JPH0548352Y2 - - Google Patents

Info

Publication number
JPH0548352Y2
JPH0548352Y2 JP5766089U JP5766089U JPH0548352Y2 JP H0548352 Y2 JPH0548352 Y2 JP H0548352Y2 JP 5766089 U JP5766089 U JP 5766089U JP 5766089 U JP5766089 U JP 5766089U JP H0548352 Y2 JPH0548352 Y2 JP H0548352Y2
Authority
JP
Japan
Prior art keywords
electron beam
cylinder
crt
focusing
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5766089U
Other languages
Japanese (ja)
Other versions
JPH02146745U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5766089U priority Critical patent/JPH0548352Y2/ja
Publication of JPH02146745U publication Critical patent/JPH02146745U/ja
Application granted granted Critical
Publication of JPH0548352Y2 publication Critical patent/JPH0548352Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transforming Electric Information Into Light Information (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、プロジエクシヨンテレビジヨンの
CRT形投射管に用いられるCRT磁気電子ビーム
集束装置に関する。
[Detailed explanation of the invention] [Industrial application field] This invention is based on the projection television.
This article relates to a CRT magnetic electron beam focusing device used in a CRT type projection tube.

〔従来の技術〕[Conventional technology]

従来、プロジエクシヨンテレビジヨンに用いら
れるCRT形投射管は、第4図で示されるように、
明るい投影像を得る目的で、比較的強い電子ビー
ムJが用いられる。
Conventionally, the CRT type projection tube used in projection television is as shown in Figure 4.
A relatively strong electron beam J is used for the purpose of obtaining a bright projected image.

この電子ビームJは、互いに反発し拡散するの
で大口径のレンズが必要である。このため、レン
ズの口径を容易に大きくでき、少ない収差で集束
できる永久磁石または電磁石で構成された磁気レ
ンズ1が使用されている。
Since the electron beams J repel each other and diffuse, a lens with a large diameter is required. For this reason, a magnetic lens 1 is used that is constructed of a permanent magnet or an electromagnet that can easily increase the aperture of the lens and can focus with little aberration.

この磁気レンズ1は、第2格子2と陽極3で予
備集束された電子ビームJを、電子ビームJと同
一方向の時速密度Bによる磁気集束作用によつ
て、CRT管面上に焦点を結ばせる。
This magnetic lens 1 focuses the electron beam J, which has been prefocused by the second grating 2 and the anode 3, onto the CRT tube surface by the magnetic focusing effect due to the hourly density B in the same direction as the electron beam J. .

ところが、このプロジエクシヨン方式のテレビ
受像機はCRT投射管の画像を拡大投与する方式
のため、ブラウン管方式に比べ画質が劣る欠点が
あつた。
However, since this projection type television receiver enlarges the image from a CRT projection tube, it had the disadvantage that the image quality was inferior to that of the cathode ray tube type.

この欠点を補うため、プロジエクシヨン方式で
は、CRT投射管面全面にわたつて、従来以上に
強くて、シヤープな電子ビームJが必要となり、
前記電子ビームJを得るための一つの方法とし
て、補正用のコイル4,4′が設けられたものが
ある。これは、例えば、CRT頚部外周に、従来
の磁気レンズ1以外に少なくとも2個の補正用コ
イル4,4′を同軸上に近接して設け、一方のコ
イル4に、直流バイアスを印加してCRT管面中
央部の電子ビームJの集束(以後、静集束とす
る)の補正を行なうと共に、他方には、水平、垂
直偏向信号に同期したパラボラ状の信号電流を印
加し、CRT管面外周部の電子ビームJの集束
(以後、動集束とする)の補正を行なつている。
To compensate for this drawback, the projection method requires a stronger and sharper electron beam J than the conventional one, covering the entire surface of the CRT projection tube.
One method for obtaining the electron beam J is to provide correction coils 4, 4'. For example, in addition to the conventional magnetic lens 1, at least two correction coils 4 and 4' are provided close to each other on the same axis around the outer periphery of the CRT's neck, and a direct current bias is applied to one of the coils 4. While correcting the focusing (hereinafter referred to as static focusing) of the electron beam J at the center of the CRT tube surface, a parabolic signal current synchronized with the horizontal and vertical deflection signals is applied to the other side, and The focusing (hereinafter referred to as dynamic focusing) of the electron beam J is corrected.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

