined and the escape of heat to the electrodes and holding jig. There is. In Examples 2 to 8 above, a temperature gradient occurs due to the escape of heat to the electrode jig even in the vicinity of the electrode portion on the side of the members to be joined which generate a large amount of heat. It is necessary to make the size as small as possible, to devise a method for preventing heat escape as much as possible by keeping heat, and to use the energizing electrode part heating means and the low resistance member heating means of the second heating means shown in the first embodiment together. There is. Although the members to be joined are fixed and joined together, the members to be joined may be rotated in the forward and reverse directions to join in order to perform uniform heating in the circumferential direction. The temperature control method during cooling is the same as in Examples 4 to 6.
It may be the same as the heating control method shown in, but may be cooled by a different procedure. Here, in each of the above-described Examples 1 to 8, the temperature distribution formed at all points during the heating and cooling process must be such that the thermal stress of each part generated thereby is not more than the fracture stress of that part. I have to. Such distribution varies greatly depending on the shape, dimensions, resistance value difference, thermal properties, material strength, etc. of the objects to be joined. The position and shape of the heating element of the second heating means are optimized, and the electric power to be supplied by the first and second heating means and the supply speed or temperature change speed thereof are determined in advance by preliminary experiments or the like. There is a need. Further, in the above embodiment, only SiC-based ceramics are shown as the conductive ceramics, but other conductive ceramics, for example, carbides such as ZrC and TiC, nitrides such as ZrN and TiN, ZrB 2 and TiB.
Borides such as 2, silicide such as MoSi 2,
In addition, Si 3 N 4 , Al containing the above conductive ceramics
It is needless to say that it can be applied to joining with a composite ceramic such as 2 O 3 and a composite member with a metal such as cermet. Further, although the above-mentioned embodiment is an example of joining ceramics to each other, it is obvious that the method of the present invention can be applied to joining a ceramic member and a metal member to be joined. That is, since the resistance of the metal member is generally smaller than that of the conductive ceramic member, it can be similarly applied by substituting the low resistance member with metal in Examples 2 to 8. In this case, for example, an active metal brazing material can be used as the bonding agent. When the residual stress due to the difference in thermal expansion becomes a problem, the temperature distribution described above is adjusted, and an intermediate material having an intermediate coefficient of thermal expansion or an intermediate material of soft metal such as Cu or Ni is butted. It is necessary to insert into the part to relax the stress. The power supply device (7, 17, 29, for the first heating means of each of the above embodiments)
71, 72, etc.) and a power supply device (2 for heating the low resistance member)
7a, 27b, 27, etc.) can be controlled independently or in cooperation with each other. These power supply devices can control electric power or current manually, or can automatically control electric power based on pre-input data. Further, it is also possible to detect the temperature of at least one of the butting portion and its vicinity by a temperature sensor (not shown), and feed back the signal to each power supply device to control the heating rate. In the above-mentioned embodiment, since the bonding agent and the current-carrying electrode are made of a material which is weak against oxidation, it is necessary to make an inert atmosphere or a vacuum state when bonding, which is why the hermetic chamber (5, 15, 25, Although 35) is used, a structure in which the atmosphere is replaced by a gas flow may be used instead of the airtight chamber. Further, when using a bonding agent or an electrode material that can be used in an oxidizing atmosphere such as an oxide solder, it is not necessary to use such a chamber.

【0014】[0014]

