JP2533854B2 - ZrO2-based ceramics sintered body for wear resistant structural material - Google Patents

ZrO2-based ceramics sintered body for wear resistant structural material

Info

Publication number
JP2533854B2
JP2533854B2 JP61125120A JP12512086A JP2533854B2 JP 2533854 B2 JP2533854 B2 JP 2533854B2 JP 61125120 A JP61125120 A JP 61125120A JP 12512086 A JP12512086 A JP 12512086A JP 2533854 B2 JP2533854 B2 JP 2533854B2
Authority
JP
Japan
Prior art keywords
sintered body
zro
based ceramics
strength
structural material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61125120A
Other languages
Japanese (ja)
Other versions
JPS62283865A (en
Inventor
良二 井上
久雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61125120A priority Critical patent/JP2533854B2/en
Publication of JPS62283865A publication Critical patent/JPS62283865A/en
Application granted granted Critical
Publication of JP2533854B2 publication Critical patent/JP2533854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、刃物やダイス等の工具、切削工具等の耐摩
耗用の構造材として、使用される高強度でかつ高硬度な
ZrO2基セラミックス焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a high strength and a high hardness used as a wear-resistant structural material for tools such as blades and dies, and cutting tools.
The present invention relates to a ZrO 2 -based ceramics sintered body.

〔従来の技術〕[Conventional technology]

従来、Y2O3を2〜3モル%添加し、主に正方晶の結晶
構造を有するZrO2基セラミックス焼結体は、他のセラミ
ックスに比べて高強度を示すことが知られている。ここ
で、Y2O3の効果は、ZrO2の高温型の正方晶が低温型の単
斜晶へ変態することを抑制し、常温まで、正方晶を保持
して安定化させることである。そして、この正方晶のZr
O2が高強度を発現させる。
Conventionally, it is known that a ZrO 2 -based ceramics sintered body containing Y 2 O 3 in an amount of 2 to 3 mol% and mainly having a tetragonal crystal structure exhibits higher strength than other ceramics. Here, the effect of Y 2 O 3 is to suppress transformation of a high temperature type tetragonal crystal of ZrO 2 into a low temperature type monoclinic crystal, and to hold and stabilize the tetragonal crystal up to room temperature. And this tetragonal Zr
O 2 develops high strength.

ところで、この正方晶型のZrO2に、HIP(静間静水圧
プレス、以後HIPと記す)を適用して、緻密化した焼結
体では、抗析強度が約160kg f/mm2に達することが下記
文献に報告されている。
By the way, HIP (static isostatic pressing, hereinafter referred to as HIP) is applied to this tetragonal ZrO 2 and the densified sintered body may reach a segregation strength of about 160 kg f / mm 2. It is reported in the following documents.

“Strength and Fracture Toughness of Isostatically
Hot−Pressed Composites of Al2O3 and Y2O3−Partia
lly−Stabilized ZrO2",Journal of the American Cera
mic Society,68,C−4,1985. また、このZrO2焼結体にAl2O3を20重量%(28体積
%)添加すると、さらに強度が向上し、HIPを適用する
と、抗析強度が約240kg f/mm2に達することが上記文献
中に報告されている。また、この焼結体のビッカース硬
さは、約1400であるという報告もされている。
“Strength and Fracture Toughness of Isostatically
Hot−Pressed Composites of Al 2 O 3 and Y 2 O 3 − Partia
lly−Stabilized ZrO 2 ", Journal of the American Cera
mic Society, 68 , C-4, 1985. Addition of 20% by weight (28% by volume) of Al 2 O 3 to this ZrO 2 sintered body further improves the strength. It has been reported in the above literature that can reach about 240 kg f / mm 2 . It is also reported that the Vickers hardness of this sintered body is about 1400.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ZrO2基セラミックスを低温で使用する構造材料に適用
する場合には、超硬材と競合する場合が多く、超硬の機
械的特性は、抗析強度が約300kg f/mm2、ビッカース硬
さは約1500で、現状のZrO2基セラミックス焼結体より優
れており、さらに、強度、硬度を向上させ、超硬材に匹
敵するか或いは越える特性が要求されてきた。
When applying ZrO 2 -based ceramics to structural materials that are used at low temperatures, they often compete with cemented carbide.The mechanical properties of cemented carbide are that the segregation strength is about 300 kg f / mm 2 , Vickers hardness. Is about 1500, which is superior to the current ZrO 2 -based ceramics sintered body, and further, it has been required to have properties that are equivalent to or exceed those of cemented carbide, with improved strength and hardness.

本発明の目的は、強度、硬度を向上させた耐摩耗構造
材用ZrO2基セラミックス焼結体とその製造方法を提供す
ることである。
An object of the present invention is to provide a ZrO 2 -based ceramics sintered body for a wear resistant structural material having improved strength and hardness, and a method for producing the same.

〔問題を解決するための手段〕[Means for solving problems]

本願発明者は種々検討を重ねた結果、安定化剤として
Y2O3を含有するZrO2基セラミックス焼結体にCr2O3含有
させることにより、ZrO2基セラミックス焼結体の強度な
らびに硬度の向上をなしえたのである。
As a result of various studies, the inventor of the present application
By adding Cr 2 O 3 to the ZrO 2 -based ceramics sintered body containing Y 2 O 3 , the strength and hardness of the ZrO 2 -based ceramics sintered body could be improved.

本発明において、Cr2O3の添加によるZrO2焼結体の強
度向上は、Cr2O3自体の弾性率がZrO2より著しく大きく
その効果によるものと考えられる。また、Cr2O3のビッ
カーズ硬度は、2900と大きくCr2O3の添加により硬度も
向上する。Cr2O3が10体積%未満でも、添加の効果が十
分でなく、従来の焼結体と同程度の強度、硬度しか得ら
れず、また50体積%を越えると、硬度は上昇するもの
の、強度が所望の値とならないので、Cr2O3は、10〜50
体積%の範囲で選択される。本発明ZrO2基セラミックス
焼結体には、Y2O3、CeO2等の安定化剤が含有される。
In the present invention, the strength improvement of ZrO 2 sintered body by the addition of Cr 2 O 3 is, Cr 2 O 3 itself modulus is considered to be due to significantly greater its effect than ZrO 2. Further, Vickers hardness of Cr 2 O 3, the hardness is improved by the addition of 2900 largely Cr 2 O 3. Even if Cr 2 O 3 is less than 10% by volume, the effect of addition is not sufficient and only strength and hardness comparable to those of conventional sintered bodies can be obtained. If it exceeds 50% by volume, hardness increases, Since the strength does not reach the desired value, Cr 2 O 3 is 10 to 50
It is selected in the range of volume%. The ZrO 2 -based ceramics sintered body of the present invention contains a stabilizer such as Y 2 O 3 or CeO 2 .

Y2O3、CeO2の添加により、ZrO2基セラミックス焼結体
の結晶構造は、主に正方晶となるが添加量がそれぞれ1
モル%未満、4モル%未満では、正方晶を安定化させる
効果が小さく、単斜晶が生成しやすくなる傾向にあり、
またそれぞれ4モル%、16モル%を越えると立方晶が生
成しやすくなるので、添加量はY2O31〜4%モル%、CeO
24〜16モル%が望ましい。なお、Y2O3、CeO2を複合添加
しても良い。
When Y 2 O 3 and CeO 2 are added, the crystal structure of the ZrO 2 -based ceramics sintered body becomes mainly tetragonal, but the addition amount of each is 1
If it is less than 4 mol%, the effect of stabilizing the tetragonal crystal is small, and monoclinic crystals tend to be easily generated.
Further, if the content exceeds 4 mol% and 16 mol%, respectively, cubic crystals are likely to be formed, so the addition amount is Y 2 O 3 1 to 4% mol%, CeO 2.
2 4-16 mol% is desirable. Note that Y 2 O 3 and CeO 2 may be added together.

また、Y2O3、CeO2が含有された場合でも、得られた焼
結体のZrO2の平均結晶粒径が、3ミクロンを越えると、
結晶構造が単斜晶に変態しやすくなり、正方晶の割合が
減少するためZrO2の平均結晶粒径を3ミクロン以下に抑
制し、ZrO2の結晶構造が90%以上正方晶であることが重
要である。また、得られた焼結体のCr2O3の結晶粒径
は、ZrO2−Cr2O3複合材の強度を考慮した場合、基本的
にZrO2のそれより小さいことが望ましい。
Even when Y 2 O 3 and CeO 2 are contained, if the average crystal grain size of ZrO 2 in the obtained sintered body exceeds 3 μm,
Crystal structure tends to transform into the monoclinic, tetragonal percentage of crystals is suppressed to less than 3 microns average crystal grain size of the ZrO 2 to reduce, that the crystal structure of ZrO 2 is tetragonal 90% is important. The crystal grain size of Cr 2 O 3 in the obtained sintered body is basically preferably smaller than that of ZrO 2 in consideration of the strength of the ZrO 2 —Cr 2 O 3 composite material.

次に、本発明焼結体の製造方法について説明する。 Next, a method for manufacturing the sintered body of the present invention will be described.

本発明焼結体は、Y2O3、CeO2等の安定化剤を含有する
ZrO2粉末と所定の量のCr2O3粉末を添加、混合、成形し
た後、焼結することにより得ることができるが、Cr2O3
の微粉末は入手し難く、Cr粉末を用いて、大気中焼結す
ることによりCr2O3を生成させる手法を採用しても良
い。また、ホットプレス或いはHIP(熱間プレス)を適
用して高密度化を図ることも可能である。ホットプレス
条件は、50kg f/cm2以上の圧力で温度は、1400〜1700
℃、HIP条件は、500kg f/cm2以上の圧力で温度は1400〜
1700℃が適切である。更にホットプレスで焼結した後、
HIPを適用した緻密化を図っても良い。
The sintered body of the present invention contains a stabilizer such as Y 2 O 3 and CeO 2.
Adding Cr 2 O 3 powder of ZrO 2 powder and a predetermined amount of mixing, after molding, can be obtained by sintering, Cr 2 O 3
The fine powder is difficult to obtain, and a method of using Cr powder to produce Cr 2 O 3 by sintering in air may be adopted. It is also possible to apply hot pressing or HIP (hot pressing) to increase the density. The hot press conditions are a pressure of 50 kg f / cm 2 or more and a temperature of 1400 to 1700.
℃, HIP conditions, the pressure is 500kg f / cm 2 or more, the temperature is 1400 ~
1700 ° C is appropriate. After further sintering with hot press,
You may try to make it more precise by applying HIP.

また、原料粉末は1μm以下のものを使用することが
強度上必要である。
In addition, it is necessary to use raw material powder having a particle size of 1 μm or less for strength.

〔実施例〕〔Example〕

Y2O3を3モル%固溶した平均粒径が0.1ミクロンのZrO
2の原料粉末と、粒径が0.1ミクロン以下のCr2O3粉末を
添加量が0〜60体積%となるよう秤量する。そして、上
記2種類の粉末と純水とをポットに入れて、ボールミル
によって50h混合した後、バインダーとしてポリビニル
アルコールを添加し、さらに5h混合してスラリーとす
る。スラリーをスプレードライヤー機によって乾燥させ
て造粒した後、ゴム型に充填する。そして、ラバープレ
ス機で、このゴム型に5tonf/cm2の圧力を加えて、造粒
粉を圧密化し、成形体を得る。得られた成形体を大気中
1500℃ 1h保持して焼結を完了した。次に、得られた焼
結体を圧力1500kgf/cm2、温度1500℃、1h保持の条件
で、HIPを適用してさらに緻密化した。以上の工程によ
って得られた焼結体から、JIS規格(R1601)に従って抗
折試験片を作成し、抗折強度を測定した(試験片5本の
平均値を求めて、1つのデータとした。)。また、硬度
は、荷重10kgのビッカース法で測定した。抗析強度と硬
度のテスト結果を第1図に示す。これから、抗折強度
は、Cr2O3の添加量が30体積%までは向上するが、それ
以上では、逆に低下すること、硬度は、Cr2O3の添加量
が多い程向上することがわかる。そして、抗析強度が15
0kg f/mm2以上、ビッカース硬度が1400以上の特性を目
標としており、これを達成できる範囲は、10〜50体積%
であることがわかる。この範囲内の焼結体について、X
線により、ZrO2の結晶構造を調べたところ、90%以上が
正方晶で、残りは立方晶であった。
ZrO having an average particle size of 0.1 micron, in which 3 mol% Y 2 O 3 is dissolved
And 2 of the raw material powder, the particle size is weighed so that the amount of addition of Cr 2 O 3 powder of 0.1 micron or less is 0 to 60% by volume. Then, the above-mentioned two kinds of powders and pure water are put in a pot and mixed by a ball mill for 50 hours, then polyvinyl alcohol is added as a binder and further mixed for 5 hours to form a slurry. The slurry is dried by a spray dryer and granulated, and then filled in a rubber mold. Then, with a rubber press machine, a pressure of 5 tonf / cm 2 is applied to this rubber mold to consolidate the granulated powder to obtain a molded body. Obtained molded body in air
Sintering was completed by holding at 1500 ° C for 1 hour. Next, the obtained sintered body was further densified by applying HIP under the conditions of a pressure of 1500 kgf / cm 2 , a temperature of 1500 ° C. and a holding time of 1 h. A bending test piece was prepared from the sintered body obtained through the above steps in accordance with JIS standard (R1601), and bending strength was measured (an average value of five test pieces was obtained to obtain one data. ). The hardness was measured by the Vickers method with a load of 10 kg. FIG. 1 shows the test results of the anti-deposition strength and the hardness. From this, the bending strength is improved up to the addition amount of Cr 2 O 3 of 30% by volume, but it is decreased below that, and the hardness is improved as the addition amount of Cr 2 O 3 is increased. I understand. And the anti-deposition strength is 15
The target is 0kg f / mm 2 or more and Vickers hardness of 1400 or more. The range that can achieve this is 10 to 50% by volume.
It can be seen that it is. For sintered bodies within this range, X
When the crystal structure of ZrO 2 was examined by a line, 90% or more was tetragonal and the rest was cubic.

〔発明の効果〕〔The invention's effect〕

本発明によれば、刃物やダイス等の耐摩耗用構造材と
して用いる場合に、従来、超硬と比較して不十分であっ
た寿命が、同等以上となり、工業上非常に有益である。
According to the present invention, when it is used as a wear-resistant structural material such as a blade or a die, the life, which was conventionally insufficient as compared with that of cemented carbide, becomes equal to or longer than that, which is very useful industrially.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例におけるCr2O3の添加量と抗
折強度、ビッカース硬度の関係を示した図である。
FIG. 1 is a diagram showing the relationship between the amount of Cr 2 O 3 added and the bending strength and Vickers hardness in the examples of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】90%以上が正方晶の結晶構造を有するZrO2
基セラミックスに10〜50体積%のCr2O3を複合したこと
を特徴とする耐摩耗構造材用ZrO2基セラミックス焼結
体。
1. ZrO 2 having 90% or more tetragonal crystal structure
A ZrO 2 -based ceramics sintered body for wear-resistant structural material, characterized in that 10 to 50% by volume of Cr 2 O 3 is compounded in the base ceramics.
JP61125120A 1986-05-30 1986-05-30 ZrO2-based ceramics sintered body for wear resistant structural material Expired - Lifetime JP2533854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125120A JP2533854B2 (en) 1986-05-30 1986-05-30 ZrO2-based ceramics sintered body for wear resistant structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125120A JP2533854B2 (en) 1986-05-30 1986-05-30 ZrO2-based ceramics sintered body for wear resistant structural material

Publications (2)

Publication Number Publication Date
JPS62283865A JPS62283865A (en) 1987-12-09
JP2533854B2 true JP2533854B2 (en) 1996-09-11

Family

ID=14902340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125120A Expired - Lifetime JP2533854B2 (en) 1986-05-30 1986-05-30 ZrO2-based ceramics sintered body for wear resistant structural material

Country Status (1)

Country Link
JP (1) JP2533854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883282B1 (en) * 2005-03-15 2007-05-25 Saint Gobain Ct Recherches INTERNAL COATING OF REACTOR OF GASIFIER

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145174A (en) * 1980-04-12 1981-11-11 Akira Yamaguchi Manufacture of zirconia-chromium oxide sintered body
JPS6126561A (en) * 1984-07-13 1986-02-05 東芝モノフラツクス株式会社 Zirconia ceramics

Also Published As

Publication number Publication date
JPS62283865A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JPS61197464A (en) Manufacture of sintered formed body
KR910009894B1 (en) Ceramic products and process for producing the same
JP3129870B2 (en) Manufacturing method of ceramic sintered body
US4650498A (en) Abrasion resistant silicon nitride based articles
JP2533854B2 (en) ZrO2-based ceramics sintered body for wear resistant structural material
JP2671929B2 (en) Zirconia-based ceramic material and its manufacturing method
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JP2645894B2 (en) Method for producing zirconia ceramics
JP3051603B2 (en) Titanium compound sintered body
JPH02160674A (en) Inserted cutting blade made of oxide-based ceramic
KR910005427B1 (en) High-toughness zro2 sintered body and preparation method thereof
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP2759290B2 (en) Manufacturing method of aluminum oxide sintered body
JP2931916B2 (en) Ceramic sintered body
JPH0688835B2 (en) High-toughness ZrO 2) system sintered body and manufacturing method thereof
JPH0813702B2 (en) Composite ceramics
JP2931917B2 (en) Manufacturing method of ceramic sintered body
JP2720093B2 (en) Fiber reinforced ceramics
JP2794122B2 (en) Fiber reinforced ceramics
JPH05319910A (en) Ceramic composite material and its production
JP2840688B2 (en) Manufacturing method of aluminum oxide sintered body
JP2794121B2 (en) Fiber reinforced ceramics
JP2779454B2 (en) Aluminum oxide sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term