JPH0547389A - Manufacture of fuel cell - Google Patents

Manufacture of fuel cell

Info

Publication number
JPH0547389A
JPH0547389A JP3199660A JP19966091A JPH0547389A JP H0547389 A JPH0547389 A JP H0547389A JP 3199660 A JP3199660 A JP 3199660A JP 19966091 A JP19966091 A JP 19966091A JP H0547389 A JPH0547389 A JP H0547389A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
platinum
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3199660A
Other languages
Japanese (ja)
Inventor
Hiroko Ueki
裕子 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3199660A priority Critical patent/JPH0547389A/en
Publication of JPH0547389A publication Critical patent/JPH0547389A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To manufacture a fuel cell with excellent reliability without wetting an electrode with phosphoric acid. CONSTITUTION:The first process, the second process, and the third process are provided. Metal grains are carried on carbon carriers in the first process, the carbon carriers carrying the metal grains are heat-treated in the second process, and the heat-treated carbon carriers are crushed to manufacture a catalyst in the third process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はリン酸型燃料電池の触
媒の製造方法に係り、特に触媒とバインダとの混合状態
が良好でリン酸による濡れがなく信頼性に優れる燃料電
池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst for a phosphoric acid fuel cell, and more particularly to a method for producing a fuel cell in which the catalyst and the binder are well mixed and are not wetted by phosphoric acid and are highly reliable. ..

【0002】[0002]

【従来の技術】一般に燃料電池用ガス拡散電極は電気伝
導性に優れた多孔質なカーボン電極基材上に、貴金属を
担持した触媒粉末をポリテトラフロロエチレンで結着し
た電極触媒層を積層して形成される。
2. Description of the Related Art Generally, a gas diffusion electrode for a fuel cell has a porous carbon electrode substrate having excellent electric conductivity, and an electrode catalyst layer obtained by binding a catalyst powder carrying a noble metal with polytetrafluoroethylene is laminated on the carbon electrode substrate. Formed.

【0003】この電極触媒層において供給される反応ガ
スである酸素または水素と、リン酸電解質および触媒の
三相共存が均一に起こることで電気化学的反応を直接電
気エネルギーとして取り出すことができる。
Oxygen or hydrogen, which is the reaction gas supplied in the electrode catalyst layer, and the phosphoric acid electrolyte and the catalyst coexist three-phase uniformly, so that the electrochemical reaction can be directly taken out as electric energy.

【0004】図3は燃料電池の電極を示す断面図であ
る。燃料電池は空気または水素の流通路を有した多孔質
カーボンを用いた電極基材11と、白金12を担持した
触媒13に適度なはっ水性を付与するPTFE14と混合し
た電極触媒層15よりなっている。この電極触媒層にお
いて、供給される反応ガスである空気および水素と電解
質であるリン酸が触媒粒子表面で三相共存状態を起こ
す。
FIG. 3 is a sectional view showing an electrode of a fuel cell. The fuel cell comprises an electrode base material 11 using porous carbon having a flow passage for air or hydrogen, and an electrode catalyst layer 15 mixed with PTFE 14 which imparts appropriate water repellency to a catalyst 13 carrying platinum 12. ing. In this electrode catalyst layer, the supplied reaction gases, air and hydrogen, and phosphoric acid, the electrolyte, cause a three-phase coexistence state on the surface of the catalyst particles.

【0005】従来よりリン酸型燃料電池用触媒としては
高温リン酸に対して耐食性のある白金を用いた触媒が使
用されている。触媒は電極反応に極めて重要な役割を果
たしており、電池の出力と寿命の向上のために触媒の活
性度と安定性を高めることが必要である。
Conventionally, as a catalyst for a phosphoric acid fuel cell, a catalyst using platinum, which has corrosion resistance to high temperature phosphoric acid, has been used. Since the catalyst plays an extremely important role in the electrode reaction, it is necessary to enhance the activity and stability of the catalyst in order to improve the output and life of the battery.