しかしながら、上記2つの補正コイルは、構造
上近接して配置される。このため、両コイル間に
は磁気結合が生じ動集束電圧が大きくなる問題が
ある。
However, the two correction coils are structurally arranged close to each other. Therefore, there is a problem in that magnetic coupling occurs between both coils and the dynamic focusing voltage increases.

また、電子ビームは、電子レンズで集束された
後、偏向コイルにより偏向されCRT管面上に到
達する。ところが、上記偏向コイルは、内部の磁
界分布が一様でなく、このため電子ビームは偏向
コイル内の位置によつて異なつた集束を受けるこ
ととなり、偏向コイルを通過した電子ビームは、
断面が変形して集束が悪くなる。しかし、従来の
磁気集束方式では、電子ビームをらせん状に集束
するため、X軸、Y軸方向に変形するような電子
ビームを偏向コイルに入射する以前にあらかじめ
補正し、CRT管面上に最適な集束を行なうこと
はできないという問題がある。
Further, the electron beam is focused by an electron lens, then deflected by a deflection coil, and reaches the surface of the CRT tube. However, the magnetic field distribution inside the deflection coil is not uniform, and as a result, the electron beam is focused differently depending on its position within the deflection coil, and the electron beam that has passed through the deflection coil is
The cross section is deformed and focusing becomes poor. However, in the conventional magnetic focusing method, the electron beam is focused in a spiral shape, so the electron beam that is deformed in the X- and Y-axis directions is corrected in advance before entering the deflection coil, making it ideal for focusing on the CRT tube surface. The problem is that accurate focusing cannot be achieved.

そこで、この考案では、補正用コイル間で磁気
結合を発生させないようにすると共に、電子ビー
ムをX軸およびY軸方向に個別に集束状態を調整
できるようにして、CRT管面上に最適な集束が
できるようにすることを目的とする。
Therefore, in this invention, we have made it possible to prevent magnetic coupling between the correction coils and to adjust the focusing state of the electron beam individually in the X-axis and Y-axis directions, so that the optimum focusing can be achieved on the CRT tube surface. The purpose is to make it possible.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、この考案では、
CRT頚部の外周に、その軸線上前後所定間隔を
置いて少なくとも2個の非磁性体から成る円筒を
所定位置に取り付け、その両円筒周囲の4等分し
た位置に永久磁石を配置すると共に、両円筒間の
対向する永久磁石は同一軸上とし、かつ、各永久
磁石の円筒外周面に接する磁極面は、前記周囲で
隣接するもの、および前記同一軸上で対向するも
のの極性がそれぞれ異なり、さらに、円筒上の各
永久磁石の外周にはコイルを巻回し、CRT頚部
に取り付けた各円筒外周の一方の互いに向き合う
コイルに、その発生する磁界により永久磁石の強
さを調整する直流電流を加えると共に、他方のコ
イルには、内部の永久磁石に交番磁界を発生させ
る水平および垂直偏向信号と同期した複合補正信
号を加えた構成としたものである。
In order to achieve the above purpose, in this invention,
At least two cylinders made of non-magnetic material are attached to the outer periphery of the CRT neck at predetermined positions at a predetermined distance in front and back on the axis of the neck, and permanent magnets are arranged at positions divided into four equal parts around both cylinders. The opposing permanent magnets between the cylinders are on the same axis, and the magnetic pole faces in contact with the cylindrical outer peripheral surface of each permanent magnet have different polarities between those adjacent on the periphery and those facing on the same axis, and A coil is wound around the outer circumference of each permanent magnet on the cylinder, and a direct current is applied to the coils facing each other on one side of the outer circumference of each cylinder attached to the neck of the CRT to adjust the strength of the permanent magnet by the generated magnetic field. , the other coil is configured to include a composite correction signal synchronized with horizontal and vertical deflection signals that generate an alternating magnetic field in the internal permanent magnet.