【発明の効果】以上のように、本発明によれば、直接通
電加熱または直接高周波誘導加熱単独による加熱によ
り、通電電極近傍または突合せ部近傍の被接合部材に発
生する熱応力を緩和し、セラミックス部材の破損を防止
でき、耐熱性の高い接合体を効率よく得ることができ
る。請求項2,4及び5の発明によれば、第2の加熱手
段のうちの通電電極部加熱手段を用いて一部または全部
を通電初期の段階から発熱させることによって、接合時
に通電電極近傍の被接合部材に発生する熱応力を緩和
し、セラミックス部材の破損を防止することができ、ま
た電極間距離を小さくでき、かつ接合時間を短縮できる
ので、電力消費に伴うランニングコストの低減が図られ
る。請求項3,4及び6ないし8の発明によれば、抵抗
値の異なる導電性の被接合部材を接合する際に、被接合
部材に発生する熱応力が破壊応力より小さくなるように
して第1の加熱手段及び第2の加熱手段のうちの低抵抗
部材加熱手段を併用しながら突合せ部の温度を接合温度
まで高めるため、突合せ部近傍の被接合部材の温度勾配
を緩かにして、大きな温度勾配に起因するクラックの発
生を防止することができる。また、二つの加熱手段から
の熱を加え合せて接合温度を高めるため、1つの加熱手
段のみで接合温度を高める場合と比べて、二つの加熱手
段からそれぞれ被接合部材に加える熱量を少なくするこ
とができ、従来の方法を採用した場合と比べて、被接合
部材の最高加熱温度を低く抑えて所望の接合温度を得る
ことができ、過剰加熱によるセラミックスの劣化を防止
できる。また被接合部材の物性値や形状寸法の相違に適
切に対応することができる。さらに二つの加熱手段を加
熱開始当初から併用して加熱を行うと、短い時間で効率
よく加熱を行える上、さらに低抵抗部材加熱手段として
直接高周波誘導加熱装置を用いると、抵抗値の低い被接
合部材を直接加熱できるため、非常に効率よく加熱を行
えることができ、接合コストを下げることができる。
As described above, according to the present invention, the thermal stress generated in the members to be joined in the vicinity of the current-carrying electrode or the butted portion is alleviated by heating by direct current heating or direct high-frequency induction heating alone, and the ceramics It is possible to prevent damage to the members, and efficiently obtain a joined body having high heat resistance. According to the invention of claims 2, 4 and 5, a part or all of the second heating means is used to generate heat from the initial stage of energization by using the energization electrode part heating means, so that the vicinity of the energization electrode can be maintained at the time of joining. The thermal stress generated in the members to be joined can be relaxed, the ceramic member can be prevented from being damaged, the distance between the electrodes can be reduced, and the joining time can be shortened, so that the running cost accompanying power consumption can be reduced. . According to the inventions of claims 3, 4, and 6 to 8, when the conductive joined members having different resistance values are joined, the thermal stress generated in the joined members is made smaller than the fracture stress. In order to raise the temperature of the abutting portion to the joining temperature while using the low resistance member heating means of the second heating means and the heating means of the second heating means together, the temperature gradient of the members to be joined in the vicinity of the abutting portion is made gentle to increase the temperature. It is possible to prevent the occurrence of cracks due to the gradient. In addition, since the joining temperature is increased by adding heat from the two heating means, the amount of heat applied to the respective joined members from the two heating means is reduced as compared with the case where the joining temperature is increased by only one heating means. As compared with the case where the conventional method is adopted, the maximum heating temperature of the members to be joined can be suppressed to a low value to obtain a desired joining temperature, and deterioration of the ceramics due to excessive heating can be prevented. Further, it is possible to appropriately deal with the difference in the physical property values and the shape dimensions of the members to be joined. When two more heating means are used together from the beginning of heating, heating can be performed efficiently in a short time, and when a direct high frequency induction heating device is used as the low resistance member heating means, the resistance value of the welded object is low. Since the members can be directly heated, the heating can be performed very efficiently and the joining cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の第1の実施例を実施する装置
の概略正面図であり、(B)は第1の実施例を実施した
ときの被接合部材の長手方向の温度分布図である。
FIG. 1A is a schematic front view of an apparatus for carrying out a first embodiment of the present invention, and FIG. 1B is a temperature distribution in the longitudinal direction of members to be joined when the first embodiment is carried out. It is a figure.

【図2】本発明の第1の実施例を実施する装置の概略側
面図である。
FIG. 2 is a schematic side view of an apparatus for practicing the first embodiment of the present invention.

【図3】(A)は本発明の第2の実施例を実施する装置
の概略正面図であり、(B)は第2の実施例を実施した
ときの被接合部材の長手方向の温度分布図である。
FIG. 3A is a schematic front view of an apparatus for carrying out the second embodiment of the present invention, and FIG. 3B is a temperature distribution in the longitudinal direction of the members to be joined when the second embodiment is carried out. It is a figure.

【図4】本発明の第3の実施例を実施する装置の概略構
成図である。
FIG. 4 is a schematic configuration diagram of an apparatus for carrying out a third embodiment of the present invention.

【図5】本発明の第4の実施例を実施する装置の概略構
成図である。
FIG. 5 is a schematic configuration diagram of an apparatus for carrying out a fourth embodiment of the present invention.

【図6】第4の実施例を実施したときの被接合部材の長
手方向の温度分布図である。
FIG. 6 is a temperature distribution diagram in the longitudinal direction of the members to be joined when the fourth embodiment is carried out.

