JPH0547497B2 - - Google Patents

Info

Publication number
JPH0547497B2
JPH0547497B2 JP63122733A JP12273388A JPH0547497B2 JP H0547497 B2 JPH0547497 B2 JP H0547497B2 JP 63122733 A JP63122733 A JP 63122733A JP 12273388 A JP12273388 A JP 12273388A JP H0547497 B2 JPH0547497 B2 JP H0547497B2
Authority
JP
Japan
Prior art keywords
zirconia
ceramics
particle size
sintered body
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63122733A
Other languages
Japanese (ja)
Other versions
JPH01290547A (en
Inventor
Akira Matsui
Tomoaki Ishiguro
Sotohiro Takabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP63122733A priority Critical patent/JPH01290547A/en
Publication of JPH01290547A publication Critical patent/JPH01290547A/en
Publication of JPH0547497B2 publication Critical patent/JPH0547497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、セラミツクス焼結体の表面層に残留
圧縮応力を発生させ、強度向上と靭性の向上を同
時に達成しようとするものである。 従来、セラミツクスを強化する方法として、表
面圧縮層を形成する方法が知られている。例えば
アルミナ焼結体の表面に酸化クロムを固溶させる
方法、チタニア表面に酸化スズを固溶させる方法
が知られているが、強度向上効果は前者で2.7〜
28.9%であり不十分である。また、急冷法により
表面層に圧縮応力を与える方法も提案されている
が、制御が難しく再現性に乏しいため実用化され
ていない。また、近年ジルコニア分散セラミツク
スにおいて、表面を研磨することやジルコニアの
安定化剤を高温熱処理により除去することにより
表層のジルコニアを正方晶系から単斜晶系に変態
させその際の体積膨張により表面に圧縮応力をか
ける方法が提案されている。しかし、これらの方
法では、残留圧縮応力のかかる厚さが薄くセラミ
ツクスの強度を支配する代表的な表面傷の深さに
比較して、表層の残留圧縮応力のかかる厚みが極
めて薄いため、セラミツクスの強化は不十分であ
る。さらに、内層は安定化ジルコニアと母相セラ
ミツクス、また外層は未安定ジルコニアと母相セ
ラミツクスの複合焼結体からなる三層構造のセラ
ミツクスをプレス成形や鋳込み成形で作製する方
法も提案されている。この方法によるセラミツク
スは表面圧縮層の厚みを制御できるので、セラミ
ツクスの表面の傷よりも圧縮層を厚くでき有効で
あるが、表面層と内層との界面で破損するので強
化は不十分であるという欠点がある。これは、ま
ず表面層を成形し次いで内層を形成するため界面
に欠陥を含みやすいことと、さらに、表面層は圧
縮応力がまた内層には引つ張り応力が働き界面で
応力の不連続が生じるためである。また、製造し
にくいことも欠点である。 本発明者らは、セラミツクス成形体もしくは予
備焼結体(多孔質)にジルコニウム水溶液を含浸
し、乾燥、焼結させることを試みている際、正方
晶系ジルコニアと単斜晶系ジルコニアの重量比が
4以上で、かつその粒子径が0.1〜1μmで、かつ
焼結体の表層濃度が高く内部に向かつて低濃度に
なるような濃度勾配でジルコニアが母相中に分散
している組織のセラミツクスが得られ、その強度
は、母相だけで構成されるセラミツクスに比較し
て大幅に向上することを見いだした。 その後、破壊靭性を向上させるためさらに鋭意
検討した結果、ジルコニウム溶液を含浸させるべ
き成形体または予備焼結体の原料に予め粒子径
3μm以下のジルコニアを3〜20WT%含有させる
ことにより、ジルコニアは表面が高く内部に向か
つて低くなる濃度勾配をしており、かつ単斜晶
系/正方晶系の比も表面が高く内部に向かつて連
続的に低くなる組織のセラミツクスが得られ、母
相のみで構成されるセラミツクスに比較して、強
度と共に大幅に破壊靭性も改善されることを見い
だし本発明を完成するに至つた。 以下、本発明を詳細に説明する。 平均粒子径が3μm以下のジルコニア粒子をを
3〜20WT%含有する平均粒子径が3μm以下のア
ルミナ、ムライト、ジルコン、窒化珪素、炭化水
素、サイアロンから選ばれた一種または二種以上
の混合物または化合物あるいは焼成することによ
りこれらを生成するセラミツクス粉体原料により
所望の形状の成形体を形成する。 平均粒子径を3μm以下と限定した理由は、そ
れよい大きいと焼結後のジルコニアの平均粒子径
が大きくなり単斜晶系に変態する際の体積膨張の
ため、母相セラミツクス中に制御できないクラツ
クを生じ強度が低下してしまうことと、また母相
セラミツクスの粒子径が3μmを越えると焼結温
度が大幅に上昇して実用的でないためである。 セラミツクスの成形方法としては、セラミツク
スの成形に一般的に用いられているプレス法、ス
リツプキヤスト法、射出成形法等の成形方法が用
いられる。CIP処理を施すと粗大気孔が除去され
るので一層好適である。そして必要に応じて成形
体を予備焼結する。予備焼結は機械加工や取扱を
容易にするための強度を付与する目的で行うが、
かさ密度な理論密度の70%以下である必要があ
る。その理由は、かさ密度が70%以上では、焼結
体中のジルコニア濃度が低くなり強靭化の効果が
少なくなるからである。 その後、成形体あるいは予備焼結体をオキシ塩
化ジルコニウム、硝酸ジルコニウム、酢酸ジルコ
ニウム等のジルコニウム含有溶液中に大気中また
は真空槽内で浸漬して含浸処理する。含浸用の溶
液の濃度は、濃すぎると粘性が高く含浸し難くな
る、一方、薄くなりすぎると焼結体中のジルコニ
ア濃度が低くなり強靭化の効果が少なくなるの
で、1〜4mol/が好ましい。また、含浸処理
においては、含浸、乾燥を繰り返すことも好まし
く、これによつて高濃度なジルコニア含浸体が得
られる。 かくして、含浸処理後、乾燥、焼結させること
により、ジルコニアは表面が高く内部に向かつて
低くなる濃度勾配をしており、かつ単斜晶系/正
方晶系の比も表面が高く内部に向かつて連続的に
低くなる組織のセラミツクスが得られる。このセ
ラミツクスは、母相のみで構成されるセラミツク
スに比較して、強度と共に大幅に破壊靭性も改善
され、強靭化する。 ここで、成形前に原料セラミツクス粉体中に配
合するジルコニアの量は、3〜20wt%好ましく
は7〜15wt%がが好適である。これは、多すぎ
ると含浸処理の有無にかかわらず表層部も内部も
単斜晶系が主体になり、強度が弱くなる。一方、
少なすぎると、含浸処理の有無にかかわらず表層
部も内部も正方晶系が主体になり、靭性の向上を
期待し難いためである。 本発明によるセラミツクスは、マイクロクラツ
クによる高靭性化のほかに、表層のジルコニアの
かなりの量が単斜晶系に変態し体積膨張している
のに対し、内側になるにつれて単斜晶系ジルコニ
アの量は連続的に減少し内部は大半が正方晶系ジ