【0006】従来の白金触媒の製造方法は、一般に液相
還元法が用いられている。具体的に説明すると白金を担
持するカーボンブラックを液相中に分散し易くするため
に、硝酸や氷酢酸等の酸処理を行い、次に塩化白金酸水
溶液を担持するに必要な白金を加え、液温を40〜90℃に
してから還元剤としてヒドラジンやギ酸を滴下して白金
の還元を行う。
As a conventional method for producing a platinum catalyst, a liquid phase reduction method is generally used. Specifically, in order to facilitate dispersion of carbon black supporting platinum in a liquid phase, an acid treatment such as nitric acid or glacial acetic acid is performed, and then platinum necessary for supporting an aqueous chloroplatinic acid solution is added, After adjusting the liquid temperature to 40 to 90 ° C, hydrazine and formic acid are added dropwise as a reducing agent to reduce platinum.

【0007】さらに触媒の活性度を高めるため白金を担
持した触媒にバナジウム、クロム、コバルト、ニッケ
ル、鉄などの第二金属成分を加えて合金化を行う。まず
前述の白金を還元した触媒を再び水溶液中に分散し、第
二金属の硝酸塩を添加し水酸化カリウム、水酸化ナトリ
ウム、アンモニア水などのアルカリ剤により第二金属を
水酸化物としてカーボン表面に沈着させる。これをろ過
水洗, 乾燥後に不活性雰囲気中で800 〜1000℃の熱処理
をして合金触媒を作製する。このように白金触媒に他の
IV〜VIII族の遷移金属を添加した合金触媒は触媒
活性の向上が図れることは周知の技術であり、さらに活
性の向上と安定性を求めて白金─クロム─コバルト(特
開昭59─141169号公報) 、白金─鉄─コバルト( 特開昭
62─163746号公報)、白金─ニッケル─コバルト( 特開
昭63─190254号公報) 等の三元系触媒も紹介されてい
る。上述の方法で得られた白金または白金合金触媒はバ
インダであるPTFEと混合されたあと電極触媒層とし
て電極基材上に積層され電極が形成される。
Further, in order to increase the activity of the catalyst, alloying is carried out by adding a second metal component such as vanadium, chromium, cobalt, nickel or iron to the catalyst carrying platinum. First, the catalyst obtained by reducing platinum described above is dispersed again in an aqueous solution, the nitrate of the second metal is added, and the second metal is converted to hydroxide on the carbon surface with an alkali agent such as potassium hydroxide, sodium hydroxide or aqueous ammonia. Deposit. This is filtered, washed with water, dried, and then heat-treated at 800 to 1000 ° C in an inert atmosphere to produce an alloy catalyst. It is a well-known technique that an alloy catalyst obtained by adding another IV to VIII transition metal to a platinum catalyst can improve the catalytic activity, and platinum-chromium-cobalt is further sought in order to improve the activity and stability. (JP-A-59-141169), platinum-iron-cobalt (JP-A-59-141169)
62-163746), platinum-nickel-cobalt (JP-A-63-190254), and other three-way catalysts are also introduced. The platinum or platinum alloy catalyst obtained by the above method is mixed with PTFE as a binder and then laminated on an electrode base material as an electrode catalyst layer to form an electrode.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うにして得られた電極触媒層にあっては担体として用い
たカーボンのストラクチャが発達しているために触媒と
バインダとの混合が不均一となりリン酸による濡れが増
大して燃料電池特性の劣化が大きいという問題があっ
た。
However, in the electrocatalyst layer thus obtained, the structure of the carbon used as the carrier is developed, so that the mixture of the catalyst and the binder becomes non-uniform, and There is a problem that the wetting by the acid increases and the deterioration of the fuel cell characteristics is large.

【0009】この発明は上述の点に鑑みてなされその目
的は、触媒とバインダとの混合を均一にしてリン酸によ
る濡れがなく信頼性に優れる燃料電池の製造方法を提供
することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a method for producing a fuel cell which is uniform in the mixing of the catalyst and the binder and is not wetted by phosphoric acid and is excellent in reliability.