【図7】本発明の第7の実施例を実施する装置の概略構
成図である。
FIG. 7 is a schematic configuration diagram of an apparatus for carrying out a seventh embodiment of the present invention.

【図8】(A)は本発明の第8の実施例を実施する装置
の概略構成図であり、(B)は第8の実施例を実施した
ときの被接合部材の長手方向の温度分布図である。
8A is a schematic configuration diagram of an apparatus for carrying out an eighth embodiment of the present invention, and FIG. 8B is a temperature distribution in the longitudinal direction of the members to be joined when the eighth embodiment is carried out. It is a figure.

【図9】本発明の第8の実施例を実施する他の装置の概
略構成図である。
FIG. 9 is a schematic configuration diagram of another device for carrying out the eighth embodiment of the present invention.

【図10】本発明の第8の実施例を実施するさらに他の
装置の概略構成図である。
FIG. 10 is a schematic configuration diagram of still another apparatus for carrying out the eighth embodiment of the present invention.

【図11】(A)は従来の方法を実施する装置の概略構
成図であり、(B)は従来の方法による被接合部材の長
手方向の温度分布図である。
11A is a schematic configuration diagram of an apparatus for carrying out a conventional method, and FIG. 11B is a longitudinal temperature distribution diagram of members to be joined by the conventional method.

【図12】従来の方法による被接合部材の長手方向の他
の温度分布図である。
FIG. 12 is another temperature distribution diagram in the longitudinal direction of the members to be joined by the conventional method.

【符号の説明】[Explanation of symbols]

1a,1b,1b1 ,1b2 ,1b3 ,1b4 ,11
a,11b,21a,21b,31a,31b…被接合
部材、2a,2b,12a,12b,2b1 ,2b2 ,
2b3 ,2b4 ,20a,20b,22a,22b,3
2a,32b…通電電極、3,3a,3b,3c,1
3,23,33…接合剤、5,7,17,27a,27
b,27,29,71,72…電源装置。
1a, 1b, 1b1, 1b2, 1b3, 1b4, 11
a, 11b, 21a, 21b, 31a, 31b ... Joined members 2a, 2b, 12a, 12b, 2b1, 2b2,
2b3, 2b4, 20a, 20b, 22a, 22b, 3
2a, 32b ... energizing electrodes, 3, 3a, 3b, 3c, 1
3, 23, 33 ... Bonding agent, 5, 7, 17, 27a, 27
b, 27, 29, 71, 72 ... Power supply device.

フロントページの続き (72)発明者 高井 博史 大阪市淀川区田川2丁目1番11号 株式会 社ダイヘン内 (72)発明者 三宅 夏美 大阪市淀川区田川2丁目1番11号 株式会 社ダイヘン内 (72)発明者 沼野 真志 大阪市淀川区田川2丁目1番11号 株式会 社ダイヘン内Continued front page    (72) Inventor Hiroshi Takai             2-11 Tagawa Stock Exchange, Yodogawa-ku, Osaka             Company Daihen (72) Inventor Natsumi Miyake             2-11 Tagawa Stock Exchange, Yodogawa-ku, Osaka             Company Daihen (72) Inventor Masashi Numano             2-11 Tagawa Stock Exchange, Yodogawa-ku, Osaka             Company Daihen