ルコニアのままであり体積変化はないので、表面
層には強力な圧縮応力が働き、強度向上と靭性向
上が同時に達成されたものと考えられる。 従来ジルコニア分散強化セラミツクスの製造時
にジルコニアの凝集を防いで均一分散させる技術
は難しかつたが、本発明によれば、初期ジルコニ
アの濃度が低いため容易に均一分散が可能とな
る。また、含浸処理するだけで強度を40%以上ま
た靭性を100%以上同時に向上させることができ
るので、産業上極め有効である。 以下、実施例により本発明を説明をする。 実施例 1 住友アルミニウム(株)製アルミナAES11CY(平
均粒子径0.5μm)90重量部に第一希元素(株)製未安
定化ジルコニアUEP(平均粒子径0.2μm)10重量
部を混合し、分散剤はD305を用い、2wt%、のス
テアリン酸エマルジヨンと2.5wt%のワツクスエ
マルジヨンを添加しボールミルにより24hr湿式混
合した。 乾燥後、解砕し、一軸加圧成形法(成形圧力
700Kgf/cm2)により4x4x36mm3の成形体を作製
し、1100℃で予備焼結した。80℃の純水100grに
オキシ塩化ジルコニウムを100grを溶解後、その
ジルコニウム塩溶液に予備焼結体を入れ30分間含
浸させた。その後、直ちに1/1アンモニア水溶液
中に4時間浸漬し、次いで80℃で2hr、120℃で
2hr乾燥した。10℃/minの速度で昇温し、1650
℃で1hr焼結させ強靭化セラミツクス(試料1)
を得た。 また、対照として、含浸処理を行わず焼成温度
が1600℃である以外は、前期と同様な処理をして
試料2を作製した。得られた試料は、常温で、ス
パン距離20mm、クロスヘツド降下速度0.5mm/
minの条件で3点曲げ試験を行つた。その結果を
以下に示す。(単位Kgf/mm2
The present invention aims to simultaneously improve strength and toughness by generating residual compressive stress in the surface layer of a ceramic sintered body. Conventionally, a method of forming a surface compression layer is known as a method of strengthening ceramics. For example, a method of dissolving chromium oxide on the surface of an alumina sintered body and a method of dissolving tin oxide on the surface of titania are known, but the strength improvement effect of the former is 2.7~
It is 28.9%, which is insufficient. Additionally, a method of applying compressive stress to the surface layer using a quenching method has been proposed, but it has not been put to practical use because it is difficult to control and lacks reproducibility. In addition, in recent years, in zirconia-dispersed ceramics, by polishing the surface or removing the zirconia stabilizer by high-temperature heat treatment, the zirconia on the surface layer is transformed from a tetragonal system to a monoclinic system. A method of applying compressive stress has been proposed. However, with these methods, the thickness to which residual compressive stress is applied is extremely thin compared to the depth of typical surface scratches that govern the strength of ceramics. Reinforcement is insufficient. Furthermore, a method has also been proposed in which a three-layer ceramic structure is produced by press molding or casting, in which the inner layer is made of stabilized zirconia and ceramic matrix, and the outer layer is a composite sintered body of unstabilized zirconia and ceramic matrix. Ceramics made using this method can control the thickness of the surface compressed layer, making the layer thicker than scratches on the surface of the ceramic, making it effective. However, it is said that the reinforcement is insufficient because it breaks at the interface between the surface layer and the inner layer. There are drawbacks. This is because the surface layer is molded first and then the inner layer is formed, which tends to contain defects at the interface.Furthermore, compressive stress is applied to the surface layer and tensile stress is applied to the inner layer, causing stress discontinuity at the interface. It's for a reason. Another disadvantage is that it is difficult to manufacture. When the present inventors attempted to impregnate a ceramic molded body or a pre-sintered body (porous) with a zirconium aqueous solution, dry it, and sinter it, the weight ratio of tetragonal zirconia and monoclinic zirconia is 4 or more, the particle size is 0.1 to 1 μm, and