上記、所定位置および所定間隔は、電子ビーム
がCRT管面上に於て最適の集束状態となるよう
に、CRT管の前長、磁界強度等により適宜に決
定する。
The above-mentioned predetermined positions and predetermined intervals are appropriately determined based on the front length of the CRT tube, magnetic field strength, etc. so that the electron beam is optimally focused on the surface of the CRT tube.

複合補正信号とは、動集束補正を行なう磁界を
電子ビームに加える信号電流であり、電子ビーム
の強さおよびCRT管の焦点距離により、実験お
よび経験により適宜に決められる。
The composite correction signal is a signal current that applies a magnetic field for dynamic focusing correction to the electron beam, and is appropriately determined by experiment and experience depending on the strength of the electron beam and the focal length of the CRT tube.

〔作用〕[Effect]

この様に構成されるCRT磁気電子ビーム集束
装置では、円筒の周囲を四等分する位置に、隣合
う磁極を異なるように配置された永久磁石によ
り、円筒内部には、隣り合う磁極間に生ずる磁界
が円筒の中心を取り囲むように、その向き合う磁
界の向きが逆の磁界に形成される。この両円筒
は、その同一軸上に配置された磁極が異なつてい
るため、その円筒内部に形成される同一軸上の磁
界の向きは、ちようど逆向きとなる。
In a CRT magnetic electron beam focusing device configured in this way, permanent magnets are placed in positions that divide the circumference of the cylinder into four equal parts, and adjacent magnetic poles are arranged differently. The opposing magnetic fields are formed in opposite directions so that the magnetic field surrounds the center of the cylinder. Since these two cylinders have different magnetic poles arranged on the same axis, the directions of the magnetic fields formed on the same axis inside the cylinders are exactly opposite.

また、各永久磁石の外周に巻回された両円筒の
一方の互いに向き合うコイルに電流を加え、その
電流値および電流の流れる向きを調整し、内部の
永久磁石の磁界の強さを調整し、電子ビームの
CRT管中央部の集束状態を調整する。さらに、
他方のコイルには、水平及び垂直偏向信号と同期
した複合補正信号を加え、その内部の磁界を前記
複合補正信号に合わせて変化させ、CRT管面中
央部と周辺部への電子ビームの飛距離の違いによ
る焦点のずれを補正し、ビームのCRT面周辺部
での集束状態を調整する。
In addition, a current is applied to one of the coils facing each other in both cylinders wound around the outer circumference of each permanent magnet, and the current value and direction of the current flow are adjusted to adjust the strength of the magnetic field of the internal permanent magnet. electron beam
Adjust the focusing condition at the center of the CRT tube. moreover,
A composite correction signal synchronized with the horizontal and vertical deflection signals is applied to the other coil, and its internal magnetic field is changed in accordance with the composite correction signal to change the flight distance of the electron beam to the center and periphery of the CRT tube surface. This corrects the focal shift caused by the difference in the beam and adjusts the focusing state of the beam around the CRT surface.

このように調整された磁界の中心に、電子ビー
ムが直角に入射すると、電子ビームは、フレミン
グの左手の法則に従つて、各磁極間に発生する磁
界から直角方向に力を受け、90°の角度差を有し
て、拡散および圧縮状態となる。いま、電子ビー
ムが後方の円筒(実施例においては符号a)に入
射し、上方向および下方向よりの磁界から力を受
けて、垂直方向(以後Y軸方向とする)に拡散状
態となり、さらに、左右方向からの磁界からは、
水平方向(以後X軸方向とする)に力を受けて、
過圧縮状態となり、電子ビームは縦長楕円状とな
る。
When an electron beam is incident at right angles to the center of the magnetic field adjusted in this way, the electron beam receives a force at right angles from the magnetic field generated between each magnetic pole, according to Fleming's left-hand rule, and is They are in a diffused and compressed state with an angular difference. Now, the electron beam enters the rear cylinder (indicated by symbol a in the example), receives forces from the magnetic fields from above and below, becomes diffused in the vertical direction (hereinafter referred to as the Y-axis direction), and further , from the magnetic field from the left and right directions,
When a force is received in the horizontal direction (hereinafter referred to as the X-axis direction),
It becomes overcompressed and the electron beam becomes a vertically elongated ellipse.