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被接合部材である導電性セラミックスと
導電性セラミックスとの突合せ部または被接合部材であ
る導電性セラミックスと金属との突合せ部の少なくとも
一つを含む被接合体の電気接合方法において、前記突合
せ部に接合剤を介在させ、前記突合せ部の少なくとも一
つ以上を挟む位置の前記被接合部材に少なくとも一組の
通電電極を当接配置し、前記通電電極間に電圧を印加し
て通電電極間の被接合部材をジュール熱により加熱する
第1の加熱手段を設け、前記第1の加熱手段のみにより
前記被接合部材に大きな温度勾配が形成される部分及び
該近傍を加熱する第2の加熱手段を設け、前記温度勾配
により前記被接合部材に発生する熱応力が被接合部材の
破壊応力よりも小さくなるように、前記第1の加熱手段
と前記第2の加熱手段とを併用しながら前記突合せ部の
温度を接合温度まで高めることを特徴とするセラミック
スを含む被接合体の電気接合方法。
1. A method for electrically joining a body to be joined, comprising at least one of a butting portion of a conductive ceramics and a conducting ceramics as a member to be joined or a butting portion of a conducting ceramics and a metal as a member to be joined. , Interposing a bonding agent in the abutting portion, disposing at least one set of energizing electrodes in contact with the members to be joined at a position sandwiching at least one of the abutting portions, and applying a voltage between the energizing electrodes. A second heating unit is provided that heats the member to be joined between the current-carrying electrodes by Joule heat, and heats a portion in which a large temperature gradient is formed in the member to be joined and the vicinity thereof by only the first heating unit. The heating means is provided, and the first heating means and the second heating means are arranged so that the thermal stress generated in the members to be joined due to the temperature gradient becomes smaller than the breaking stress of the members to be joined. A method for electrically joining objects to be joined containing ceramics, characterized in that the temperature of the butted portion is raised to the joining temperature while using a step.
【請求項2】前記第2の加熱手段が、前記通電電極の少
なくとも一つの一部または全部を通電発熱させて、前記
通電電極の取付位置及び該近傍の前記被接合部材に形成
される温度勾配を小さくする通電電極部加熱手段である
請求項1に記載のセラミックスを含む被接合体の電気接
合方法。
2. A temperature gradient formed by the second heating means by energizing and heating at least a part or all of the current-carrying electrode to form a position where the current-carrying electrode is attached and the member to be joined in the vicinity thereof. The method for electrically bonding an article to be joined containing ceramics according to claim 1, which is a heating means for energizing an electrode portion.
【請求項3】 前記第2の加熱手段が、前記被接合体の
少なくとも一つの部材の抵抗値が他の部材と異なる場合
に、前記被接合体のうちの抵抗値の低い被接合部材を主
に加熱して、前記突合せ部近傍に形成される温度勾配を
小さくする低抵抗部材加熱手段である請求項1に記載の
セラミックスを含む被接合体の電気接合方法。
3. The second heating means, when at least one member of the article to be joined has a resistance value different from that of the other members, mainly uses the article to be joined having a low resistance value. 2. The method for electrically bonding an article to be joined containing ceramics according to claim 1, which is a low resistance member heating means for heating the sheet to a small temperature gradient formed in the vicinity of the butt portion.
【請求項4】前記第2の加熱手段が、前記通電電極部加
熱手段と低抵抗部材加熱手段とを併用する手段である請
求項1に記載のセラミックスを含む被接合体の電気接合
方法。
4. The method for electrically bonding an article to be joined containing ceramics according to claim 1, wherein the second heating means is a means for using the energizing electrode part heating means and the low resistance member heating means together.
【請求項5】 前記通電電極部加熱手段が、通電発熱部
材を設けた前記通電電極及び断面積を小さくして抵抗値
を大きくした前記通電電極及び固有抵抗値の大きな素材
からなる前記通電電極を単独使用または併用する手段で
ある請求項2または4に記載のセラミックスを含む被接
合体の電気接合方法。
5. The current-carrying electrode portion heating means includes the current-carrying electrode provided with a current-carrying heat generating member, the current-carrying electrode having a small cross-sectional area and a large resistance value, and the current-carrying electrode made of a material having a large specific resistance value. The method for electrically bonding an article to be joined, which comprises the ceramic according to claim 2 or 4, which is a means for single use or combined use.
【請求項6】 前記突合せ部の温度が所定の温度に達す
るまでは前記第1の加熱手段及び前記低抵抗部材加熱手
段の一方によって加熱を行い、前記加熱後は前記第1の
加熱手段及び前記低抵抗部材加熱手段の両方によって加
熱を行う請求項3または4に記載のセラミックスを含む
被接合体の電気接合方法。
6. The heating is performed by one of the first heating means and the low resistance member heating means until the temperature of the butting portion reaches a predetermined temperature, and after the heating, the first heating means and the The method for electrically bonding an article to be joined containing ceramics according to claim 3 or 4, wherein heating is performed by both of the low resistance member heating means.
【請求項7】 前記第1の加熱手段及び前記低抵抗部材
加熱手段によって、加熱開始時から加熱を行う請求項3
または4に記載のセラミックスを含む被接合体の電気接
合方法。
7. The heating is performed from the start of heating by the first heating means and the low resistance member heating means.
Alternatively, a method of electrically bonding an article to be bonded, which includes the ceramic according to Item 4.
【請求項8】 前記低抵抗部材加熱手段は、高周波誘導
加熱装置である請求項3または4に記載のセラミックス
を含む被接合体の電気接合方法。
8. The electric joining method for a body to be joined containing ceramics according to claim 3, wherein the low resistance member heating means is a high frequency induction heating device.
JP28206491A 1990-10-03 1991-10-01 Method for electrical joining of workpieces containing ceramics Expired - Fee Related JP3178032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28206491A JP3178032B2 (en) 1990-10-03 1991-10-01 Method for electrical joining of workpieces containing ceramics