the zirconia has a structure in which zirconia is dispersed in the matrix with a concentration gradient such that the concentration at the surface of the sintered body is high and the concentration decreases toward the inside. was obtained, and the strength was found to be significantly improved compared to ceramics composed only of a matrix. After that, as a result of further intensive studies to improve fracture toughness, we found that the raw material for the compact or pre-sintered body to be impregnated with the zirconium solution had a particle size that
By containing 3 to 20 WT% of zirconia with a diameter of 3 μm or less, the zirconia has a concentration gradient that is high on the surface and decreases toward the inside, and the monoclinic/tetragonal ratio is also high on the surface and toward the inside. In the past, ceramics with a structure that gradually decreases were obtained, and the present inventors discovered that the strength and fracture toughness were significantly improved compared to ceramics composed only of a matrix, leading to the completion of the present invention. The present invention will be explained in detail below. A mixture or compound of one or more selected from alumina, mullite, zircon, silicon nitride, hydrocarbon, and sialon with an average particle size of 3 μm or less, containing 3 to 20 WT% of zirconia particles with an average particle size of 3 μm or less Alternatively, a molded body of a desired shape is formed using ceramic powder raw materials produced by firing. The reason why the average particle size is limited to 3 μm or less is that if it is too large, the average particle size of zirconia after sintering will increase and volume expansion during transformation to monoclinic system will cause uncontrollable cracks in the matrix ceramic. This is because the strength decreases due to the formation of sintering temperature, and also because if the particle size of the ceramic matrix exceeds 3 μm, the sintering temperature will rise significantly, making it impractical. As a method for molding ceramics, molding methods commonly used for molding ceramics, such as a press method, a slip cast method, and an injection molding method, are used. CIP treatment is more suitable because coarse pores are removed. The molded body is then preliminarily sintered if necessary. Pre-sintering is performed to provide strength to facilitate machining and handling.
The bulk density must be 70% or less of the theoretical density. The reason is that if the bulk density is 70% or more, the zirconia concentration in the sintered body will be low and the toughening effect will be reduced. Thereafter, the compact or pre-sintered body is impregnated by immersing it in a solution containing zirconium such as zirconium oxychloride, zirconium nitrate, or zirconium acetate in the air or in a vacuum tank. The concentration of the solution for impregnation is preferably 1 to 4 mol/mol/ml, because if it is too thick, the viscosity will be high and it will be difficult to impregnate, but if it is too thin, the zirconia concentration in the sintered body will be low and the toughening effect will be reduced. . Further, in the impregnation treatment, it is also preferable to repeat impregnation and drying, whereby a highly concentrated zirconia-impregnated body can be obtained. Thus, by drying and sintering after impregnation, zirconia has a concentration gradient that is high on the surface and decreases toward the inside, and the monoclinic/tetragonal ratio is high on the surface and decreases toward the inside. Ceramics with a continuously decreasing structure are obtained. This ceramic has significantly improved strength and fracture toughness compared to ceramics composed only of a matrix, making it tougher. Here, the amount of zirconia blended into the raw ceramic powder before molding is preferably 3 to 20 wt%, preferably 7 to 15 wt%. If this amount is too large, both the surface layer and the interior will be dominated by monoclinic crystals, which will weaken the strength. on the other hand,
If the amount is too small, both the surface layer and the interior will be predominantly tetragonal, and it will be difficult to expect an improvement in toughness. In addition to high toughness due to microcracks, the ceramic according to the present invention has a large amount of zirconia in the surface layer that transforms into a monoclinic system and expands in volume. The amount of zirconia decreases continuously, and the interior remains mostly tetragonal zirconia with no change in volume, so it is thought that strong compressive stress acts on the surface layer, resulting in improved strength and toughness at the same time. It will be done. Conventionally, during the production of zirconia dispersion-strengthened ceramics, it has been difficult to achieve uniform dispersion by preventing zirconia from aggregating, but according to the present invention, uniform dispersion is easily possible because the initial concentration of zirconia is low. In addition, it is extremely effective industrially because it can simultaneously improve strength by 40% or more and toughness by 100% or more just by impregnating it. The present invention will be explained below with reference to Examples. Example 1 90 parts by weight of alumina AES11CY (average particle size 0.5 μm) manufactured by Sumitomo Aluminum Co., Ltd. was mixed with 10 parts by weight of unstabilized zirconia UEP (average particle size 0.2 μm) manufactured by Daiichi Kigenso Co., Ltd., and a dispersant was added. Using D305, 2 wt% of stearic acid emulsion and 2.5 wt% of wax emulsion were added and wet-mixed in a ball mill for 24 hours. After drying, it is crushed and uniaxial pressure molding method (molding pressure
700Kgf/cm 2 ), a 4x4x36mm 3 molded body was produced and pre-sintered at 1100°C. After dissolving 100 gr of zirconium oxychloride in 100 gr of pure water at 80°C, the pre-sintered body was placed in the zirconium salt solution and impregnated for 30 minutes. After that, it was immediately immersed in a 1/1 ammonia aqueous solution for 4 hours, then at 80℃ for 2 hours, and then at 120℃.
Dry for 2hr. Raise the temperature at a rate of 10℃/min to 1650℃
Ceramics toughened by sintering at ℃ for 1 hour (sample 1)
I got it. In addition, as a control, Sample 2 was prepared in the same manner as in the previous period except that the impregnation treatment was not performed and the firing temperature was 1600°C. The obtained sample was measured at room temperature with a span distance of 20 mm and a crosshead descent rate of 0.5 mm/
A three-point bending test was conducted under the condition of min. The results are shown below. (Unit: Kgf/ mm2 )

【表】 破壊靭性値は、IF法により求めた。このとき
の荷重は20Kgfとした。 その結果を以下に示す。(単位MPa√)
[Table] Fracture toughness values were determined by the IF method. The load at this time was 20 kgf. The results are shown below. (Unit MPa√)

【表】 実施例 2 住友アルミニウム(株)製アルミナAES11CY(平
均粒子径0.5μm)と福島けい石を用いてムライト
を合成し、ボールミルで48hr粉砕し、平均粒子径
2.5μmの原料を調製した。その原料90重量部の第
一希元素(株)製未安定化ジルコニアEP(平均粒子径
1.0μm)10重量部を混合し、分散剤はD305を用
い、2wt%、のステアリン酸エマルジヨンと
2.5wt%のワツクスエマルジヨンを添加しボール
ミルにより24hr湿式混合した。 乾燥後、解砕し、一軸加圧成形法(成形圧力
700Kgf/cm2)により4x4x36mm3の成形体を作製
し、1100℃で予備焼結した。80℃の純水100grに
オキシ塩化ジルコニウムを100grを溶解後、その
ジルコニウム塩溶液に予備焼結体を入れ30分間含
浸させた。その後、直ちに1/1アンモニア水溶液
中に4時間浸漬し、次いで80℃で2hr、120℃で
2hr乾燥した。10℃/minの速度で昇温し、1650
℃で1hr焼結させ強靭化セラミツクス(試料1)
を得た。 また、対照として、含浸処理を行わず焼成温度
が1600℃である以外は、前期と同様な処理をして
試料2を作製した。得られた試料は、常温で、ス
パン距離20mm、クロスヘツド降下速度0.5mm/
minの条件で3点曲げ試験を行つた。その結果を
以下に示す。(単位Kgf/mm2
[Table] Example 2 Mullite was synthesized using alumina AES11CY (average particle size 0.5 μm) manufactured by Sumitomo Aluminum Co., Ltd. and Fukushima silica, and ground in a ball mill for 48 hours to determine the average particle size.
A 2.5 μm raw material was prepared. 90 parts by weight of the raw material is unstabilized zirconia EP (average particle size
1.0 μm) was mixed with 10 parts by weight, using D305 as a dispersant, and 2 wt% of stearic acid emulsion.
2.5wt% wax emulsion was added and wet mixed for 24 hours using a ball mill. After drying, it is crushed and uniaxial pressure molding method (molding pressure
700Kgf/cm 2 ), a 4x4x36mm 3 molded body was produced and pre-sintered at 1100°C. After dissolving 100g of zirconium oxychloride in 100g of pure water at 80°C, the pre-sintered body was placed in the zirconium salt solution and impregnated for 30 minutes. After that, it was immediately immersed in a 1/1 ammonia aqueous solution for 4 hours, then at 80℃ for 2 hours, and then at 120℃.
Dry for 2hr. Raise the temperature at a rate of 10℃/min to 1650℃
Ceramics toughened by sintering at ℃ for 1 hour (sample 1)
I got it. In addition, as a control, Sample 2 was prepared in the same manner as in the previous period except that the impregnation treatment was not performed and the firing temperature was 1600°C. The obtained sample was measured at room temperature, with a span distance of 20 mm and a crosshead descent rate of 0.5 mm/
A three-point bending test was conducted under the condition of min. The results are shown below. (Unit: Kgf/ mm2 )

【表】 破壊靭性値は、IF法により求めた。このとき
の荷重は20Kgfとした。 その結果を以下に示す。(単位MPa√)
[Table] Fracture toughness values were determined by the IF method. The load at this time was 20 kgf. The results are shown below. (Unit MPa√)

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒子径3μm以下のジルコニアを3〜
20WT%含有するセラミツクス原料で構成される
成形体もしくは予備焼結体にジルコニウム塩水溶
液もしくは含ジルコニウム溶液を含浸させ、乾燥
後焼結することを特徴とするセラミツクスの強化
方法。
1 Zirconia with an average particle size of 3 μm or less
A method for strengthening ceramics, which comprises impregnating a molded body or pre-sintered body made of a ceramic raw material containing 20 WT% with an aqueous zirconium salt solution or a zirconium-containing solution, drying and sintering.
JP63122733A 1988-05-19 1988-05-19 Method for toughening ceramics Granted JPH01290547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63122733A JPH01290547A (en) 1988-05-19 1988-05-19 Method for toughening ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122733A JPH01290547A (en) 1988-05-19 1988-05-19 Method for toughening ceramics

Publications (2)

Publication Number Publication Date
JPH01290547A JPH01290547A (en) 1989-11-22
JPH0547497B2 true JPH0547497B2 (en) 1993-07-16

Family

ID=14843242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122733A Granted JPH01290547A (en) 1988-05-19 1988-05-19 Method for toughening ceramics

Country Status (1)

Country Link
JP (1) JPH01290547A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122857A1 (en) * 2015-12-28 2017-06-29 Degudent Gmbh Process for the preparation of a shaped article and shaped article

Also Published As

Publication number Publication date
JPH01290547A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
US9090511B2 (en) Inorganic-inorganic composite material and method for producing the same
EP0311264B1 (en) Ceramic cutting tool inserts and production thereof
JPS6117468A (en) Ceramic products
JPH0710637A (en) Ceramic molding containing zirconium dioxide and preparation thereof
CA2066814C (en) Ceramic binder and use thereof
US4849142A (en) Superplastic forging of zirconia ceramics
JPH0475188B2 (en)
KR910002174B1 (en) Magnesia partially-stabiltized zirconia
JPH04130049A (en) Ceramic composite material and its production
JPH0547497B2 (en)
JPH0451508B2 (en)
JPH0329021B2 (en)
JP2880002B2 (en) Ceramic porous body
JPH0236554B2 (en)
JPH0545556B2 (en)
JP2645894B2 (en) Method for producing zirconia ceramics
WO1989001923A1 (en) Magnesia partially-stabilized zirconia ceramics and process for making the same
US4940843A (en) Method of producing non-oxide ceramic sintered bodies
JP2581939B2 (en) High-strength alumina sintered body and method for producing the same
JPH06107454A (en) Alumina sintered body and production thereof
JP3287202B2 (en) Silicon nitride ceramic composite and method for producing the same
JP2533854B2 (en) ZrO2-based ceramics sintered body for wear resistant structural material
CN115894001A (en) High-hardness wear-resistant resin-permeable ceramic composite material and preparation method and application thereof
WO1989003371A1 (en) One step sinter/hip processing of ceramics
Amat et al. INFLUENCE OF PARTICLE SIZE AND PRE-SINTERING TEMPERATURE ON THE PROPERTIES OF ZIRCONIA BLOCK