【0010】[0010]

【課題を解決するための手段】上述の目的はこの発明に
よれば第一の工程と、第二の工程と、第三の工程とを有
し、第一の工程はカーボン担体に金属粒子を担持する工
程であり、第二の工程は金属粒子の担持されたカーボン
担体を熱処理する工程であり、第三の工程は前記熱処理
されたカーボン担体を粉砕して触媒を製造する工程であ
るとすることにより達成される。
According to the present invention, the above-mentioned object has a first step, a second step, and a third step, wherein the first step involves loading metal particles on a carbon support. It is a step of supporting, the second step is a step of heat-treating the carbon carrier on which the metal particles are supported, and the third step is a step of crushing the heat-treated carbon carrier to produce a catalyst. It is achieved by

【0011】[0011]

【作用】熱処理により担体上に担持された金属粒子の安
定性が増し後工程の粉砕による金属粒子の変質や粉砕に
より出現した新しいカーボン表面への金属粒子の移動、
凝集がなくなり触媒の高活性を維持できる。また熱処理
により白金合金触媒の合金化が進み触媒の活性が高ま
る。粉砕処理により担体として用いたカーボンのストラ
クチャが破壊され粒径も細かくなりバインダとの混合が
均一になる。
[Operation] The stability of the metal particles supported on the carrier is increased by the heat treatment, and the metal particles are transferred to the new carbon surface which appears due to the alteration of the metal particles due to the pulverization in the subsequent step or the pulverization,
Aggregation is eliminated and high activity of the catalyst can be maintained. Further, the heat treatment promotes alloying of the platinum alloy catalyst and enhances the activity of the catalyst. The pulverization process destroys the structure of the carbon used as the carrier to make the particle size finer and the mixing with the binder becomes uniform.

【0012】[0012]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。比表面積200乃至300m2 /g、嵩密度0.
02g/cm2 を有するカーボンブラック粉末18gを
イオン交換水に分散させた溶液に白金2gを含有する塩
化白金酸(H2 PtCl6 )水溶液を添加し温度50℃
で均一に分散させたのち、0.1Mの炭酸ナトリウム
(Na2 CO3 )水溶液を添加してpH9以上とする。
Embodiments of the present invention will now be described with reference to the drawings. Specific surface area of 200 to 300 m 2 / g, bulk density of 0.
To a solution prepared by dispersing 18 g of carbon black powder having 02 g / cm 2 in ion-exchanged water was added a chloroplatinic acid (H 2 PtCl 6 ) aqueous solution containing 2 g of platinum, and the temperature was 50 ° C.
After being evenly dispersed in, the pH is adjusted to 9 or more by adding a 0.1 M sodium carbonate (Na 2 CO 3 ) aqueous solution.

【0013】コロイド凝集防止剤として30重量%の過
酸化水素(H2 2 )水を10ml加えて約5分間攪拌
する。還元剤として0,1Mのギ酸(HCOOH)水溶
液を約1時間かけて徐々に添加し、塩化白金酸を白金に
還元するとともにカーボン粉末表面に白金の微結晶を析
出させる。反応物を濾過してさらにイオン交換水にて水
洗する。洗浄終了後真空乾燥器にて数時間乾燥したのち
試料を環状の熱処理炉にセットし炉内の酸素を除去する
ために30分以上窒素にてパージした。
10 ml of 30% by weight of hydrogen peroxide (H 2 O 2 ) water was added as a colloid aggregation inhibitor, and the mixture was stirred for about 5 minutes. A 0.1 M formic acid (HCOOH) aqueous solution is gradually added as a reducing agent over about 1 hour to reduce chloroplatinic acid to platinum and to deposit platinum fine crystals on the surface of the carbon powder. The reaction product is filtered and further washed with deionized water. After completion of cleaning, the sample was dried in a vacuum dryer for several hours, and then the sample was set in an annular heat treatment furnace and purged with nitrogen for 30 minutes or more to remove oxygen in the furnace.

【0014】次いで炉温を900℃まで昇温しこの温度
で約2時間処理した。次に炉温を窒素雰囲気で室温まで
下げ徐々に空気を流して置換した後取り出し白金担持触
媒を得た。これを試料1とする。この試料をボールミル
で15時間粉砕した。これを試料2とする。
Then, the furnace temperature was raised to 900 ° C. and the treatment was performed at this temperature for about 2 hours. Next, the furnace temperature was lowered to room temperature in a nitrogen atmosphere, air was gradually flowed to replace the furnace, and then the platinum-supported catalyst was obtained. This is designated as Sample 1. This sample was pulverized with a ball mill for 15 hours. This is designated as Sample 2.

【0015】試料1と試料2とにつきX線回折と電子顕
微鏡写真観察を行い白金の結晶粒径と分散状態を調べ
た。その結果ボールミルで粉砕した試料ではカーボンが
粉砕され細かくなっている上白金粒子の分散性も良かっ
た。白金の粒子径は試料1で平均26Å、試料2で平均
27Åであった。
Samples 1 and 2 were subjected to X-ray diffraction and electron micrograph observation to examine the crystal grain size and dispersion state of platinum. As a result, in the sample crushed by the ball mill, the carbon was crushed into fine particles and the dispersibility of platinum particles was also good. The average particle size of platinum was 26 Å in Sample 1 and 27 Å in Sample 2.

【0016】上述の方法で得られた触媒の所定量を界面
活性剤の入ったイオン交換水に超音波ホモジナイザを用
いて均一に分散させた後触媒1gあたり50%のPTF
E(ポリテトラフロロエチレン)が混合するようなPT
FE分散溶液(濃度60%、比重1.5)を加えさらに
混合して触媒/PTFE分散液を作製する。この分散液
を予めフッ素樹脂ではっ水処理した多孔性カーボン基材
上にブレード法、スプレー法等で塗布、乾燥した後、P
TFEが溶融する温度にて焼成して電極を形成した。
A predetermined amount of the catalyst obtained by the above method was uniformly dispersed in ion-exchanged water containing a surfactant by using an ultrasonic homogenizer, and then 50% PTF was added per 1 g of the catalyst.
PT mixed with E (polytetrafluoroethylene)
An FE dispersion solution (concentration 60%, specific gravity 1.5) is added and further mixed to prepare a catalyst / PTFE dispersion liquid. This dispersion is applied by a blade method, a spray method or the like on a porous carbon substrate which has been previously treated with a water-repellent fluororesin, and dried.
An electrode was formed by firing at a temperature at which TFE melts.

【0017】試料1と試料2の触媒を用いて作製した電
極を電子顕微鏡で観察したところ、試料1を用いた電極
は触媒とバインダの混合状態が悪く凝集している部分が
あり又電極中の空孔も不均一であった。これに対し試料
2を用いた電極は触媒とPTFEが均一に混合し空孔も
均一であった。
When the electrodes prepared using the catalysts of Sample 1 and Sample 2 were observed with an electron microscope, the electrode using Sample 1 had a bad mixed state of the catalyst and the binder and had agglomerated portions. The holes were also non-uniform. On the other hand, in the electrode using Sample 2, the catalyst and PTFE were uniformly mixed and the pores were also uniform.

【0018】図1はこの発明の実施例にかかる燃料電池
の電流電圧特性(特性イ)を従来の特性(特性ロ)と対
比して示す線図である。粉砕した触媒を用いた燃料電池
の特性は粉砕しない触媒を用いる電池の特性と同等以上
である。図2はこの発明の実施例に係る燃料電池の電圧
時間依存性(特性ハ)を従来の電圧時間依存性(特性
ニ)と対比して示す線図である。粉砕した触媒を用いた
電池はリン酸の濡れがなく特性の劣化が少ないことがわ
かる。なお上述の例では粉砕にボールミルを用いている
が粉砕はこれに限定されるものではなく他にコロイドミ
ル、ブレンダミル等を用いても同様な結果が得られる。
FIG. 1 is a diagram showing the current-voltage characteristic (characteristic a) of the fuel cell according to the embodiment of the present invention in comparison with the conventional characteristic (characteristic b). The characteristics of the fuel cell using the crushed catalyst are equal to or higher than the characteristics of the cell using the non-crushing catalyst. FIG. 2 is a diagram showing the voltage time dependency (characteristic C) of the fuel cell according to the embodiment of the present invention in comparison with the conventional voltage time dependency (characteristic D). It can be seen that the battery using the crushed catalyst does not get wet with phosphoric acid and the deterioration of the characteristics is small. In the above example, the ball mill is used for the pulverization, but the pulverization is not limited to this, and the same result can be obtained by using a colloid mill, a blender mill or the like.

【0019】[0019]

【発明の効果】この発明によれば第一の工程と、第二の
工程と、第三の工程とを有し、第一の工程はカーボン担
体に金属粒子を担持する工程であり、第二の工程は金属
粒子の担持されたカーボン担体を熱処理する工程であ
り、第三の工程は前記熱処理されたカーボン担体を粉砕
して触媒を製造する工程であるので、粉砕処理により担
体として用いたカーボンのストラクチャが破壊され粒径
も細かくなりバインダとの混合が均一になりリン酸の濡
れが防止され信頼性に優れる燃料電池が得られる。また
熱処理により担体上に担持された金属粒子の安定性が増
し後工程の粉砕による金属粒子の変質や粉砕により出現
した新しいカーボン表面への金属粒子の移動、凝集がな
くなり触媒の高活性を維持できる。また熱処理により白
金合金触媒の合金化が進み触媒の活性が高まる。このよ
うにして触媒の高い活性を維持したまま触媒とバインダ
の良好な混合状態が得られ、特性と信頼性に優れる燃料
電池が得られる。
According to the present invention, there are a first step, a second step, and a third step, the first step is a step of supporting metal particles on a carbon carrier, The step of is a step of heat-treating the carbon carrier carrying the metal particles, and the third step is a step of crushing the heat-treated carbon carrier to produce a catalyst. The structure is destroyed, the particle size becomes finer, the mixing with the binder becomes uniform, the wetting of phosphoric acid is prevented, and a highly reliable fuel cell is obtained. Further, the stability of the metal particles supported on the carrier is increased by the heat treatment, and the metal particles are not denatured or agglomerated on the surface of the new carbon that has appeared due to the alteration or pulverization of the metal particles due to the pulverization in the subsequent step and the high activity of the catalyst can be maintained. .. Further, the heat treatment promotes alloying of the platinum alloy catalyst and enhances the activity of the catalyst. In this way, a good mixed state of the catalyst and the binder can be obtained while maintaining the high activity of the catalyst, and a fuel cell having excellent characteristics and reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例にかかる燃料電池の電流電圧
特性(特性イ)を従来の特性(特性ロ)と対比して示す
線図
FIG. 1 is a diagram showing a current-voltage characteristic (characteristic a) of a fuel cell according to an embodiment of the present invention in comparison with a conventional characteristic (characteristic b).

【図2】この発明の実施例に係る燃料電池の電圧時間依
存性(特性ハ)を従来の電圧時間依存性(特性ニ)と対
比して示す線図
FIG. 2 is a diagram showing the voltage time dependency (characteristic C) of the fuel cell according to the embodiment of the present invention in comparison with the conventional voltage time dependency (characteristic D).

【図3】燃料電池の電極を示す断面図FIG. 3 is a sectional view showing an electrode of a fuel cell.

【符号の説明】[Explanation of symbols]

11 電極基材 12 白金触媒 13 触媒 14 PTFE 15 電極触媒層 11 electrode base material 12 platinum catalyst 13 catalyst 14 PTFE 15 electrode catalyst layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第一の工程と、第二の工程と、第三の工程
とを有し、 第一の工程はカーボン担体に金属粒子を担持する工程で
あり、 第二の工程は金属粒子の担持されたカーボン担体を熱処
理する工程であり、 第三の工程は前記熱処理されたカーボン担体を粉砕して
触媒を製造する工程であることを特徴とする燃料電池の
製造方法。
1. A first step, a second step, and a third step, wherein the first step is a step of supporting metal particles on a carbon carrier, and the second step is a metal particle. Is a step of heat-treating the supported carbon carrier, and the third step is a step of crushing the heat-treated carbon carrier to produce a catalyst.
【請求項2】請求項1記載の製造方法において、カーボ
ン担体はカーボンブラックであることを特徴とする燃料
電池の製造方法。
2. The method for producing a fuel cell according to claim 1, wherein the carbon carrier is carbon black.
【請求項3】請求項1記載の製造方法において、金属粒
子は白金であることを特徴とする燃料電池の製造方法。
3. The method for producing a fuel cell according to claim 1, wherein the metal particles are platinum.
【請求項4】請求項1記載の製造方法において、金属粒
子は白金合金であることを特徴とする燃料電池の製造方
法。
4. The method of manufacturing a fuel cell according to claim 1, wherein the metal particles are platinum alloys.
【請求項5】請求項1記載の製造方法において、粉砕は
ボールミルで行うことを特徴とする燃料電池の製造方
法。
5. The method for producing a fuel cell according to claim 1, wherein the pulverization is performed by a ball mill.
JP3199660A 1991-08-09 1991-08-09 Manufacture of fuel cell Pending JPH0547389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3199660A JPH0547389A (en) 1991-08-09 1991-08-09 Manufacture of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3199660A JPH0547389A (en) 1991-08-09 1991-08-09 Manufacture of fuel cell

Publications (1)

Publication Number Publication Date
JPH0547389A true JPH0547389A (en) 1993-02-26

Family

ID=16411520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3199660A Pending JPH0547389A (en) 1991-08-09 1991-08-09 Manufacture of fuel cell

Country Status (1)

Country Link
JP (1) JPH0547389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187468B1 (en) 1998-11-30 2001-02-13 Honda Giken Kogyo Kabushiki Kaisha Electrodes for fuel cells
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187468B1 (en) 1998-11-30 2001-02-13 Honda Giken Kogyo Kabushiki Kaisha Electrodes for fuel cells
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5082187B2 (en) Method for producing electrode catalyst particles for polymer electrolyte fuel cell
US4794054A (en) Platinum alloy electrocatalyst and acid-electrolyte fuel cell electrode using the same
JPH1069914A (en) Carbon carrier platinum skeleton alloy electrode catalyst having vacancy type lattice defect
JPS62269751A (en) Platinum-copper alloy electrode catalyst and electrode for acidic electrolyte fuel cell using said catalyst
CA2444176A1 (en) Fuel cell electrocatalyst and method of producing the same
JPH01210037A (en) Method of forming alloy on carrier
JP2012529722A (en) Fuel cell electrode catalyst
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
CN111244484B (en) Preparation method of sub-nano platinum-based ordered alloy
KR20080067554A (en) Pt/ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
JP2007112696A (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cell
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JPH0547389A (en) Manufacture of fuel cell
CN111509240B (en) Carbon-supported platinum catalyst powder and preparation method and application thereof
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH05135772A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH0629027A (en) Fuel cell and its manufacture
JP2012000612A (en) Platinum colloid-carrying carbon
JP2005174755A (en) Electrode catalyst, catalyst carrying electrode using the same catalyst, and mea
JPH06124712A (en) Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JPH02114452A (en) Manufacture of fuel electrode catalyst for liquid fuel battery
JP7093860B1 (en) Fuel cell electrode catalyst
CN112490452B (en) Fuel cell anode catalyst and preparation method and application thereof