さらに、この楕円状の電子ビームが前方の円筒
(実施例においては符号b)の中心に入射すると、
この前方の円筒bの磁界は、後方の円筒aの磁界
とは、逆向きの磁界を形成しているため、後方の
円筒で受けた力とは、逆向きの力を受け、Y軸方
向に集束し、X軸方向に拡散する。すなわち、円
筒bに入射した縦長楕円状の電子ビームは、X軸
方向は過圧縮から拡散状態となるように力を受け
て適正集束し、Y軸方向も拡散から圧縮状態とな
るように力を受け、適正集束する。この時、電子
ビームの形状が楕円状となつているため、X軸、
Y軸方向から受ける磁界からの力が一様でなく、
圧縮状態が強くまた、拡散状態が弱く働くため、
電子ビームのX軸方向、Y軸方向に個別に適正集
束が可能となる。
Furthermore, when this elliptical electron beam enters the center of the cylinder in front (indicated by b in the example),
The magnetic field of this front cylinder b forms a magnetic field in the opposite direction to the magnetic field of the rear cylinder a, so it receives a force in the opposite direction to the force received by the rear cylinder, and moves in the Y-axis direction. Focuses and diffuses in the X-axis direction. In other words, the elongated elliptical electron beam incident on the cylinder b receives a force in the X-axis direction so that it changes from an overcompressed state to a diffused state, and is properly focused.It also receives a force in the Y-axis direction so that it changes from a diffused state to a compressed state. Receive and focus properly. At this time, since the shape of the electron beam is elliptical, the X-axis
The force from the magnetic field received from the Y-axis direction is not uniform,
Because the compression state is strong and the diffusion state is weak,
It becomes possible to appropriately focus the electron beam individually in the X-axis direction and the Y-axis direction.

したがつて、後方の円筒aは、X軸方向の集束
を行ない、前方の円筒bは、Y軸方向の集束を行
なう。
Therefore, the rear cylinder a performs focusing in the X-axis direction, and the front cylinder b performs focusing in the Y-axis direction.

また、集束の分担は、両円筒を同一方向に90°
回転させることによつて入れ換えることができ
る。この場合、後方の円筒aがY軸方向の集束を
行ない、前方の円筒bが、X軸方向の集束を行な
う。
In addition, the focusing is divided by rotating both cylinders in the same direction at 90°.
They can be interchanged by rotating them, in which case the rear cylinder a focuses in the Y direction and the front cylinder b focuses in the X direction.

〔実施例〕〔Example〕

以下、この考案の実施例を第1図から第3図に
基づいて説明する。
Hereinafter, embodiments of this invention will be described based on FIGS. 1 to 3.

この考案に係るCRT磁気電子ビーム集束装置
は、第1図に示すように、CRT形投射管Tの頚
部の外周の所定位置に、その軸方向に前後所定間
隔を置いて非磁性体の円筒a,bを取り付ける。
この所定位置および所定間隔は、電子ビームJ
が、CRT管面上で最適な集束状態となるように
適宜に調整する。
As shown in FIG. 1, the CRT magnetic electron beam focusing device according to this invention consists of a non-magnetic cylinder a placed at a predetermined position on the outer periphery of the neck of a CRT type projection tube T at a predetermined distance from front to back in the axial direction. , b.
This predetermined position and predetermined interval are determined by the electron beam J
is adjusted appropriately so that it is in an optimal focusing state on the CRT tube surface.