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2-267403 1990-10-03
JP26740390 1990-10-03
JP8410991 1991-04-16
JP3-84109 1991-04-16
JP28206491A JP3178032B2 (en) 1990-10-03 1991-10-01 Method for electrical joining of workpieces containing ceramics

Publications (2)

Publication Number Publication Date
JPH054877A true JPH054877A (en) 1993-01-14
JP3178032B2 JP3178032B2 (en) 2001-06-18

Family

ID=27304448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28206491A Expired - Fee Related JP3178032B2 (en) 1990-10-03 1991-10-01 Method for electrical joining of workpieces containing ceramics

Country Status (1)

Country Link
JP (1) JP3178032B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260690A (en) * 2006-03-27 2007-10-11 Hitachi Ltd Electric current bonding apparatus and electric current bonding method
WO2008044776A1 (en) * 2006-10-13 2008-04-17 Mole's Act Co., Ltd. Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work
JP2015059080A (en) * 2013-09-20 2015-03-30 株式会社デンソー Method of manufacturing assembly
WO2015199498A1 (en) * 2014-06-27 2015-12-30 오씨아이 주식회사 Polysilicon filament binding device using polysilicon fragments
JP2021053674A (en) * 2019-09-30 2021-04-08 株式会社デンソー Manufacturing method and manufacturing device of joined body
JP2022078029A (en) * 2017-10-19 2022-05-24 ゼネラル・アトミックス Joining and sealing of pressurised ceramic components

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260690A (en) * 2006-03-27 2007-10-11 Hitachi Ltd Electric current bonding apparatus and electric current bonding method
JP4520422B2 (en) * 2006-03-27 2010-08-04 株式会社日立製作所 Energization joining apparatus and energization joining method
WO2008044776A1 (en) * 2006-10-13 2008-04-17 Mole's Act Co., Ltd. Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work
JP2015059080A (en) * 2013-09-20 2015-03-30 株式会社デンソー Method of manufacturing assembly
WO2015199498A1 (en) * 2014-06-27 2015-12-30 오씨아이 주식회사 Polysilicon filament binding device using polysilicon fragments
JP2022078029A (en) * 2017-10-19 2022-05-24 ゼネラル・アトミックス Joining and sealing of pressurised ceramic components
JP2021053674A (en) * 2019-09-30 2021-04-08 株式会社デンソー Manufacturing method and manufacturing device of joined body

Also Published As

Publication number Publication date
JP3178032B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
US6838636B2 (en) Two heat sources for welding silicon
JP4026761B2 (en) Ceramic heater
JP3178032B2 (en) Method for electrical joining of workpieces containing ceramics
KR102094212B1 (en) Ceramic Member
EP0503094B1 (en) Method of electrically joining objects to be joined including ceramics
US5534091A (en) Joining method of ceramics and insertion member for heating and joining for use in the method
JP2006315040A (en) Method and apparatus for electric diffusion joining
JPH10180463A (en) Method and device for joining heat resistant alloy
JPH06172049A (en) Electric bonding of si-containing silicon carbide ceramic
CN213086050U (en) High-temperature heating surface welded junction and fin weld seam postweld heat treatment device
JPH0570253A (en) Joining method for ceramics with each other and thermal joining insert material
JP6903525B2 (en) Ceramic member
JP3694365B2 (en) Induction heating diffusion bonding method
KR101675005B1 (en) High frequency heating equipment and method using the same
JPH0232758B2 (en)
JP2773257B2 (en) Electric bonding method between Si-containing silicon carbide ceramics
CN113698224B (en) Resistance welding connection device and silicon carbide connection method
JP2706726B2 (en) Electric joining method of ceramics
JP3618715B2 (en) Cooling device for current-carrying electrode and assembly of current-carrying electrode and cooling device
CN115910892A (en) Method for bonding silicon members using silicon powder and high-frequency heating device
JP3103124B2 (en) Electric joining method of ceramics
JPH03193675A (en) Electric joining method for ceramics and insert material for electric joining
JPH0963666A (en) Superconductor joint and its manufacture
JPH06298575A (en) Method for forming long ceramic pipe
JPH0384887A (en) Electric welding method of lead terminal members of ceramics heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees