JPH0547744A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0547744A
JPH0547744A JP20666891A JP20666891A JPH0547744A JP H0547744 A JPH0547744 A JP H0547744A JP 20666891 A JP20666891 A JP 20666891A JP 20666891 A JP20666891 A JP 20666891A JP H0547744 A JPH0547744 A JP H0547744A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
nitride film
process gas
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20666891A
Other languages
Japanese (ja)
Inventor
Yukio Hosoda
幸男 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20666891A priority Critical patent/JPH0547744A/en
Publication of JPH0547744A publication Critical patent/JPH0547744A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a cover insulating film having small influence of moisture, etc., to wirings and high reliability in a structure of the film of a semiconductor integrated circuit device and a method for manufacturing the same. CONSTITUTION:A method for manufacturing a silicon nitride film formed on a semiconductor substrate 1 formed with an electrode wiring film 2, comprises the steps of covering the substrate 1 with a first silicon nitride film 4 by a CVD method by using ternary system process gas of silane, nitrogen, ammonia, and then laminating a second silicon nitride film 5 having a thickness twice as thick as that of the film 4 on the substrate by using binary system process gas of silane, nitrogen, containing no ammonia.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体集積回路装置の
カバー膜の構造とその製造方法に関する。近年の半導体
集積回路の高集積化,多層配線化にともない,素子の表
面を保護するカバー絶縁膜においても高い信頼性が要求
されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a cover film of a semiconductor integrated circuit device and a manufacturing method thereof. With the recent trend toward higher integration and multilayer wiring of semiconductor integrated circuits, high reliability is also required for the cover insulating film that protects the surface of the device.

【0002】そのため,カバー絶縁膜が耐湿性や応力
(ストレス)等,配線に与える影響をできるだけ軽減さ
せる必要がある。
Therefore, it is necessary to reduce the influence of the insulating cover film on the wiring, such as moisture resistance and stress.

【0003】[0003]

【従来の技術】図3は従来例の説明図である。図におい
て,17は半導体基板, 18は配線膜, 19は下層絶縁膜, 20
は窒化シリコン膜である。
2. Description of the Related Art FIG. 3 is an explanatory view of a conventional example. In the figure, 17 is a semiconductor substrate, 18 is a wiring film, 19 is a lower insulating film, 20
Is a silicon nitride film.

【0004】カバー絶縁膜としては,二酸化シリコン(S
iO2)膜や燐珪酸ガラス(PSG) 膜, 或いは窒化シリコン(S
i3N4) 膜が多く用いられており,この内, Si3N4膜は耐
湿性の点で最も優れている。
Silicon dioxide (S
iO 2 ) film, phosphosilicate glass (PSG) film, or silicon nitride (S
Many i 3 N 4 ) films are used, and among these, the Si 3 N 4 film is the most excellent in terms of moisture resistance.

【0005】従来, Si3N4膜の成膜には,プロセスガス
として,シラン(SiH4),アンモニア(NH3),窒素(N2)の三
元系ガスを用いる場合,或いは,SiH4, N2の二元系ガス
を用いる場合が主流であった。
Conventionally, when forming a Si 3 N 4 film, a ternary gas of silane (SiH 4 ), ammonia (NH 3 ), and nitrogen (N 2 ) is used as a process gas, or SiH 4 , N 2 binary gas was the mainstream.

【0006】ところが,SiH4, NH3,N2の三元系ガスを用
いて成膜した Si3N4膜は基板の熱処理等で応力が下の表
1のように圧縮から引張と反転し易い。
However, in the Si 3 N 4 film formed by using a ternary gas of SiH 4 , NH 3 and N 2 , the stress due to heat treatment of the substrate is reversed from compression to tension as shown in Table 1 below. easy.

【0007】[0007]

【表1】 [Table 1]

【0008】そのため,図3(b)に示すように, Si3
N4膜20の成膜後は, 半導体基板17は圧縮応力により表面
が凸に沿っているが, N2雰囲気中,450℃で30分のアニー
ルを行うと, 引張応力により, 反対に表面が凹に反って
しまう。
[0008] Therefore, as shown in FIG. 3 (b), Si 3
After the N 4 film 20 is formed, the surface of the semiconductor substrate 17 is convex due to the compressive stress. However, if annealing is performed at 450 ° C. for 30 minutes in the N 2 atmosphere, the surface of the semiconductor substrate 17 is opposite due to the tensile stress. It warps in the concave.

【0009】このため, Si3N4膜20にクラックが入った
り, 配線膜が断線したりする。また, 赤外線吸収スペク
トルで,プロセスガスに NH3を使用した場合と使用しな
い場合の二種の Si3N4膜の水素の含有量を調べて見る
と, 水素の含有量が多いと2170cm-1のSi−Hと, 3340cm
-1のN−Hのピークが大きくなるので,図4に示すよう
に, NH3 を使用した三元系のプロセスガスで成膜した S
i3N4膜は水素を多く含んで, 特性的に問題を起こす欠点
がある。
Therefore, the Si 3 N 4 film 20 is cracked or the wiring film is broken. In addition, the infrared absorption spectra of the two types of Si 3 N 4 films with and without NH 3 as the process gas were examined to find that the hydrogen content was 2170 cm −1 when the hydrogen content was high. Si-H, 3340cm
Since the N-H peak of -1 becomes large, as shown in Fig. 4, the S film formed by the ternary process gas using NH 3 was deposited.
The i 3 N 4 film has a drawback that it contains a large amount of hydrogen and causes problems in characteristics.

【0010】一方, SiH4, N2の二元系プロセスガスを用
いて成膜した Si3N4膜は耐湿性が悪く, 例えば,二層配
線の製品で, 2気圧,121 ℃, 湿度100 %の条件で耐湿
試験を行うと, SiH4, NH3, N2 の三元系ガスを用いて成
膜した Si3N4膜は良好な耐湿性を示したが, SiH4, N2
二元系ガスを用いて成膜した Si3N4膜では, クラックが
多発した。
On the other hand, a Si 3 N 4 film formed by using a binary process gas of SiH 4 and N 2 has poor moisture resistance. For example, a product with two-layer wiring has a pressure of 2 atm, a temperature of 121 ° C. and a humidity of 100 Doing% condition moisture resistance test in the, SiH 4, NH 3, Si 3 N 4 film formed by using the ternary gas N 2 showed good moisture resistance, of SiH 4, N 2 The Si 3 N 4 film formed by using the binary gas had many cracks.

【0011】[0011]

【発明が解決しようとする課題】従って,上記の二種の
構成のプロセスガスを用いて成膜した Si3N4膜をカバー
絶縁膜として半導体集積回路に用いた場合,何れの Si3
N4膜を用いても信頼性に難があった。
[0005] Thus, when used in a semiconductor integrated circuit to the Si 3 N 4 film was deposited using a process gas of a configuration of the above two as a cover insulating film, any of Si 3
Even with the N 4 film, the reliability was low.

【0012】本発明は,上記の問題点を解決し,配線に
影響を与える耐湿性やストレス等を改善して,カバー絶
縁膜の信頼性向上を目的として提供されるものである。
The present invention is provided for the purpose of solving the above problems, improving moisture resistance and stress that affect wiring, and improving reliability of a cover insulating film.

【0013】[0013]

【課題を解決するための手段】図1は本発明の原理説明
図である。図において,1は半導体基板,2は配線膜,
3は下層絶縁膜,4は第1のSi3N4膜,5は第2の Si3N
4膜である。
FIG. 1 illustrates the principle of the present invention. In the figure, 1 is a semiconductor substrate, 2 is a wiring film,
3 is the lower insulating film, 4 is the first Si 3 N 4 film, and 5 is the second Si 3 N
There are 4 membranes.

【0014】上記の問題点を解決するためには, 三元系
のプロセスガスとアンモニアを含まない二元系のプロセ
スガスを用いて成膜した Si3N4膜を重ねて,二層以上の
多重層にすれば良い。
In order to solve the above problems, Si 3 N 4 films formed by using a ternary process gas and a binary process gas containing no ammonia are stacked to form two or more layers. It may be multi-layered.

【0015】これにより,二種の Si3N4膜が有する欠点
が補われて,信頼性の良いカバー膜を得ることがてき
る。即ち,本発明の目的は,配線膜2等が形成された半
導体基板1上に, Si3N4膜を成膜する製造方法であっ
て,SiH4,N2,NH3 の三元系プロセスガスを用い,CV
D法により該半導体基板1上に第1の Si3N4膜4を被覆
し,続いて,NH3 を含まない,SiH4,N2の二元系プロセ
スガスを用い,CVD法により前記第1の Si3N4膜4上
に第1の Si3N4膜4の少なくとも2倍以上の厚さの第2
の Si3N4膜5を積層することにより,或いは,SiH4
N2,NH3 の三元系プロセスガスと,SiH4,N2の二元系プ
ロセスガスを交互に用いて,CVD法により該半導体基
板1上に順に二種の Si3N4膜4,5を交互に積層するこ
とにより達成される。
As a result, the drawbacks of the two kinds of Si 3 N 4 films are compensated, and a reliable cover film can be obtained. That is, an object of the present invention is a manufacturing method for forming a Si 3 N 4 film on a semiconductor substrate 1 on which a wiring film 2 and the like are formed, which is a ternary process of SiH 4 , N 2 and NH 3. CV using gas
The first Si 3 N 4 film 4 is coated on the semiconductor substrate 1 by the D method, and subsequently, the above-mentioned first Si 3 N 4 film 4 is deposited by the CVD method using a binary process gas of SiH 4 and N 2 containing no NH 3 . The second Si layer having a thickness at least twice that of the first Si 3 N 4 film 4 is formed on the first Si 3 N 4 film 4.
By laminating the Si 3 N 4 film 5 of, or, SiH 4,
By alternately using a ternary process gas of N 2 and NH 3 and a ternary process gas of SiH 4 and N 2 , two types of Si 3 N 4 films 4 are sequentially formed on the semiconductor substrate 1 by a CVD method. This is achieved by stacking 5 alternately.

【0016】[0016]

【作用】本発明では,最下層に三元系のプロセスガスに
より成膜した第1の Si3N4膜を1,000Å程度に薄く被覆
して水分を阻止(ブロック)し,その上に二元系のプロ
セスガスにより成膜した第2の Si3N4膜を厚く成長す
る。
In the present invention, the first Si 3 N 4 film formed by the ternary process gas as the lowermost layer is thinly coated to about 1,000 Å to block (block) water, and the binary A second Si 3 N 4 film formed by a system process gas is grown thick.

【0017】この膜の厚さを前者の少なくとも2倍以上
にすればストレスの変化の軽減が図れる。
If the thickness of this film is at least twice the thickness of the former, the change in stress can be reduced.

【0018】[0018]

【実施例】図1は本発明の原理説明図兼一実施例の模式
断面図,図2はプラズマCVD装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention, and FIG.

【0019】図において1は半導体基板,2は配線膜,
3は下層絶縁膜,4は第1の Si3N4膜,5は第2の Si3
N4膜,6はチャンバ,7はガスシャワー,8は石英窓,
9はランプヒータ,10はガス導入口, 11はシランガス容
器, 12は窒素ガス容器, 13はアンモニアガス容器, 14は
開閉バルブ, 15は排気口, 16はRF電源である。
In the figure, 1 is a semiconductor substrate, 2 is a wiring film,
3 is the lower insulating film, 4 is the first Si 3 N 4 film, and 5 is the second Si 3
N 4 film, 6 chamber, 7 gas shower, 8 quartz window,
9 is a lamp heater, 10 is a gas inlet, 11 is a silane gas container, 12 is a nitrogen gas container, 13 is an ammonia gas container, 14 is an opening / closing valve, 15 is an exhaust port, and 16 is an RF power supply.

【0020】本発明の一実施例について,図1,図2に
より工程順に説明する。図1に示すように,半導体基板
1として,既に1μmの厚さに,アルミニウム(Al)の配
線膜2がパターニングされたシリコンウエハを用い,下
層絶縁膜3として, PSG 膜を常圧CVD層装置を用い,
基板温度 410℃, SiH4ガス80sccm, 酸素(02)ガス1slm,
フォスフィン(PH3) ガス 900sccmをプロセスガスとして
用いて,5,000 Åの厚さに被覆する。
An embodiment of the present invention will be described in the order of steps with reference to FIGS. As shown in FIG. 1, the semiconductor substrate 1 is a silicon wafer on which the aluminum (Al) wiring film 2 is already patterned to a thickness of 1 μm, and the PSG film is used as the lower insulating film 3 under the atmospheric pressure CVD layer device. Using
Substrate temperature 410 ℃, SiH 4 gas 80sccm, Oxygen (0 2 ) gas 1slm,
The phosphine (PH 3 ) gas 900sccm is used as the process gas to coat the thickness of 5,000Å.

【0021】次に, 図2に示すプラズマCVD装置を用
い,基板温度415 ℃にチャンバ6内にセットした半導体
基板をランプヒータ9により石英窓8を通して加熱し,
各プロセスガスの容器から,SiH4 25sccm, NH3 150scc
m, N2 300sccmの三元系プロセスガスをガス導入口10よ
りガスシャワー7を通してチャンパ6内に導入し, RF
周波数200KHz, 出力30W,チャンバ6内圧力1.0Torrの
条件で,半導体基板1上に第1の Si3N4膜4を,1,000
Åの厚さに形成する。
Next, using the plasma CVD apparatus shown in FIG. 2, the semiconductor substrate set in the chamber 6 at a substrate temperature of 415 ° C. is heated by the lamp heater 9 through the quartz window 8,
From each process gas container, SiH 4 25sccm, NH 3 150scc
A ternary process gas of m, N 2 300 sccm was introduced into the champer 6 through the gas shower 7 through the gas inlet 10 and RF.
Under the conditions of a frequency of 200 KHz, an output of 30 W, and a chamber 6 internal pressure of 1.0 Torr, a first Si 3 N 4 film 4 of 1,000 was formed on the semiconductor substrate 1.
Form to a thickness of Å.

【0022】続いて, アンモニアガス容器に通ずる開閉
バルブ14を閉じて, SiH4を80sccm,N2を1500sccmの二元
系のプロセスガスを用い, 前述と同様の条件で, 半導体
基板1の第1の Si3N4膜4上に第2の Si3N4膜5を 2,5
00Åの厚さに積層する。
Next, the on-off valve 14 leading to the ammonia gas container was closed, and a binary process gas of SiH 4 of 80 sccm and N 2 of 1500 sccm was used, and the first substrate of the semiconductor substrate 1 was processed under the same conditions as described above. A second Si 3 N 4 film 5 is formed on the Si 3 N 4 film 4 of
Stack to a thickness of 00Å.

【0023】この結果, 二種の Si3N4膜4,5をカバー
絶縁膜として積層したため, Al配線膜に耐する耐湿性は
向上し, かつ応力の反転も少ない基板が得られた。
As a result, since the two kinds of Si 3 N 4 films 4 and 5 were laminated as the cover insulating film, the humidity resistance against the Al wiring film was improved, and the substrate with less stress reversal was obtained.

【0024】[0024]

【発明の効果】以上説明したように, 本発明によれば,
耐湿性を向上させるとともに,熱処理によるストレス反
転の程度を軽減でき,配線の信頼性向上に寄与するとこ
ろが大きい。
As described above, according to the present invention,
In addition to improving the moisture resistance, it is possible to reduce the degree of stress reversal due to heat treatment, which greatly contributes to improving the reliability of the wiring.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 プラズマCVD装置FIG. 2 Plasma CVD apparatus

【図3】 従来例の説明図FIG. 3 is an explanatory diagram of a conventional example.

【図4】 Si3N4膜の赤外線吸収スペクトルFig. 4 Infrared absorption spectrum of Si 3 N 4 film

【符号の説明】[Explanation of symbols]

1 半導体基板 2 配線膜 3 下層絶縁膜 4 第1の Si3N4膜 5 第2の Si3N4膜 6 チャンバ 7 ガスシャワー 8 石英窓 9 ランプヒータ 10 ガス導入口 11 シランガス容器 12 窒素ガス容器 13 アンモニアガス容器 14 開閉バルブ 15 排気口 16 RF電源1 semiconductor substrate 2 wiring film 3 lower insulating film 4 first Si 3 N 4 film 5 second Si 3 N 4 film 6 chamber 7 gas shower 8 quartz window 9 lamp heater 10 gas inlet 11 silane gas container 12 nitrogen gas container 13 Ammonia gas container 14 Open / close valve 15 Exhaust port 16 RF power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極配線膜が形成された半導体基板上
に,窒化シリコン膜を成膜する製造方法であって, シラン,窒素,アンモニアの三元系プロセスガスを用
い,CVD法により該半導体基板上に第1の窒化シリコ
ン膜を被覆し, 続いて,アンモニアを含まない,シラン,窒素の二元系
プロセスガスを用い,CVD法により前記第1の窒化シ
リコン膜上に第1の窒化シリコン膜の少なくとも2倍以
上の厚さの第2の窒化シリコン膜を積層することを特徴
とする半導体装置の製造方法。
1. A manufacturing method for forming a silicon nitride film on a semiconductor substrate on which an electrode wiring film is formed, wherein the semiconductor substrate is formed by a CVD method using a ternary process gas of silane, nitrogen and ammonia. The first silicon nitride film is coated on the first silicon nitride film, and then the first silicon nitride film is formed on the first silicon nitride film by a CVD method using a binary process gas containing no ammonia and containing silane and nitrogen. Of the second silicon nitride film having a thickness at least twice as much as the above.
【請求項2】 電極配線膜が形成された半導体基板上
に,窒化シリコン膜を成膜する製造方法であって, シラン,窒素,アンモニアの三元系プロセスガスとアン
モニアを含まない,シラン,窒素の二元系プロセスガス
を交互に用いて,CVD法により該半導体基板上に順に
窒化シリコン膜を積層することを特徴とする半導体装置
の製造方法。
2. A manufacturing method for forming a silicon nitride film on a semiconductor substrate on which an electrode wiring film is formed, which is a ternary process gas of silane, nitrogen, and ammonia and does not contain ammonia. 2. A method of manufacturing a semiconductor device, wherein a silicon nitride film is sequentially deposited on the semiconductor substrate by a CVD method by alternately using the binary system process gas.
JP20666891A 1991-08-19 1991-08-19 Manufacture of semiconductor device Withdrawn JPH0547744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20666891A JPH0547744A (en) 1991-08-19 1991-08-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20666891A JPH0547744A (en) 1991-08-19 1991-08-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0547744A true JPH0547744A (en) 1993-02-26

Family

ID=16527154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20666891A Withdrawn JPH0547744A (en) 1991-08-19 1991-08-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0547744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300678A (en) * 2007-05-31 2008-12-11 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device, and semiconductor device
WO2010098295A1 (en) * 2009-02-25 2010-09-02 日本電気株式会社 Optical waveguide, optical waveguide circuit, and method for manufacturing optical waveguide circuit
JP2021100093A (en) * 2019-12-20 2021-07-01 東京エレクトロン株式会社 Etching method, substrate processing device, and substrate processing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300678A (en) * 2007-05-31 2008-12-11 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device, and semiconductor device
WO2010098295A1 (en) * 2009-02-25 2010-09-02 日本電気株式会社 Optical waveguide, optical waveguide circuit, and method for manufacturing optical waveguide circuit
JP2021100093A (en) * 2019-12-20 2021-07-01 東京エレクトロン株式会社 Etching method, substrate processing device, and substrate processing system

Similar Documents

Publication Publication Date Title
JP2682403B2 (en) Method for manufacturing semiconductor device
JP3135198B2 (en) Method of depositing silicon oxynitride film by plasma enhanced CVD
US7420279B2 (en) Carbon containing silicon oxide film having high ashing tolerance and adhesion
JP2003531493A (en) Method for enhancing adhesion of silicon nitride to low dielectric constant fluorine-containing amorphous carbon using silicon carbide adhesion promoter layer
JPH04239750A (en) Forming method for fluorine-containing silicon oxide film
TWI223857B (en) Method of making a silicon nitride film that is transmissive to ultraviolet light
KR20020009440A (en) Film forming method, semiconductor device and semiconductor device manufacturing method
US5763005A (en) Method for forming multilayer insulating film of semiconductor device
JPS62156822A (en) Insulating thin film, and formation and forming device thereof
JPH0547744A (en) Manufacture of semiconductor device
JP2000100811A (en) Manufacturing method for semiconductor device
US6844612B1 (en) Low dielectric constant fluorine-doped silica glass film for use in integrated circuit chips and method of forming the same
JPH0750295A (en) Manufacture of semiconductor device
JPH0499049A (en) Semiconductor device
JPS62174927A (en) Semiconductor device
JP3789501B2 (en) Method for manufacturing insulating film structure used in semiconductor device
US11955344B2 (en) Methods and structures for changing wafer bow
JPH06216118A (en) Manufacture of semiconductor device
JPH03107463A (en) Method and device for forming insulated film
JPH04162428A (en) Manufacture of semiconductor device
JPH0258353A (en) Semiconductor device
JPH04129223A (en) Manufacture of semiconductor device
JP2629587B2 (en) Method for manufacturing semiconductor device
JPH04218917A (en) Formation of insulating film
JPH0669200A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112