後方の円筒aの周囲には、第2図に示すよう
に、その円筒を四等分するように90°置きに、厚
み方向に磁化した永久磁石m1〜m4が、CRT
後部から見て時計方向に、磁石m1が円筒a外周
面に接する磁極面の極性をS極として設置され、
以下、同様に磁石m2はN極、磁石m3はS極、
磁石m4はN極、となるように設置される。従つ
て、永久磁石m1〜m4の磁束密度によつてこの
円筒a内部に形成される磁界Hは、N極の磁石m
2からその両隣のS極の磁石m1,m3へ向う磁
界Hと、磁石m2と向き合う位置のN極の磁石m
4から、その両隣りのS極の磁石m1,m3へ向
う磁界Hが、円筒の中心を囲むように、その向き
合う磁界Hの向きを逆にして形成される。
As shown in Figure 2, around the rear cylinder a, permanent magnets m1 to m4 magnetized in the thickness direction are placed at 90° intervals so as to divide the cylinder into four equal parts.
Clockwise as seen from the rear, a magnet m1 is installed with the polarity of the magnetic pole surface in contact with the outer peripheral surface of the cylinder a as the S pole,
Similarly, magnet m2 is N pole, magnet m3 is S pole,
The magnet m4 is installed so as to have a north pole. Therefore, the magnetic field H formed inside this cylinder a by the magnetic flux density of the permanent magnets m1 to m4 is
2 to the S-pole magnets m1 and m3 on both sides, and the N-pole magnet m facing magnet m2.
4, magnetic fields H directed toward the S-pole magnets m1 and m3 on both sides are formed by reversing the direction of the facing magnetic fields H so as to surround the center of the cylinder.

また、前方の円筒bの周囲には、円筒aの周囲
に配置された磁石m1〜m4と同一軸上で対向す
る磁石m5〜m8の円筒bの外周面に接する磁極
面を異にするように、磁石m5はN極、磁石m6
はS極、磁石m7はN極、磁石m8はS極として
設置されている。この磁極は、円筒aの磁極と極
性が逆となつているため、磁界Hの方向は円筒a
に形成される磁界Hとは逆方向となる。
In addition, around the front cylinder b, magnets m5 to m8, which face the magnets m1 to m4 arranged around the cylinder a on the same axis, have different magnetic pole surfaces in contact with the outer peripheral surface of the cylinder b. , magnet m5 is N pole, magnet m6
is installed as an S pole, magnet m7 is installed as an N pole, and magnet m8 is installed as an S pole. Since this magnetic pole is opposite in polarity to the magnetic pole of cylinder a, the direction of the magnetic field H is
The direction is opposite to that of the magnetic field H formed in .

同図に示すように、両円筒a,bの永久磁石m
1〜m8にコイルL1〜L8が巻回され、各円筒a,
b上のCRT頚部直径方向で互いに向き合うコイ
ルL1−L3,L2−L4およびL5−L7,L6−L8は直列
に接続されてペアとなつている。例えば、このコ
イルペアL1−L3およびL5−L7には直流電流Ia,Ib
を加え、各コイルL1,L3,L5,L7(静集束コイ
ル)内部の永久磁石m1,m3,m5,m7の磁
界の強さを調整し、各円筒a,b内部の磁界Hの
強さを補正して、最適な静集束を行なう。
As shown in the figure, permanent magnets m in both cylinders a and b
Coils L 1 to L 8 are wound around 1 to m8, and each cylinder a,
Coils L 1 -L 3 , L 2 -L 4 and L 5 -L 7 , L 6 -L 8 facing each other in the CRT neck diameter direction on b are connected in series to form a pair. For example, the coil pairs L 1 -L 3 and L 5 -L 7 have DC currents I a , I b
The magnetic field H inside each cylinder a , b is adjusted by adding The strength of the static focusing is corrected to achieve optimal static focusing.

一方、コイルL2,L4およびL6,L8(動集束コイ
ル)には、水平および垂直偏向信号と同期した複
合補正信号Pが加えられており、永久磁石m2,
m4,m6,m8の磁界Hの強さをCRT管面上
までの焦点距離に合わせて補正し、最適な動集束
を行なう。
On the other hand, a composite correction signal P synchronized with the horizontal and vertical deflection signals is applied to the coils L 2 , L 4 and L 6 , L 8 (dynamic focusing coils), and the permanent magnet m2,
The strength of the magnetic field H of m4, m6, and m8 is corrected according to the focal length to the CRT tube surface, and optimal dynamic focusing is performed.

前記、L1,L3,L5,L7の静集束コイルとL2
L4,L6,L8の動集束コイルとは、90°の位相差を
置いて配置されており、相互インダクタンスを持
たない。このため、静集束コイルと動集束コイル
間の誘導結合が小さく静集束および動集束の調整
が容易となる。
The static focusing coils L 1 , L 3 , L 5 , L 7 and L 2 ,
The dynamic focusing coils L 4 , L 6 , and L 8 are arranged with a phase difference of 90° and have no mutual inductance. Therefore, inductive coupling between the static focusing coil and the dynamic focusing coil is small, and adjustment of static focusing and dynamic focusing becomes easy.

これらのコイルL1〜L8が巻回された永久磁石
m1〜m8が配置された円筒aおよび円筒bの磁
界Hにより、円筒aに入射した電子ビームJはY
軸方向に拡散し、X軸方向は圧縮されるため、そ
の形状が楕円状の電子ビームJに変形される。ま
た円筒bに入射した楕円状の電子ビームJは、そ
の形状よりY軸方向は強く圧縮され、X軸方向は
弱く拡散されるため電子ビームJは適正に集束す
る。
Due to the magnetic field H of the cylinders a and b in which the permanent magnets m1 to m8 around which these coils L1 to L8 are wound are arranged, the electron beam J incident on the cylinder a becomes Y
Since the electron beam is diffused in the axial direction and compressed in the X-axis direction, its shape is transformed into an elliptical electron beam J. Further, the elliptical electron beam J incident on the cylinder b is strongly compressed in the Y-axis direction and weakly diffused in the X-axis direction due to its shape, so that the electron beam J is appropriately focused.

この実施例は、以上の様に構成されており、第
2図に示すように電子ビームJを円筒aの中心に
入射し、電子ビームがCRT管面中央部に細かく
絞り込まれるようにコイルL1,L3,L5,L7を流
れる電流Ia,Ibを調整すると、円筒a内部の磁石
m1,m2間およびm3,m4間に発生する磁界
Hは、円筒b内部の磁石間に発生する磁界Hより
強いか、または弱い磁界Hとなる。この磁界Hに
より、円筒aに入射する電子ビームJは、X軸方
向(円筒aの左右)より力を受け、過集束状態の
電子ビームJaとなると共に、コイルL2,L4に加え
られる複合補正信号PによりX軸方向に対する動
集束が行われる。この後、電子ビームJaは円筒b
に入射し、Y軸方向(円筒の上下)より力を受
け、圧縮されるが、X軸方向には拡散されると共
に、コイルL6,L8に加えられる複合補正信号に
より、Y軸方向に対する動集束が行われ、電子ビ
ームJはCRT管面全面にわたつて最適な集束状
態Jbとなる。
This embodiment is constructed as described above, and as shown in FIG. 2, the electron beam J is incident on the center of the cylinder a, and the coil L1 is arranged so that the electron beam is narrowed down to the center of the CRT tube surface. , L 3 , L 5 , and L 7 , the magnetic field H generated between magnets m1 and m2 and between m3 and m4 inside cylinder a is equal to the magnetic field H generated between magnets inside cylinder b . The magnetic field H is either stronger or weaker than the magnetic field H. Due to this magnetic field H, the electron beam J entering the cylinder a receives a force from the X-axis direction (left and right of the cylinder a), becomes an overfocused electron beam J a , and is applied to the coils L 2 and L 4 . Dynamic focusing in the X-axis direction is performed by the composite correction signal P. After this, the electron beam J a is transferred to the cylinder b
It is compressed by the force applied in the Y-axis direction (top and bottom of the cylinder), but it is diffused in the X-axis direction, and due to the composite correction signal applied to coils L 6 and L 8 , the Dynamic focusing is performed, and the electron beam J is brought into an optimal focused state J b over the entire surface of the CRT tube.

このように、この集束装置はX軸およびY軸方
向の静および動集束を個別に調整及び補正し、最
適な集束状態の電子ビームをCRT管面全面に結
ばせることができる。
In this way, this focusing device can individually adjust and correct static and dynamic focusing in the X-axis and Y-axis directions, and can focus an optimally focused electron beam over the entire surface of the CRT tube.

実施例では、円筒の周囲を4等分した位置にコ
イルを巻回した永久磁石を配置した場合を述べた
が、この考案では、これ以外にも4等分位以上の
偶数等分位というように、少なくとも4等分位に
コイルを巻回した磁石を配置すれば、同様の作用
を行なうことができる。
In the example, we have described a case in which permanent magnets with coils wound around them are arranged at positions that divide the circumference of the cylinder into four equal parts, but in this invention, there are also other permanent magnets such as even numbered equal quantiles of 4 or more equal quantiles. A similar effect can be achieved by arranging a magnet with coils wound in at least four equal parts.

なお、円筒a,b上のコイルL1〜L4は第3図
に示すように並列に接続することもできる。
Incidentally, the coils L 1 to L 4 on the cylinders a and b can also be connected in parallel as shown in FIG. 3.

さらに磁石の外周に、例えば円環状の磁性バツ
クヨークを設けることで磁石の能率を向上するこ
ともできる。
Furthermore, the efficiency of the magnet can be improved by providing, for example, an annular magnetic back yoke around the outer periphery of the magnet.

また、実施例では、2つの円筒の場合を述べた
が3個または4個以上の円筒を取り付けた場合に
は、更に高精度なビーム集束ができる。
Further, in the embodiment, the case of two cylinders is described, but if three or more cylinders are attached, even more precise beam focusing can be achieved.

〔効果〕〔effect〕

この考案は、以上のように構成されているの
で、電子ビームのX軸方向およびY軸方向の静集
束および動集束の調整が個別に行なえる。このた
め、簡単な調整で、例えば、集束された電子ビー
ムが偏向コイル内を通過する際に受ける集束の乱
れも補正することができ、CRT管面全面で最適
な集束状態を得ることができる。
Since this invention is constructed as described above, static focusing and dynamic focusing of the electron beam in the X-axis direction and Y-axis direction can be adjusted individually. Therefore, with a simple adjustment, it is possible to correct, for example, disturbances in the focusing caused when the focused electron beam passes through the deflection coil, and it is possible to obtain an optimal focusing state over the entire surface of the CRT tube.

また、静集束コイルと、動集束コイル間の磁気
結合もないのでこれらのコイルの駆動電源も簡単
なものとすることができる。
Further, since there is no magnetic coupling between the static focusing coil and the dynamic focusing coil, the power source for driving these coils can be made simple.

さらに、この集束作用は、電子ビームと直交す
る磁界を用いているので、小さな磁束密度で効果
的に電子ビームを集束することができ、従来の磁
気レンズに比べ磁石の形状も小さくなつて軽くな
り、また、磁気シールドも必要とせず、小型化が
容易であり、重量も軽くすることができる。
Furthermore, since this focusing effect uses a magnetic field perpendicular to the electron beam, it is possible to effectively focus the electron beam with a small magnetic flux density, and the shape of the magnet is smaller and lighter than conventional magnetic lenses. Furthermore, it does not require a magnetic shield, making it easy to downsize and reduce weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例の側面図、第2図
は第1図の作用説明図、第3図は第2図と同一円
筒でのコイル並列接続図、第4図は従来例の側面
図である。 a,b……円筒、m1〜m8……永久磁石、
L1〜L8……コイル、Ia,Ib……直流電流、P……
補合補正信号。
Fig. 1 is a side view of one embodiment of this invention, Fig. 2 is an explanatory diagram of the operation of Fig. 1, Fig. 3 is a diagram of parallel connection of coils in the same cylinder as Fig. 2, and Fig. 4 is a diagram of the conventional example. FIG. a, b...Cylinder, m1-m8...Permanent magnet,
L 1 ~ L 8 ... Coil, I a , I b ... DC current, P ...
Complementary correction signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] CRT頚部の外周に、その軸線上前後所定間隔
を置いて少なくとも2個の非磁性体から成る円筒
を所定位置に取り付け、その両円筒周囲の4等分
した位置に永久磁石を配置すると共に、両円筒間
の対向する永久磁石は同一軸上とし、かつ、各永
久磁石の円筒外周面に接する磁極面は、前記周囲
で隣接するもの、および前記同一軸上で対向する
ものの極性がそれぞれ異なり、さらに、円筒上の
各永久磁石の外周にはコイルを巻回し、CRT頚
部に取り付けた各円筒外周の一方の互いに向き合
うコイルに、その発生する磁界により永久磁石の
強さを調整する直流電流を加えると共に、他方の
コイルには、内部の永久磁石に交番磁界を発生さ
せる水平および垂直偏向信号と同期した複合補正
信号を加えたことを特徴とするCRT磁気電子ビ
ーム集束装置。
At least two cylinders made of non-magnetic material are attached to the outer periphery of the CRT neck at predetermined positions at a predetermined distance in front and back on the axis of the neck, and permanent magnets are arranged at positions divided into four equal parts around both cylinders. The opposing permanent magnets between the cylinders are on the same axis, and the magnetic pole faces in contact with the cylindrical outer peripheral surface of each permanent magnet have different polarities between those adjacent on the periphery and those facing on the same axis, and A coil is wound around the outer circumference of each permanent magnet on the cylinder, and a direct current is applied to the coils facing each other on one side of the outer circumference of each cylinder attached to the neck of the CRT to adjust the strength of the permanent magnet by the generated magnetic field. , a CRT magneto-electron beam focusing device, characterized in that a composite correction signal synchronized with horizontal and vertical deflection signals that generate an alternating magnetic field in an internal permanent magnet is added to the other coil.
JP5766089U 1989-05-18 1989-05-18 Expired - Lifetime JPH0548352Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5766089U JPH0548352Y2 (en) 1989-05-18 1989-05-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5766089U JPH0548352Y2 (en) 1989-05-18 1989-05-18

Publications (2)

Publication Number Publication Date
JPH02146745U JPH02146745U (en) 1990-12-13
JPH0548352Y2 true JPH0548352Y2 (en) 1993-12-24

Family

ID=31582571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5766089U Expired - Lifetime JPH0548352Y2 (en) 1989-05-18 1989-05-18

Country Status (1)

Country Link
JP (1) JPH0548352Y2 (en)

Also Published As

Publication number Publication date
JPH02146745U (en) 1990-12-13

Similar Documents

Publication Publication Date Title
JPS5832892B2 (en) Deflection yoke structure for inline beam color cathode ray tube
JP2628648B2 (en) Cathode ray tube
JPS6019188B2 (en) Display device using simple convergence
US5039923A (en) Focus adjusting device for projection display
US2944174A (en) Electronic image system and method
JPH0548352Y2 (en)
US3035198A (en) Deflection and focusing apparatus for cathode ray tubes
US5757121A (en) Apparatus for reducing deflection aberration in a CRT
JPH0644923A (en) Focusing unit
JP2826615B2 (en) Electron beam focusing device
JPS5838521Y2 (en) deflection yoke
JPH01276546A (en) Focusing magnet
JPH0560212B2 (en)
JPH01169853A (en) Convergence device
JPH0525161Y2 (en)
JPH0535556Y2 (en)
Johnson Picture tubes for television displays using quadrupole scan magnification
JP3809707B2 (en) Misconvergence correction device
RU2059319C1 (en) Device for static convergence and color purity adjustment in color tubes
JP2651255B2 (en) Focus magnet assembly
KR800000316B1 (en) Display system with simplified convergence
KR970023591A (en) Deflection yoke for cathode ray tube
JPH0382447A (en) Magnetic field generator
JPH076607Y2 (en) Deflection yoke device
JPS6145345B2 (en)